Notes 14 — Bases and Linear Mappings

For the rest of the course, students should have in mind the following vector spaces: R"
(that is, either R or R™!), R™" and R, [x]. All are real vector spaces, with F = R. Many
other vector spaces can then be defined by choosing subspaces, a concept that we have
already investigated in R".

L14.1 Linear combinations and subspaces. Let uj,- -, ux be elements of a vector space V.
We can use the same notation as before for the set of all linear combinations (LC’s) of the
vectors listed, so that

Z{uy, -, ue} ={awg + -+ axug @ a; € F}. (1)
The only novelty is that the coefficients now belong to F (if this is different from R). Whilst
the u;’s form a finite set, the right-hand side of (1) will be infinite if F is.

Subspaces of V' are defined exactly as for R":

Definition. Let V' be a vector space over a field F. A subset U of V is a subspace iff

S()u,veld = u+vel,
(82)aceF,uel = auel.

It follows that a subspace is a vector space in its own right: the operations (S1) and (52) will
satisfy all the vector space axioms because V itself does. In practice, subspaces are again
defined either by linear combinations or linear equations.

Exercise. Let V = R>? be the space of 3 x 3 matrices. Let S = {A € R>® : AT = A} be the subset
consisting of symmetric matrices. Check that S is a subspace of V, and find matrices A; such
that S = X{Al,. ..,Aé}.

Definition. A vector space V (for example, a subspace V of some other vector space W) is
finite-dimensional if it has a finite subset {uy,---,ux} such that V = Z{uy,---,ux}.

Example. Consider R?>? again. This vector space is finite dimensional because any matrix of
size 2x3 is a LC of the matrices

(6o 0) (oo) (500)
Gon) Gio) God)

a5a3al—a001+a000+~--+a000 3)

ag as a) "'\0 0 0 *\0 0 1 °\1 0 0/
Whilst the unordered set (2) is an obvious basis, there is no ‘right” or ‘wrong’ way to order its
elements into a list.
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Indeed,

The actual dimension of V in the definition above turns out (we shall see) to be the smallest
number of vectors needed to ‘generate” V, in which case the resulting set is LI. Elements
Vi,...,Vk in a vector space V are linearly independent (LI) if there is no nontrivial linear
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relation between them. More formally, this means that
aivi+--+agvg=0 (witha; e F) = a1=---=ax=0.

For example, the six matrices in (2) are LI because (3) can only be null if all the coefficients
a; are zero.
Definition. A finite set {v1,...,v,} of elements of a vector space V is a basis of V if

(B1) it generates V in the sense that V = £ {vy,...,v,}, and

(B2) itis LI

Recall that any two bases of a subspace of R" have the same number of elements. We
shall explain shortly that the same result holds for any finite-dimensional vector space; the
dimension of V is then defined to be this number.

Exercise. (i) Guided by (2), show that R™" has a basis of consisting of mn matrices.

(ii) Verify that {1,x,...,x"} is a basis of R, [x], by observing that if ag + a1x +--- + a,x" equals
the zero polynomial then it has to vanish for all x, and a; = 0 for all i.

L14.2 Linear mappings. Let V,WW be two vector spaces. A mapping f:V — W is called
linear if

(LM1) f(u+v)=f(u)+ f(v) forallu,veV.
(LM2) f(av)=af(v) forallae Fand veV.
These two conditions are equivalent to either of the single ones

f(au+bv)
f(au+v)

af(u)+bf(v) foralla,beR, uveV,
af(u)+ f(v) forallaeR, uveV.

Here is an essential consequence:

f(0) =0, (4)
meaning that f maps the null vector of V' to the null vector of W (both are denoted here
by the symbol 0).

Example. Equation (3) effectively defines a linear mapping

.RL6 23 ' = (s
f:R* —=R>, for which f(ﬂ1,-~,l16)—<a6 ay a2>'

Here, we have used the notation fv in place of f(v) to avoid double parentheses. It is easy
to check the conditions (LM1) and (LM2); the reason they hold is that each matrix component
on the right is a linear combination of the coordinates on the left. By contrast, neither of the
following mappings is linear:

2
8(01,---,a6)=<a5+1 . a1>’ h(al,...,a6)=<a5 (@) a1>'

ag as ap ae as ar

Let f: .o/ — 2 be an arbitrary mapping between two sets. Recall that the image of f,
Imf={f(a):ac o},

denotes the subset of # consisting of those elements ‘gotten” from 7. Also, given b € 4,
its inverse image

flb) = laed : fa)=b)
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is the subset of o/ consisting of all those elements that map to b. Then f is said to be

(i) surjective or onto if Im f = B,

(ii) injective or one-to-one if f(a1)=f(az) = a1=ax.
Thus f is onto iff f71(b) is nonempty forall b € . If f is both surjective and injective then
it is called bijective. This means that there exists a well-defined inverse mapping

L% -,
sothat f1o f and f o f~! are identity mappings.
Example. Let n be a positive integer. Then f(x) = x" defines a bijection R — R iff n is odd; if
n is even f is neither injective nor surjective; f is linear only when n = 1 (in which case it is
the identity mapping). If n = 2 then f'(64) = {8,-8}; if n = 3 then ‘f~1(64)’ is ambiguous: it
could mean the subset {4}, or the number 4 obtained by applying the inverse mapping to 64.
Here is an easy but important

Lazy Lemma. Let f:V — W be a linear mapping. Then f is injective iff
f(v)=0 = v=0. (5)
Proof. Equation (4) tells us that (5) is a special case of the injectivity condition. So if f is

injective and f(v) =0, then f(v) = f(0) and thus v = 0. Conversely, suppose that (5) holds.
If f(v1)=f(v2) then because f is linear,

fva=vi1) = f(v2) - f(v1) =0,
and by hypothesis, v, — vy = 0. Thus, f is injective. QED

L14.3 Bases and linear mappings. We now use linear mappings to interpret the conditions
that define a basis. Suppose that vy,...,v, are any n elements of a vector space V. Define
a mapping f: R -V by

(ai,...,ap) > a1vi + -+ ayvy. (6)

It is easy to check that this mapping is linear. Then (B1) asserts that it is surjective, and (B2)
implies that it is injective (with the help of the Lazy Lemma).

A bijective linear mapping is also called an isomorphism, so a basis of V' defines an isomor-
phism f from R" to V. Observe from (6) that f maps each element of the canonical basis
of R” onto an element of the chosen basis of V. If {vy,---,v,} is a basis, we may use f to
identify R™ with V, and to transfer properties of R” to V. This enables one to prove results
such as the

Theorem. Let V be a vector space with a basis of size n. We have
(i) it m vectors vi,...,vy, of V are LIthen m < n,
(ii) if V.= Z{vy,...,vp} then n < p.
In particular, any basis of V has n elements, and V is said to have dimension 7.

Proof. We already know that this is true for V = R". For, we represent the vectors as rows
of a matrix A with size m x n or p x n, and use the theory of the rank r(A) of A. Part (i)
implies that r(A) = m, and so m < n. Part (ii) implies that 7(A) =n and so n < p.
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To deduce (i) in general, suppose that uy, ..., u,, are LIin V. Then f‘l(ul), e ,f‘l (u,,) are
LIin R" because

0:alfil(ul)"'"""amfil(um):fil(alul"‘"""amum)
= 0O0=awm+--+apuy, = a=--=a,=0.

Hence m < n. Part (ii) is similar. QED

The statement of the Theorem is represented schematically by

1 n — 00
|
|

LI set (size < n) basis generating set (size > n)

Lazy Corollary. Suppose that we already know that dimV = n. Then in checking whether
a set of n elements is a basis we only need bother to check one of (B1), (B2).

Proof. A practical way of extending an LI set to a basis is provided by the following result:
Suppose that vy, ..., vy are LIin a vector space V. Then vy, ..., Vi, Vi are LIiff

Vsl € L {v1,..., Vi) -
We have already seen this in action when V' = R", and it is valid in general.

Now, if V = Z{vq,...,v,} asin (B1), then the n vectors must be LI. For if not, at least one
is redundant and V is generated by n—1 elements, impossible. Similarly, if vy, ..., v, are LI
as in (B2), then they must generate V. For if not, we could add v, to get n+1 LI vectors,
contradicting the Theorem. QED

L14.4 Further exercises.

1. Let D:R3[x] — R3[x] denote the mapping given by differentiating: D(p(x)) = p'(x).
Show that D is linear, and determine the images of the four polynomials p; in the Example
above. Is D injective? Is it surjective?
2. Consider the polynomials:

p1(x) =3+x%, pa(x) =x-x*>+2x°, p3(x) =2-x>, pa(x)=x—2x> +3x°.
Verify that {p1(x),p2(x), p3(x), ps(x)} is a basis of R3[x] and express x? as a LC of the

elements of this basis.

3. Let A € R33 and define f:R3! — R3! by f(v) = Av. Prove that f is linear (such
examples will be the subject of the next lecture), and use the theory of linear systems to
show that f is injective iff r(A) = 3.

4. Show that the cubic polynomials
p1(x) = —5(x = 2)(x = 3)(x - 4) p2(x) = 3(x = 1)(x = 3)(x - 4)
p3(x) = —%(x -1 (x-2)(x—-4) pa(x) = %(x -1 (x-2)(x-3)

satisfy p;(j) = 6;; (meaning 1if i = j and 0 otherwise). Deduce that they are LI. Explain
carefully why this implies that they form a basis of R3[x].
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