Notes 14 – Bases and Linear Mappings

For the rest of the course, students should have in mind the following vector spaces: \mathbb{R}^n (that is, either $\mathbb{R}^{1,n}$ or $\mathbb{R}^{n,1}$), $\mathbb{R}^{m,n}$ and $\mathbb{R}_n[x]$. All are real vector spaces, with $F = \mathbb{R}$. Many other vector spaces can then be defined by choosing subspaces, a concept that we have already investigated in \mathbb{R}^n .

L14.1 Linear combinations and subspaces. Let $\mathbf{u}_1, \dots, \mathbf{u}_k$ be elements of a vector space *V*. We can use the same notation as before for the set of all *linear combinations* (LC's) of the vectors listed, so that

$$\mathscr{L}\left\{\mathbf{u}_{1},\cdots,\mathbf{u}_{k}\right\}=\left\{a_{1}\mathbf{u}_{1}+\cdots+a_{k}\mathbf{u}_{k}\,:\,a_{i}\in F\right\}.$$
(1)

The only novelty is that the coefficients now belong to *F* (if this is different from \mathbb{R}). Whilst the **u**_{*i*}'s form a *finite* set, the right-hand side of (1) will be *infinite* if *F* is.

Subspaces of *V* are defined exactly as for \mathbb{R}^n :

Definition. Let V be a vector space over a field F. A subset U of V is a subspace iff

(S1) $\mathbf{u}, \mathbf{v} \in U \Rightarrow \mathbf{u} + \mathbf{v} \in U$, (S2) $a \in F$, $\mathbf{u} \in U \Rightarrow a\mathbf{u} \in U$.

It follows that a subspace is a vector space in its own right: the operations (S1) and (S2) will satisfy all the vector space axioms because V itself does. In practice, subspaces are again defined either by linear combinations or linear equations.

Exercise. Let $V = \mathbb{R}^{3,3}$ be the space of 3×3 matrices. Let $S = \{A \in \mathbb{R}^{3,3} : A^{\mathsf{T}} = A\}$ be the subset consisting of *symmetric* matrices. Check that *S* is a subspace of *V*, and find matrices A_i such that $S = \mathcal{L}\{A_1, \ldots, A_6\}$.

Definition. A vector space *V* (for example, a subspace *V* of some other vector space *W*) is finite-dimensional if it has a finite subset $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ such that $V = \mathcal{L}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$.

Example. Consider $\mathbb{R}^{2,3}$ again. This vector space is finite dimensional because any matrix of size 2×3 is a LC of the matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$(2)$$

Indeed,

$$\begin{pmatrix} a_5 & a_3 & a_1 \\ a_6 & a_4 & a_2 \end{pmatrix} = a_1 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \dots + a_6 \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$
 (3)

Whilst the unordered set (2) is an obvious basis, there is no 'right' or 'wrong' way to order its elements into a list.

The actual dimension of *V* in the definition above turns out (we shall see) to be the smallest number of vectors needed to 'generate' *V*, in which case the resulting set is LI. Elements $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in a vector space *V* are *linearly independent* (LI) if there is no nontrivial linear

relation between them. More formally, this means that

 $a_1\mathbf{v}_1 + \cdots + a_k\mathbf{v}_k = \mathbf{0} \text{ (with } a_i \in F) \implies a_1 = \cdots = a_k = 0.$

For example, the six matrices in (2) are LI because (3) can only be null if all the coefficients a_i are zero.

Definition. A finite set $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of elements of a vector space V is a basis of V if

(B1) it generates V in the sense that $V = \mathscr{L} \{ \mathbf{v}_1, \dots, \mathbf{v}_n \}$, and (B2) it is LI.

Recall that any two bases of a subspace of \mathbb{R}^n have the same number of elements. We shall explain shortly that the same result holds for any finite-dimensional vector space; the dimension of *V* is then defined to be this number.

Exercise. (i) Guided by (2), show that $\mathbb{R}^{m,n}$ has a basis of consisting of mn matrices.

(ii) Verify that $\{1, x, ..., x^n\}$ is a basis of $\mathbb{R}_n[x]$, by observing that if $a_0 + a_1x + \cdots + a_nx^n$ equals the *zero polynomial* then it has to vanish for *all* x, and $a_i = 0$ for all i.

L14.2 Linear mappings. Let V, W be two vector spaces. A mapping $f: V \to W$ is called *linear* if

(LM1) $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$.

(LM2) $f(a\mathbf{v}) = af(\mathbf{v})$ for all $a \in F$ and $\mathbf{v} \in V$.

These two conditions are equivalent to either of the single ones

$$f(a\mathbf{u} + b\mathbf{v}) = af(\mathbf{u}) + bf(\mathbf{v}) \text{ for all } a, b \in \mathbb{R}, \mathbf{u}, \mathbf{v} \in V,$$

$$f(a\mathbf{u} + \mathbf{v}) = af(\mathbf{u}) + f(\mathbf{v}) \text{ for all } a \in \mathbb{R}, \mathbf{u}, \mathbf{v} \in V.$$

Here is an essential consequence:

$$f(\mathbf{0}) = \mathbf{0},\tag{4}$$

meaning that f maps the null vector of V to the null vector of W (both are denoted here by the symbol **0**).

Example. Equation (3) effectively defines a linear mapping

$$f: \mathbb{R}^{1,6} \to \mathbb{R}^{2,3}$$
, for which $f(a_1, \ldots, a_6) = \begin{pmatrix} a_5 & a_3 & a_1 \\ a_6 & a_4 & a_2 \end{pmatrix}$.

Here, we have used the notation $f\mathbf{v}$ in place of $f(\mathbf{v})$ to avoid double parentheses. It is easy to check the conditions (LM1) and (LM2); the reason they hold is that each matrix component on the right is a *linear* combination of the coordinates on the left. By contrast, neither of the following mappings is linear:

$$g(a_1,\ldots,a_6) = \begin{pmatrix} a_5+1 & a_3 & a_1 \\ a_6 & a_4 & a_2 \end{pmatrix}, \qquad h(a_1,\ldots,a_6) = \begin{pmatrix} a_5 & (a_3)^2 & a_1 \\ a_6 & a_4 & a_2 \end{pmatrix}.$$

Let $f: \mathscr{A} \to \mathscr{B}$ be an arbitrary mapping between two sets. Recall that the *image* of f,

$$\operatorname{Im} f = \{f(a) : a \in \mathscr{A}\},\$$

denotes the subset of \mathscr{B} consisting of those elements 'gotten' from \mathscr{A} . Also, given $b \in \mathscr{B}$, its *inverse image*

$$f^{-1}(b) = \{a \in \mathscr{A} : f(a) = b\}$$

is the *subset* of \mathscr{A} consisting of all those elements that map to b. Then f is said to be

(i) *surjective* or *onto* if Im f = B,

(ii) injective or one-to-one if $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$.

Thus *f* is onto iff $f^{-1}(b)$ is nonempty for all $b \in \mathscr{B}$. If *f* is both surjective *and* injective then it is called *bijective*. This means that there exists a well-defined inverse mapping

 $f^{-1}: \mathscr{B} \to \mathscr{A},$

so that $f^{-1} \circ f$ and $f \circ f^{-1}$ are identity mappings.

Example. Let *n* be a positive integer. Then $f(x) = x^n$ defines a bijection $\mathbb{R} \to \mathbb{R}$ iff *n* is odd; if *n* is even *f* is neither injective nor surjective; *f* is linear only when n = 1 (in which case it is the identity mapping). If n = 2 then $f^{-1}(64) = \{8, -8\}$; if n = 3 then ' $f^{-1}(64)$ ' is ambiguous: it could mean the subset $\{4\}$, or the number 4 obtained by applying the inverse mapping to 64.

Here is an easy but important

Lazy Lemma. Let $f: V \to W$ be a linear mapping. Then f is injective iff

$$f(\mathbf{v}) = \mathbf{0} \quad \Rightarrow \quad \mathbf{v} = \mathbf{0}. \tag{5}$$

Proof. Equation (4) tells us that (5) is a special case of the injectivity condition. So if f is injective and $f(\mathbf{v}) = \mathbf{0}$, then $f(\mathbf{v}) = f(\mathbf{0})$ and thus $\mathbf{v} = \mathbf{0}$. Conversely, suppose that (5) holds. If $f(\mathbf{v}_1) = f(\mathbf{v}_2)$ then because f is linear,

$$f(\mathbf{v}_2 - \mathbf{v}_1) = f(\mathbf{v}_2) - f(\mathbf{v}_1) = \mathbf{0},$$

and by hypothesis, $\mathbf{v}_2 - \mathbf{v}_1 = \mathbf{0}$. Thus, *f* is injective.

L14.3 Bases and linear mappings. We now use linear mappings to interpret the conditions that define a basis. Suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are any *n* elements of a vector space *V*. Define a mapping $f: \mathbb{R}^{1,n} \to V$ by

$$(a_1,\ldots,a_n)\mapsto a_1\mathbf{v}_1+\cdots+a_n\mathbf{v}_n.$$
 (6)

It is easy to check that this mapping is linear. Then (B1) asserts that it is *surjective*, and (B2) implies that it is *injective* (with the help of the Lazy Lemma).

A bijective linear mapping is also called an *isomorphism*, so a basis of V defines an isomorphism f from \mathbb{R}^n to V. Observe from (6) that f maps each element of the canonical basis of \mathbb{R}^n onto an element of the chosen basis of V. If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis, we may use f to *identify* \mathbb{R}^n with V, and to transfer properties of \mathbb{R}^n to V. This enables one to prove results such as the

Theorem. Let *V* be a vector space with a basis of size *n*. We have

- (i) if *m* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_m$ of *V* are *LI* then $m \leq n$,
- (ii) if $V = \mathscr{L} \{ \mathbf{v}_1, \dots, \mathbf{v}_p \}$ then $n \leq p$.

In particular, any basis of V has n elements, and V is said to have dimension n.

Proof. We already know that this is true for $V = \mathbb{R}^n$. For, we represent the vectors as rows of a matrix *A* with size $m \times n$ or $p \times n$, and use the theory of the *rank* r(A) of *A*. Part (i) implies that r(A) = m, and so $m \leq n$. Part (ii) implies that r(A) = n and so $n \leq p$.

QED

To deduce (i) in general, suppose that $\mathbf{u}_1, \ldots, \mathbf{u}_m$ are LI in *V*. Then $f^{-1}(\mathbf{u}_1), \cdots, f^{-1}(\mathbf{u}_m)$ are LI in \mathbb{R}^n because

$$\mathbf{0} = a_1 f^{-1}(\mathbf{u}_1) + \dots + a_m f^{-1}(\mathbf{u}_m) = f^{-1}(a_1 \mathbf{u}_1 + \dots + a_m \mathbf{u}_m)$$

$$\Rightarrow \mathbf{0} = a_1 \mathbf{u}_1 + \dots + a_m \mathbf{u}_m \Rightarrow a_1 = \dots = a_m = 0.$$

Hence $m \leq n$. Part (ii) is similar.

The statement of the Theorem is represented schematically by

Lazy Corollary. Suppose that we already know that dim V = n. Then in checking whether a set of *n* elements is a basis we only need bother to check one of (B1), (B2).

Proof. A practical way of extending an LI set to a basis is provided by the following result: Suppose that $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are LI in a vector space *V*. Then $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{v}_{k+1}$ are LI iff

$$\mathbf{v}_{k+1} \notin \mathscr{L}\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$$

We have already seen this in action when $V = \mathbb{R}^n$, and it is valid in general.

Now, if $V = \mathscr{L} \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ as in (B1), then the *n* vectors must be LI. For if not, at least one is redundant and *V* is generated by n-1 elements, impossible. Similarly, if $\mathbf{v}_1, \dots, \mathbf{v}_n$ are LI as in (B2), then they must generate *V*. For if not, we could add \mathbf{v}_{n+1} to get n + 1 LI vectors, contradicting the Theorem. QED

L14.4 Further exercises.

1. Let $D: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ denote the mapping given by differentiating: $D(\mathbf{p}(x)) = \mathbf{p}'(x)$. Show that *D* is linear, and determine the images of the four polynomials \mathbf{p}_i in the Example above. Is *D* injective? Is it surjective?

2. Consider the polynomials:

 $\mathbf{p}_1(x) = 3 + x^2$, $\mathbf{p}_2(x) = x - x^2 + 2x^3$, $\mathbf{p}_3(x) = 2 - x^2$, $\mathbf{p}_4(x) = x - 2x^2 + 3x^3$.

Verify that $\{p_1(x), p_2(x), p_3(x), p_4(x)\}$ is a basis of $\mathbb{R}_3[x]$ and express x^2 as a LC of the elements of this basis.

3. Let $A \in \mathbb{R}^{3,3}$ and define $f: \mathbb{R}^{3,1} \to \mathbb{R}^{3,1}$ by $f(\mathbf{v}) = A\mathbf{v}$. Prove that f is linear (such examples will be the subject of the next lecture), and use the theory of linear systems to show that f is injective iff r(A) = 3.

4. Show that the cubic polynomials

$$p_1(x) = -\frac{1}{6}(x-2)(x-3)(x-4) \qquad p_2(x) = \frac{1}{2}(x-1)(x-3)(x-4) p_3(x) = -\frac{1}{2}(x-1)(x-2)(x-4) \qquad p_4(x) = \frac{1}{6}(x-1)(x-2)(x-3)$$

satisfy $\mathbf{p}_i(j) = \delta_{ij}$ (meaning 1 if i = j and 0 otherwise). Deduce that they are LI. Explain carefully why this implies that they form a basis of $\mathbb{R}_3[x]$.

QED