
Notes 14 – Bases and Linear Mappings

For the rest of the course, students should have in mind the following vector spaces: R
n

(that is, either R
1,n or R

n,1 ), R
m,n and Rn[x] . All are real vector spaces, with F = R . Many

other vector spaces can then be defined by choosing subspaces, a concept that we have
already investigated in R

n .

L14.1 Linear combinations and subspaces. Let u1, · · · ,uk be elements of a vector space V .
We can use the same notation as before for the set of all linear combinations (LC’s) of the
vectors listed, so that

L {u1, · · · ,uk} = {a1u1 + · · · + akuk : ai ∈ F}. (1)

The only novelty is that the coefficients now belong to F (if this is different from R). Whilst
the ui ’s form a finite set, the right-hand side of (1) will be infinite if F is.

Subspaces of V are defined exactly as for R
n :

Definition. Let V be a vector space over a field F . A subset U of V is a subspace iff

(S1) u, v ∈ U ⇒ u + v ∈ U ,
(S2) a ∈ F, u ∈ U ⇒ au ∈ U .

It follows that a subspace is a vector space in its own right: the operations (S1) and (S2)will
satisfy all the vector space axioms because V itself does. In practice, subspaces are again
defined either by linear combinations or linear equations.

Exercise. Let V = R
3,3 be the space of 3 × 3 matrices. Let S = {A ∈ R

3,3 : A⊤ = A} be the subset

consisting of symmetric matrices. Check that S is a subspace of V , and find matrices Ai such

that S = L {A1, . . . , A6} .

Definition. A vector space V (for example, a subspace V of some other vector space W ) is
finite-dimensional if it has a finite subset {u1, · · · ,uk} such that V = L {u1, · · · ,uk} .

Example. Consider R
2,3 again. This vector space is finite dimensional because any matrix of

size 2×3 is a LC of the matrices
(

1 0 0
0 0 0

)

,

(

0 1 0
0 0 0

)

,

(

0 0 1
0 0 0

)

,

(

0 0 0
1 0 0

)

,

(

0 0 0
0 1 0

)

,

(

0 0 0
0 0 1

)

.

(2)

Indeed,

(

a5 a3 a1

a6 a4 a2

)

= a1

(

0 0 1
0 0 0

)

+ a2

(

0 0 0
0 0 1

)

+ · · · + a6

(

0 0 0
1 0 0

)

. (3)

Whilst the unordered set (2) is an obvious basis, there is no ‘right’ or ‘wrong’ way to order its

elements into a list.

The actual dimension of V in the definition above turns out (we shall see) to be the smallest
number of vectors needed to ‘generate’ V , in which case the resulting set is LI. Elements
v1, . . . , vk in a vector space V are linearly independent (LI) if there is no nontrivial linear
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relation between them. More formally, this means that

a1v1 + · · · + akvk = 0 (with ai ∈ F ) ⇒ a1 = · · · = ak = 0.

For example, the six matrices in (2) are LI because (3) can only be null if all the coefficients
ai are zero.

Definition. A finite set {v1, . . . , vn} of elements of a vector space V is a basis of V if

(B1) it generates V in the sense that V = L {v1, . . . , vn} , and

(B2) it is LI.

Recall that any two bases of a subspace of R
n have the same number of elements. We

shall explain shortly that the same result holds for any finite-dimensional vector space; the
dimension of V is then defined to be this number.

Exercise. (i) Guided by (2), show that R
m,n has a basis of consisting of mn matrices.

(ii) Verify that {1, x, . . . , xn} is a basis of Rn[x] , by observing that if a0 + a1x + · · · + anx
n equals

the zero polynomial then it has to vanish for all x , and ai = 0 for all i .

L14.2 Linear mappings. Let V,W be two vector spaces. A mapping f :V → W is called
linear if

(LM1) f(u + v) = f(u) + f(v) for all u, v ∈ V .

(LM2) f(av) = af(v) for all a ∈ F and v ∈ V .

These two conditions are equivalent to either of the single ones

f(au + bv) = af(u) + bf(v) for all a, b ∈ R, u, v ∈ V ,
f(au + v) = af(u) + f(v) for all a ∈ R, u, v ∈ V .

Here is an essential consequence:
f(0) = 0, (4)

meaning that f maps the null vector of V to the null vector of W (both are denoted here
by the symbol 0).

Example. Equation (3) effectively defines a linear mapping

f :R1,6 → R
2,3, for which f(a1, . . . , a6) =

(

a5 a3 a1

a6 a4 a2

)

.

Here, we have used the notation fv in place of f(v) to avoid double parentheses. It is easy
to check the conditions (LM1) and (LM2); the reason they hold is that each matrix component
on the right is a linear combination of the coordinates on the left. By contrast, neither of the
following mappings is linear:

g(a1, . . . , a6) =

(

a5 + 1 a3 a1

a6 a4 a2

)

, h(a1, . . . , a6) =

(

a5 (a3)
2 a1

a6 a4 a2

)

.

Let f :A → B be an arbitrary mapping between two sets. Recall that the image of f ,

Im f = {f(a) : a ∈ A },

denotes the subset of B consisting of those elements ‘gotten’ from A . Also, given b ∈ B ,
its inverse image

f−1(b) = {a ∈ A : f(a) = b}
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is the subset of A consisting of all those elements that map to b . Then f is said to be

(i) surjective or onto if Im f = B ,

(ii) injective or one-to-one if f(a1)=f(a2) ⇒ a1=a2 .

Thus f is onto iff f−1(b) is nonempty for all b ∈ B . If f is both surjective and injective then
it is called bijective. This means that there exists a well-defined inverse mapping

f−1:B → A ,

so that f−1 ◦ f and f ◦ f−1 are identity mappings.

Example. Let n be a positive integer. Then f(x) = xn defines a bijection R → R iff n is odd; if

n is even f is neither injective nor surjective; f is linear only when n = 1 (in which case it is

the identity mapping). If n = 2 then f−1(64) = {8,−8} ; if n = 3 then ‘f−1(64) ’ is ambiguous: it

could mean the subset {4} , or the number 4 obtained by applying the inverse mapping to 64.

Here is an easy but important

Lazy Lemma. Let f :V → W be a linear mapping. Then f is injective iff

f(v) = 0 ⇒ v = 0. (5)

Proof. Equation (4) tells us that (5) is a special case of the injectivity condition. So if f is
injective and f(v) = 0 , then f(v) = f(0) and thus v = 0 . Conversely, suppose that (5) holds.
If f(v1)=f(v2) then because f is linear,

f(v2 − v1) = f(v2) − f(v1) = 0,

and by hypothesis, v2 − v1 = 0 . Thus, f is injective. QED

L14.3 Bases and linear mappings. We now use linear mappings to interpret the conditions
that define a basis. Suppose that v1, . . . , vn are any n elements of a vector space V . Define
a mapping f :R1,n → V by

(a1, . . . , an) 7→ a1v1 + · · · + anvn. (6)

It is easy to check that this mapping is linear. Then (B1) asserts that it is surjective, and (B2)
implies that it is injective (with the help of the Lazy Lemma).

A bijective linear mapping is also called an isomorphism, so a basis of V defines an isomor-
phism f from R

n to V . Observe from (6) that f maps each element of the canonical basis
of R

n onto an element of the chosen basis of V . If {v1, · · · , vn} is a basis, we may use f to
identify R

n with V , and to transfer properties of R
n to V . This enables one to prove results

such as the

Theorem. Let V be a vector space with a basis of size n . We have

(i) if m vectors v1, . . . , vm of V are LI then m 6 n ,

(ii) if V = L
{

v1, . . . , vp
}

then n 6 p .

In particular, any basis of V has n elements, and V is said to have dimension n .

Proof. We already know that this is true for V = R
n . For, we represent the vectors as rows

of a matrix A with size m × n or p × n , and use the theory of the rank r(A) of A . Part (i)
implies that r(A) = m , and so m 6 n . Part (ii) implies that r(A) = n and so n 6 p .
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To deduce (i) in general, suppose that u1, . . . ,um are LI in V . Then f−1(u1), · · · , f
−1(um) are

LI in R
n because

0 = a1f
−1(u1) + · · · + amf

−1(um) = f−1(a1u1 + · · · + amum)

⇒ 0 = a1u1 + · · · + amum ⇒ a1 = · · · = am = 0.

Hence m 6 n . Part (ii) is similar. QED

The statement of the Theorem is represented schematically by

1 n → ∞

LI set (size 6 n) basis generating set (size > n)

Lazy Corollary. Suppose that we already know that dimV = n . Then in checking whether
a set of n elements is a basis we only need bother to check one of (B1), (B2).

Proof. A practical way of extending an LI set to a basis is provided by the following result:

Suppose that v1, . . . , vk are LI in a vector space V . Then v1, . . . , vk, vk+1 are LI iff

vk+1 6∈ L {v1, . . . , vk} .

We have already seen this in action when V = R
n , and it is valid in general.

Now, if V = L {v1, . . . , vn} as in (B1), then the n vectors must be LI. For if not, at least one
is redundant and V is generated by n−1 elements, impossible. Similarly, if v1, . . . , vn are LI
as in (B2), then they must generate V . For if not, we could add vn+1 to get n + 1 LI vectors,
contradicting the Theorem. QED

L14.4 Further exercises.

1. Let D:R3[x] → R3[x] denote the mapping given by differentiating: D(p(x)) = p′(x) .
Show that D is linear, and determine the images of the four polynomials pi in the Example
above. Is D injective? Is it surjective?

2. Consider the polynomials:

p1(x) = 3 + x2, p2(x) = x − x2 + 2x3, p3(x) = 2 − x2, p4(x) = x − 2x2 + 3x3.

Verify that {p1(x), p2(x), p3(x), p4(x)} is a basis of R3[x] and express x2 as a LC of the
elements of this basis.

3. Let A ∈ R
3,3 and define f :R3,1 → R

3,1 by f(v) = Av . Prove that f is linear (such
examples will be the subject of the next lecture), and use the theory of linear systems to
show that f is injective iff r(A) = 3.

4. Show that the cubic polynomials

p1(x) = −1
6(x − 2)(x − 3)(x − 4) p2(x) =

1
2(x − 1)(x − 3)(x − 4)

p3(x) = −1
2(x − 1)(x − 2)(x − 4) p4(x) =

1
6(x − 1)(x − 2)(x − 3)

satisfy pi(j) = δij (meaning 1 if i = j and 0 otherwise). Deduce that they are LI. Explain
carefully why this implies that they form a basis of R3[x] .
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