
Notes 13 – Vector Spaces

The theory of linear combinations, linear independence, bases, and subspaces that we have
studied in relation to Rn can be generalized to the more general study of vector spaces. Any
subspace of Rn (including of course Rn itself) is an example of a vector space, but there are
many others including sets of matrices, polynomials and functions.

L13.1 Motivation. A subspace of Rn is the prime example of a vector space, but there are a
number of reasons for discussing the general definition, namely

(i) to emphasize aspects of the theory that do not depend upon the choice of a specific basis,

(ii) to allow the use of scalars that are different from real numbers,

(iii) to extend the theory to function spaces of infinite dimensions.

We shall explain each of these points in turn.

(i) The whole description of Rn is modelled on the existence of its canonical basis. To be
specific, consider Rn,1 and let ej denote the j th column of the identity matrix In . Then a
typical element of Rn,1 is given by

v =









x1

x2

·
xn









= x1e1 + x2e2 + · · · + xnen,

and is represented by its coefficients relative to the basis {e1, . . . , en} . But when we wish to
describe subspaces of Rn,1 there is a need work with other bases. In fact, any subspace of
Rn is a vector space in its own right. In general it is important to be able change basis; in this
way, the abstract concept of vector space comes into its own.

(ii) The ‘scalars’ that are used to multiply vectors in the definition of a vector space need
not be real numbers. The set of scalars is required to be what is called a field, of which R

is only one example. Other examples of fields include the set Q of rational numbers (p/q
where p, q are integers with q 6= 0), the set C of complex numbers (x+ iy with x, y ∈ R and
i =

√
−1), and the ‘binary set’ B = {0, 1} (also called F2 ) consisting of just two elements.

(iii) In this course, we shall only work with vector spaces of finite dimension. We shall
explain that such a vector space V is characterized by the existence of a basis of finite size
n . The choice of such a basis makes V closely resemble the set Rn or (for the other choices
of fields mentioned above) Qn , Cn or the finite set Bn of size 2n . However, in analysis, the
most important examples of vector spaces do not fall into this category and once again ones
needs to rely upon the abstract and basis-independent theory.

L13.2 The definition of a vector space. In order to define a vector space in general, one first
needs a field F of scalars. For the moment, we shall suppose that F is one of R,Q,C, B . The
important thing about F one needs to know is that its elements can be added, subtracted,
multiplied and divided, and that there are two special ones, 0 and 1.

A vector space is a set V in which it is possible to form

(i) the sum u + v of u, v ∈ V ,

(ii) the product av of a ∈ F with v ∈ V .
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The elements of V are called ‘vectors’ even though they do not necessarily resemble vectors
in Rn . The two basic operations are subject to a number of rules that formalize the ones that
are completely obvious in the case F = R and V = Rn we are most familar with. There is no
need to memorize these rules, as they are quickly absorbed in practice:

Definition. V is said to be a vector space over F provided

(a) addition of vectors behaves like addition of real numbers in that it satisfies

(u + v) +w = u + (v +w),

u + v = v + u, for all u, v,w ∈ V,
(1)

there is a zero or null element 0 for which

0 + v = v for all v ∈ V,

and each vector v ∈ V has a ‘negative’ −v with the property that v + (−v) = 0 ;

(b) the ‘internal’ operations of F are compatible with (i) and (ii) in the sense that

(a + b)v = av + bv

(ab)v = a(bv),

a(u + v) = au + av,

(2)

and finally,
1v = v.

On this page, we have been careful to type elements of V (but not F ) in boldface, though in
handwriting one does not normally distinguish elements of V in any way. It is important
to observe that instances of both addition and multiplication in (2) occur with different
meanings. The conditions in (a), taken together, assert that the operation + makes V into
what is called a commutative (or abelian) group. Of course, we write u + (−v) as u − v , and
this process defines subtraction in a vector space.

Here is a simple consequence of the axioms above:

0v + 0v = (0 + 0)v = 0v.

The various rules in (a) allow us to subtract 0v (without knowing what this equals) to get

0v = 0,

so that 0v is always the null vector.

Example. To keep matters familiar, we first suppose that F = R , in which case V is called a real
vector space. Certainly V = Rn satisfies the definition above with the usual operations that we
have used repeatedly.

But another example is to take V to be the set Rm,n of matrices of size m × n . We explained
in the first lecture how to add such matrices together, and multiply them by scalars. From the
point of view of vector spaces (in which multiplication of matrices plays no part), there is little
difference between Rm,n and the space (of say row vectors) R1,mn . For example, we can pass
from R2,3 to R6 by the correspondence

(

a b c
d e f

)

↔ (a, b, c, d, e, f).

it does not matter whether we use the left-hand or right-hand description to define the two

basic operations – the result is the same. But we could equally well have chosen to represent the

matrix with (c, f, b, e, a, d) ; for this reason the vector spaces Rm,n , R1,mn are not identical.
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L13.3 Polynomials and functions. Amore original example is obtained using polynomials.
Recall that a polynomial is an expression of the form

p(x) = a0 + a1x + a2x
2 + · · · + anx

n. (3)

We are most familiar with the case in which the coefficients are real numbers, but they could
belong to a field F . The polynomial has degree equal to n provided an 6= 0. We have written
p in boldface to emphasize that is is to be treated as a ‘vector’, though it is also the function

x 7→ p(x);

the choice of symbol for the variable is irrelevant, and one often writes p(t) .

The constant term
a0 = p(0)

of the polynomial is none other than the value of the function at 0. It vanishes if and only if
the polynomial p(x) is divisible by x .

Proposition. The set Fn[x] of polynomials (in a variable x ) of degree no more than n with
coefficients in a field F is a vector space over F .

Proof. There is way to define define the basic operations, using a rule that works for any
functions. Namely, we set

(p1 + p2)(x) = p1(x) + p2(x),

(ap)(x) = ap(x), a ∈ F.
(4)

Using (3), it is obvious that the sum of two polynomials is a polynomial, and that the prod-
uct of a polynomial with a scalar is a polynomial. In practice, it is just a matter of applying
the operations coefficient-wise, as in the example

(1 + x)2 + 3(1 + x + 1
2x

2 + 1
6x

3) = 4 + 5x + 5
2x

2 + 1
2x

3,

representing a LC of two elements in R3[x] . QED

The previous proposition is a special case of the

Proposition. Let V be a vector space, and let A be any non-empty set. Then the rules (4)
make the set of all mappings f :A → V into a vector space.

L13.4 More about fields.

We shall not give the formal definition of a field. But it is a set F that satisfies the rules
of a vector space, in which we are allowed to take the set of scalars to be the same set
F . Multiplication between scalars and vectors therefore becomes a multiplication between
elements of F such that

1a = a, a ∈ F,

and 1 is the multiplicative identity or unit. The multiplication is required to be commutative,
so that

ab = ba, a, b ∈ F, (5)
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and every nonzero element a ∈ F must have a multiplicative inverse, written a−1 , satisfying

aa−1 = 1.

Every field must contain at least two elements: the additive identity (usually written 0) and
the multiplicative identity (written 1). If there are no other elements, we obtain B = {0, 1}
that is a field with the operations

0 + 0 = 0, 0 + 1 = 1 = 1 + 0, 1 + 1 = 0,
0 0 = 0, 0 1 = 0 = 1 0, 1 1 = 1.

(6)

Example. Here is an example of a field F with 4 elements. It will be defined as a vector space
over a simpler field, namely B . The set F consists of all linear combinations

b1f1 + b2f2, b1, b1 ∈ B,

in which we decree that f1, f2 are independent. Although b1, b2 are arbitrary, there are only two
choices for each. We can therefore list all four elements of F as row vectors

(0, 0) = 0f1 + 0f2 = 0,
(1, 0) = 1f1 + 0f2 = f1,
(0, 1) = 0f1 + 1f2 = f2,
(1, 1) = 1f1 + 1f2 = 1.

(On the right, we have avoided boldface to emphazise that the elements are to be treated like
numbers, not vectors.) Multiplication is carried out component-wise, using the operations of B .
The reason for also calling the last element 1 is that (1, 1)(a, b) = (1a, 1b) = (a, b) for a, b ∈ B .
The full multiplication table for F is symmetric because of (5):

· 0 f1 f2 1
0 0 0 0 0
f1 0 f1 1 f1
f2 0 1 f2 f2
1 0 f1 f2 1

If p is a prime number, the set {0, 1, 2, . . . , p− 1} with addition and multiplication modulo p
(‘clockface arithmetic’) becomes a field with exactly p elements. Applying the construction
of the Example with f1, . . . , fk in place of f1, f2 shows that there is a field with pk elements
for any positive integer k . It turns out that this is essentially the only field with pk elements.
Moreover, any finite field has pk elements for some prime number p > 2 and integer k > 1.

L13.5 Further exercises.

1. Show that the set of all differentiable functions f : (0, 1) → R is a real vector space. By
considering polynomials, or otherwise, show that it is not finite-dimensional.

2. Let V = B2,2 be the set of 2 × 2 matrices, each of whose entries is 0 or 1.

(i) Howmany elements does V have?

(ii) Show that V is a vector space with field B .

(iii) Howmany matrices in V have determinant (calculated using (6)) equal to 1?
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