1. Sia $\mathbb{R}^* = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$. Si consideri

$$A = \mathbb{C} \setminus \mathbb{R}^* = \{x + iy : y \neq 0 \text{ oppure } x = y = 0\}$$

con la topologia indotta da \mathbb{R}^2 . Dopo aver fatto un disegno, dire se A è

- (i) aperto in \mathbb{R}^2 ,
- (ii) connesso,
- (iii) connesso per archi,
- (iv) semplicemente connesso,
- (v) omeomorfo a \mathbb{C} .

Sia Q il quoziente di A rispetto alla coniugazione complessa (cioè, identificando i due punti $(x,y)\sim (x,-y)$ di A per ogni y>0). Lo spazio topologico Q è Hausdorff?

Giustificare tutte le risposte.

2. Dare la definizione di *completo* per uno spazio metrico.

Quali dei seguenti spazi sono necessariamente completi?

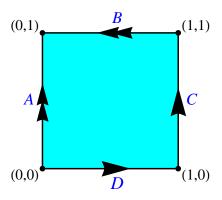
- (i) il sottoinsieme (0,1) di $\mathbb R$ con la solita distanza;
- (ii) il sottoinsieme $[0,1] \cap \mathbb{Q}$ di \mathbb{R} con la solita distanza;
- (iii) \mathbb{R}^2 con la norma $\|(x,y)\| = \max(|x|,|y|)$;
- (iv) il sottoinsieme $\mathbb Z$ di $\mathbb R$ con la solita distanza;
- (v) il sottoinsieme \mathbb{Z} di \mathbb{R} con la distanza p-adica (p è un numero primo fissato);
- (vi) la 'sfera' $\{f \in C[0,1]: \|f\|_{\sup} = 1\}$ in C[0,1] con la norma $\|f\|_{\sup} = \sup_{x \in [0,1]} |f(x)|$;
- (vii) un sottoinsieme limitato di C[0,1] rispetto alla norma $||f||_{L^1} = \int_0^1 |f(t)| \, dt$;
- (viii) un sottoinsieme compatto di C[0,1] con la norma $\|f\|_{L^2} = \left(\int_0^1 |f(t)|^2 dt\right)^{1/2}$. Giustificare tutte le risposte.

- 3. (i) Dimostrare che ogni funzione continua $f:[0,1] \to [0,1]$ ha almeno un punto fisso. Cosa si può dire dei punti fissi se |f(x) f(y)| = |x y| per ogni $x, y \in [0,1]$?
- (ii) Dimostrare che se $f: \mathbb{R} \to \mathbb{R}$ è differenziabile con f(p) = p e f'(p) = 0 allora f definisce una contrazione $[p \delta, p + \delta] \to [p \delta, p + \delta]$ per qualche $\delta > 0$.
- (iii) Verificare (ad esempio, tramite la condizione di Cauchy) che la serie $\sum_{k=1}^{\infty} \frac{1}{k} \cos(kx)$ definisce un elemento di $L^2[0,2\pi]$, e che quest'elemento non appartiene a $C[0,2\pi]$.
- (iv) Dimostrare che un'applicazione $f: X \to Y$ tra spazi topologici X, Y tale che

$$f(\,\overline{A}\,)\subseteq\overline{f(A)}\qquad\text{per ogni }\,A\subset X$$

è necessariamente continua.

4. Sia $X = [0,1] \times [0,1]$. Si consideri il quoziente Q definito partendo da X identificando i lati del bordo: A con B, e C con D, nei modi indicati:



Spiegare perché l'applicazione $\pi: X \to Q$ è continua. Spiegare (eventualmente con un disegno) perché ogni punto di Q è contenuto in un (piccolo) aperto omeomorfo a $(0,1)\times(0,1)$.

Cos'è la cardinalità dell'insieme $\pi(\{(0,0),(1,0),(0,1),(1,1)\})$?

Sia α : $[0,1] \to X$ il camino con $\alpha(t) = (0,t)$. Verificare che $\tau = \pi \circ \alpha$ è un laccio in Q e dimostrare che $[\tau]^2 = e$ nell'opportuno gruppo fondamentale.

È vero che Q è omeomorfo al quoziente della solita sfera $S^2 = \{ \mathbf{v} \in \mathbb{R}^3 : ||\mathbf{v}|| = 1 \}$, identificando ogni punto \mathbf{v} con il punto antipodale $-\mathbf{v}$? Giustificare la risposta.