Dato un insieme qualsiasi X, sia ~ una relazione di equivalenza su X. Indichiamo con $Q = X / \sim$ l'insieme delle classi di equivalenza e con $\pi: X \to Q$ l'applicazione *suriettiva* che manda un elemento di X nella classe che lo contiene. In questo modo, $\pi^{-1}(q)$ è esattamente il sottoinsieme di X che q rappresenta e

$$X = \bigsqcup_{q \in Q} \pi^{-1}(q).$$

si esprime come unione disgiunta delle classi, cioè la partizione definita da ~.

Quoziente di un gruppo finito. Sia $X = S_4$ il gruppo delle permutazioni di $\{1,2,3,4\}$. Si consideri il sottogruppo

$$V = \{e, (12)(34), (13)(24), (14)(23)\}\$$

generato da coppie di trasposizioni disgiunte. Scriviamo $x \sim y$ per indicare $x^{-1}y \in V$, equivale xV = yV, cioè x, y appartengono allo stesso laterale sinistra. Tali laterali definiscono una partizione del gruppo quindi \sim è una relazione di equivalenza; i laterali sono organizzati colonna per colonna nella tabella. Ogni elemento di $Q = \{xV : x \in S_4\}$ è indicato sotto la rispettiva colonna e π agisce in modo verticale:

	e	(123)	(132)	(12)	(13)	(23)
	(12)(34)	(134)	(234)	(34)	(1234)	(1342)
$\pi igg $	(13)(24)	(243)	(124)	(1324)	(24)	(1243)
	(14)(23)	(142)	(143)	(1423)	(1432)	(14)
	eV	(123)V	(132)V	(12)V	(13) <i>V</i>	(23)V

In realtà, V è un sottogruppo normale di S_4 perché (ad esempio)

$$\sigma^{-1}(12)(34)\sigma = (1'2')(3'4') \in V,$$

dove $1' = 1\sigma$ è l'immagine di 1 applicando σ . Segue che $\sigma^{-1}V\sigma = V$ per ogni $\sigma \in S_4$, equivale a dire $\sigma V = V\sigma$ e non c'è distinzione tra laterale sinistra/destra. Per questo motivo la moltiplicazione degli elementi di S_4 rispetta la partizione sopra in colonne e l'insieme dei sei colonne, cioè Q, acquisisce la struttura di un gruppo.

Esercizio 3.2.1. Verificare che questo quoziente S_4/V è isomorfo a S_3 (la scelta dei rappresentanti dei laterali dovrebbe aiutare!)

Torniamo a considerare uno spazio topologico (X, \mathcal{T}) .

Lemma/Definizione. La famiglia

$$\mathscr{T}_{Q} = \{ V \subseteq Q : \pi^{-1}(V) \in \mathscr{T} \}$$

è una topologia. Lo spazio topologico (Q, \mathcal{T}_0) si chiama quoziente di X per \sim .

Esercizio 3.2.2. Dimostrare il lemma, cioè verificare che tre regole (A1),(A2),(A3) per \mathcal{T}_Q .

Se un insieme X ha una certa struttura, è naturale chiedere se un suo quoziente $Q = X /\sim$ ha lo stesso tipo di struttura. Per definire un quoziente di gruppi è necessario che \sim provenga da un *sottogruppo normale*. Per uno spazio topologico invece, 3.2.2 ci dice che il quoziente è sempre dotato da una topologia in modo naturale.

Segue dalla definizione che per ogni V aperto in Q abbiamo $f^{-1}(V)$ aperto in X; quindi π è *continua*. Infatti, di tutte le topologie su Q che rendono π continua, \mathcal{T}_Q è *la più fine*, in cui prendiamo più aperti possibili. Il concetto è analogo a quello usato per definire la topologia indotta su un sottoinsieme $Y\subseteq X$; qui c'è un'applicazione *iniettiva*

$$i: Y \to X$$
, (1)

ossia l'inclusione. Visto che $i^{-1}(V) = V \cap Y$, la topologia \mathcal{T}_Y è *la meno fine*, in cui prendiamo meno aperti possibili, per rendere i continua.

Quoziente di un gruppo topologico. Sia $X = \mathbb{R}$, con $s \sim t$ che sta per $s - t \in \mathbb{Z}$. Ogni classe di equivalenza è un laterale $t + \mathbb{Z} = \{t + n : n \in \mathbb{Z}\}$ associato al sottogruppo \mathbb{Z} di $(\mathbb{R}, +)$ e Q coincide con il gruppo quoziente \mathbb{R}/\mathbb{Z} come insieme. Possiamo identificare Q con la circonferenza

$$\Gamma = \{z \in \mathbb{C} : |z| = 1\} \subset \mathbb{C},$$

tramite la biiezione $f: Q \to \Gamma$ con $f(t + \mathbb{Z}) = e^{2\pi i t}$. Sia \mathscr{T}_{Γ} la topologia indotta su $\Gamma \subset \mathbb{C}$, come spiegato intorno a (1). Allora la biiezione

$$f:(Q,\mathscr{T}_Q)\longrightarrow (\Gamma,\mathscr{T}_\Gamma)$$
 (2)

è un omeomorfismo.

Dimostrazione. Una base per la solita topologia su \mathbb{C} consiste dei dischi $S_r(z) = \{w \in \mathbb{C} : |w-z| < r\}$. Segue che una possibile base di \mathcal{T}_{Γ} consiste degli *archi aperti* di tipo $\Gamma_{a,b} = \{e^{2\pi i x} : a < x < b\}$ (con $a,b \in \mathbb{R}$ e, diciamo, $b-a < \frac{1}{10}$). Visto che

$$\pi^{-1}(f^{-1}(\Gamma_{a,b}))=(a,b)+\mathbb{Z}=\bigsqcup_{n\in\mathbb{Z}}(a+n,b+n),$$

abbiamo $f^{-1}(\Gamma_{a,b}) \in \mathscr{T}_Q$. Quindi, f è continua. Se invece $V \in \mathscr{T}_Q$ allora $\pi^{-1}(V)$ è aperto in \mathbb{R} e sarà un'unione di intervalli (a,b). Segue che f(V) è un'unione di insiemi $\Gamma_{a,b}$ ed è aperto. Quindi f^{-1} è continua.

Esercizio 3.2.3. Definire una relazione di equivalenza ~ su [0,1] identificando i punti estremi: $x \sim y$ se e solo se x = y oppure $x, y \in \{0,1\}$. Si considerino i due quozienti topologici $C = [0,1]/\sim$, e $Q = \mathbb{R}/\mathbb{Z}$ in (2). Verificare che l'inclusione $i:[0,1] \to \mathbb{R}$ definisce un omeomorfismo $j:C \to Q$ (nel senso che $j \circ \pi = \pi \circ i$).

3.2.4. In classe abbiamo visto il seguente teorema. Data un'isometria $f: \mathbb{R}^n \to \mathbb{R}^n$ per la solita distanza Euclidea (cioè, $||f(\mathbf{x}) - f(\mathbf{y})|| = ||\mathbf{x} - \mathbf{y}||$ per ogni $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$), esistono una matrice ortogonale $P \in \mathbb{R}^{n,n}$ e un vettore $\mathbf{v} \in \mathbb{R}^n$ tali che $f(\mathbf{x}) = P\mathbf{x} + \mathbf{v}$. Ri-scrivere la dimostrazione completando i vari passi.