9.3.1. Vediamo adesso che, se X è connesso per archi, la scelta di x_0 non ha un grosso significato. Fissati $x_0, x_1 \in X$, sia $\sigma: [0,1] \to X$ un camino con $\sigma(0) = x_0$ e $\sigma(1) = x_1$. Dato un laccio γ basato in x_0 , definire

$$\gamma^{\sigma}(t) = \begin{cases} \sigma(1-3t) & 0 \leqslant t \leqslant \frac{1}{3} \\ \gamma(3t-1) & \frac{1}{3} \leqslant t \leqslant \frac{2}{3} \\ \sigma(3t-2) & \frac{2}{3} \leqslant t \leqslant 1, \end{cases}$$

un tipo di concatenazione $\widetilde{\sigma} \star \gamma \star \sigma$. Verificare che

$$F: \pi(X, x_0) \to \pi(X, x_1), \qquad F([\gamma]) = [\gamma^{\sigma}]$$

determina un isomorfismo di gruppi.

9.3.2. Sia $f:X\to Y$ un'applicazione continua con la proprietà che $f(x_0)=y_0$. Dimostrare che l'applicazione 'indotta'

$$f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0), \qquad f_*([\gamma]) = [f \circ \gamma],$$

è un omomorfismo dei rispettivi gruppi. Dedurre che

$$X$$
 e Y sono omeomorfi \Rightarrow $\pi_1(X, x_0) \cong \pi_1(Y, y_0)$.

Dare un esempio di due spazi X,Y connessi, ma *non* omeomorfi, per cui $\pi_1(X,x_0)\cong \pi_1(Y,y_0)$.

- 9.3.3. Vedremo che l'insieme delle matrici 3×3 ortogonali con determinante 1 si può identificare con l'insieme \mathscr{R} delle rotazioni in \mathbb{R}^3 che fissano l'origine. Sia $X \in \mathbb{R}^{3,3}$ ortogonale (cioè $({}^tX)X = I$) con $\det X = +1$.
- (i) Verificare che det(X I) = 0 (come primo passo, rimpiazzare I con $({}^tX)X$.) Dedurre che esiste una base ortonormale $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ di \mathbb{R}^3 (che si può scegliere con $\mathbf{v}_1 \times \mathbf{v}_2 = \mathbf{v}_3$) tale che $X\mathbf{v}_1 = \mathbf{v}_1$.
- (ii) Dimostrare che esiste $\theta \in [0,2\pi)$ tale che

$$X\mathbf{v}_2 = \mathbf{v}_2\cos\theta + \mathbf{v}_3\sin\theta, \quad X\mathbf{v}_3 = -\mathbf{v}_2\sin\theta + \mathbf{v}_3\cos\theta.$$

Dedurre che X rappresenta un elemento di \mathcal{R} .

- 9.3.4. Infine, studiamo la topologia di \mathcal{R} .
- (i) Usando l'esercizio precedente, identificare \mathscr{R} con un sottospazio di \mathbb{R}^9 e verificare (tramite il teorema di Heine-Borel) che \mathscr{R} (con la topologia indotta) è compatto.
- (ii) Dimostrare che $X\mapsto X\begin{pmatrix}1\\0\\0\end{pmatrix}$ determina un'applicazione continua

$$f: \mathcal{R} \longrightarrow S^2 = \{ \mathbf{v} \in \mathbb{R}^3 : ||\mathbf{v}|| = 1 \}.$$

Descrivere la controimmagine $f^{-1}(\mathbf{v})$ per un generico versore $\mathbf{v} \in S^2$.

(iii) Lo spazio topologico R è connesso? È semplicemente connesso?