9.1 IL GRUPPO FONDAMENTALE

Sia X uno spazio topologico. Si fissi un 'punto di base' $x_0 \in X$; vedremo che questa scelta non è importante se X è connesso per archi.

Definizioni. Un laccio (cappio) basato in x_0 è un'applicazione continua γ : $[0,1] \to X$ tale che $\gamma(0) = x_0 = \gamma(1)$. Due lacci γ_0, γ_1 , si dicono *omotopi relativo a* x_0 , scritto $\gamma_0 \sim \gamma_1$, se esiste

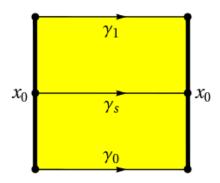
$$H: [0,1] \times [0,1] \to X, \qquad (t,s) \mapsto H(t,s)$$

tale che

$$\gamma_0(t) = H(t,0), \quad \gamma_1(t) = H(t,1) \quad \forall t$$

$$H(0,s) = x_0 = H(1,s) \quad \forall s.$$

Il laccio γ_s : $t \mapsto H(t,s)$ definisce una 'deformazione' tra γ_0 e γ_1 . Le varie condizioni si ricordano guardando il dominio di H:



Proposizione. ~ è una relazione di equivalenza.

Dimostrazione. Come spiegato a lezione, per la transitività, siano $\alpha, \beta, \gamma : [0,1] \to X$ lacci tutti basati in x_0 tali che

 $\alpha \sim \beta$ tramite un'omotopia H', $\beta \sim \gamma$ tramite un'omotopia H''.

Per verificare che $\alpha \sim \gamma$, si costruisca un'omotopia $H: [0,1]^2 \to X$ tale che

$$H(t,0) = \alpha(t), \quad H(t,1) = \gamma(t); \qquad H(0,s) = H(1,s) = x_0 \quad \forall s \in [0,1],$$

mettendo il dominio di H'' 'sopra' quello di H', cambiando poi la scala verticale.

Esempio. Dati due qualsiasi lacci γ_0 , γ_1 in $X = \mathbb{R}^n$, possiamo sempre definire

$$H(t,s)=(1-s)\gamma_0(t)+s\gamma_1(t);$$

quindi $\gamma_0 \sim \gamma_1$. In particolare, un laccio γ qualsiasi è omotopo al *laccio costante* tramite $\gamma_s(t) = (1-s)\gamma(t) + s\mathbf{x}_0$

Definizione. Uno spazio topologico X si dice *semplicemente connesso* se è connesso e se ogni laccio $[0,1] \to X$ è omotopo a quello costante $\gamma(t) = \mathbf{x}_0$.

Per uno spazio X in generale, il problema è quello di descrivere le classi di equivalenza di lacci γ : $[0,1] \to X$ basati in x_0 .

Esempi: \mathbb{R}^n è semplicemente connesso per ogni n, quindi esiste solo una classe, quella banale. Qualsiasi sottoinsieme convesso o stellato di \mathbb{R}^n è semplicemente connesso.

Anche (ma questo fatto è più difficle dimostrare in modo rigoroso), la sfera S^n è semplicemente connesso per $n \ge 2$. Invece, la sfera $X = S^0 = \{-1, 1\}$ non è nemmeno connessa. Se $X = S^1$ è una circonferenza, vedremo che le classi sono parametrizzate da \mathbb{Z} . In X = P, il piano proiettivo, è noto che esiste un laccio non omotopo ad uno costante (spiegato a lezione), ma ci sono solo due classi.

Definizione. Il gruppo fondamentale di X relativo a x_0 consiste dell'insieme

$$\pi_1(X, x_0) = \{ [\gamma] : \gamma \text{ è un laccio basato in } x_0 \}$$

delle classe di equivalenza (omotopia relativo a x_0). Il prodotto è definito nel seguente modo:

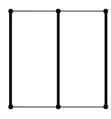
$$[\gamma][\delta] = [\gamma \star \delta],$$

dove l'operazione di concatenazione è definita da

$$(\gamma \star \delta)(t) = \begin{cases} \gamma(2t) & 0 \leqslant t \leqslant \frac{1}{2} \\ \delta(2t-1) & \frac{1}{2} \leqslant t \leqslant 1. \end{cases}$$

È ovvio che $\gamma \star \delta$ è continua, ma si deve verificare che

$$\gamma \sim \gamma'$$
, $\delta \sim \delta' \implies \gamma \star \delta \sim \gamma' \star \delta'$:



L'elemento neutro e (o l'identità) del gruppo è la classe $[x_0]$ dove qui x_0 indica il laccio costante $[0,1] \rightarrow X$ con imagine $\{x_0\}$. Si deve verificare che

$$\gamma \star x_0 \sim \gamma \sim x_0 \star \gamma$$
.

L'inversa $[\gamma]^{-1}$ è la classe $[\tilde{\gamma}]$ dove $\tilde{\gamma}(t) = \gamma(1-t)$ è γ percorso 'tornando indietro'. Si deve verificare che

$$\gamma \star \widetilde{\gamma} \sim x_0 \sim \widetilde{\gamma} \star \gamma$$

Infine, ci vuole l'associatività, equivale a

$$(\alpha \star \beta) \star \gamma \sim \alpha \star (\beta \star \gamma). \tag{1}$$

I rispettivi diagrammi erano disegnati a lezione. Ad esempio per verificare (1):

$$H(t,s) = \begin{cases} ? & 0 \leqslant t \leqslant \frac{s+1}{4} \\ \beta \left(4\left(t - \frac{s+1}{4}\right) \right) & \frac{s+1}{4} \leqslant t \leqslant \frac{s+2}{4} \\ ? & \frac{s+2}{4} \leqslant t \leqslant 1. \end{cases}$$