
251
DISCRETE MATHEMATICS

Simon Salamon

Preface

This is a concatenated and reorganized version of the 2019/20 lecture notes for the modules
5ccm251a and 6ccm251b.

It is likely that these notes will be updated weel by week as the module is taught online in the
winter/spring of 2021. For this reason, it is not recommended that they be printed.

I take this opportunity to thank Naz Mihesi for his ongoing support in running the course.

The module was successfully taught for many years by Simon Fairthorne, and the current material
is based on the module as he designed it. These lecture notes are dedicated to his memory.

Simon Salamon
28 December 2020

i

Contents

1. Arithmetic

1.1. Induction
1.2. Divisibility
1.3. Modular arithmetic
1.4. Binary expansions

2. Recurrence relations

2.1. Recursive functions
2.2. Fibonacci numbers
2.3. Constant coefficients
2.4. Particular solutions
2.5, 2.6. Applications

3. Arithmetical algorithms

3.1. First concepts
3.2. Powers by squaring
3.3. Euclid’s algorithm
3.4. Consolidation

4. Basic graph theory

4.1. Definitions
4.2. Connectivity
4.3. Eulerian graphs
4.4. More trails and cycles

5. Vertex colouring

5.1. Chromatic number
5.2. Colouring results
5.3. Brooks’ algorithm

6. Planarity

6.1 The Platonic graphs
6.2. Detecting non-planarity
6.3. Further results
*6.4. The four-colour theorem

7. Navigation in graphs

7.1. Adjacency data
7.2. Search trees
7.3. Shortest paths

8. Optimality

8.1. Shortest paths
8.2. Kruskal’s algorithm
8.3. Back to matrices
*8.4. The graph Laplacian

9. Networks and flows

*9.1. Activity networks
9.2. Network flow
9.3. Max flow, min cut
9.4. Labelling Algorithm
*9.5. Dynamic programming

10. Codes

10.1. Check digits
10.2. Binary codes
10.3. Binary linear codes
10.4. Correcting one error

11. Cryptography

11.1 The RSA algorithm
11.2. Examples and comments
11.3. Miller’s test

12. Revision

to be added!

ii

1. Arithmetic

Notation. We will use the sets

N = {0, 1, 2, , 3, . . .}
Z = {0, 1,−1, 2,−2, . . .}.

1.1. Induction

First principle. Let P(n) be some statement thatmakes sense for all n ⩾ n0 . (Typically, n0 = 0,
1 or 2 .) Suppose that

(1) P(n0) is true, and
(2) for all n ⩾ n0, P(n) is true ⇒ P(n+ 1) is true.

Then P(n) is true for all n .

Example. P(n) is the assertion that

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Take n0 = 1 .
(1) P(1) is true because both sides equal 1 .
(2) Now suppose that P(n) is true, and add 2n+ 1 to both sides above to give

1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = n2 + (2n+ 1).

The right-hand side simplifies to (n+ 1)2, so this is assertion P(n+ 1) .
Therefore P(n) must be true for all n ⩾ 1 .

Note. Curly P emphasizes that P is a statement, not an arithmetical function.

Second principle. Same start as above. Suppose that

(1) P(n0) is true, and
(2’) for all n ⩾ n0, P(k) is true for all n0 ⩽ k < n ⇒ P(n) is true.

Then P(n) is true for all n .

Example.Take n0 = 2 . P(n) is the assertion “n can be written as a product of (one or more)
prime numbers”.
(1) 2 is a prime number, so obviously P(2) is true.
(2’) (i) If n is prime, then P(n) is already true. (ii) If not, then n has a divisor other than 1 and
n, so we can write n = ab with 1 < a < n and 1 < b < n . If P(k) is true for all k < n
then P(a) and P(b) are both true, which means that a is a prime or a product of primes, and b
similarly. The same must be true of ab, and P(n) is true.
Therefore any integer n ⩾ 2 is a product of primes.

Summary. Use the first principle when P(n+1) appears to depend only on P(n) . The second
is needed when P(n) or P(n + 1) depends on more than one predecessor. But sometimes it
becomes necessary to check more than one initial value.

1

Example. Prove that an = 2n + (−3)n is a solution of{
an = 6an−2 − an−1, n ⩾ 2

a0 = 2, a1 = −1.

We use the second principle with P(n) the assertion “an = 2n + (−3)n ” for n ⩾ 0 . Then
P(0) is true, since 20 + (−3)0 = 2 . Now assume that P(k) is true for all k ⩽ n . Then

an = 6an−2 = an−1

= 6[2n−2 + (−3)n−2]− [2n−1 + (−3)n−1]

= 6[2n−2 + (−3)n−2]− [2 ∗ 2n−2 − 3 ∗ (−3)n−2]

= 4 ∗ 2n−2 + 9n−2

= 2n + (−3)n,

provided n ⩾ 2 (for the second line). The punch line is that we need to check P(1) separately,
which is easily done: 21 + (−3)1 = 2− 3 = −1 . Thus, P(n) is true for all n .

Notation. To avoid confusion, we shall often indicate multiplication between actual numbers by ∗
as in common software.

1.2. Divisibility

Notation. Let m,n ∈ Z . One says that m divides n, abbreviated to m | n if there exists an
integer q such that mq = n . For example,

13 | 0, but 0 - 13.

Here is a formal

Definition. A positive integer p ⩾ 2 is a prime number if a ∈ N, a | p⇒ a = 1 or a = p .

Let a be any integer, and b a positive integer. There exist integers q, r such that

a = qb+ r, 0 ⩽ r < b.

We shall take the validity of this statement for granted. It is sometimes called the Division Al-
gorithm, and one can imagine a mechanical way of finding the quotient q and the remainder r .
Note that b | a if and only if r = 0 .

Examples.
23 = 4 ∗ 5 + 3
−17 = (−4) ∗ 5 + 3

510510 = 510 ∗ 1001 + 0
104729 = 104 ∗ 999 + 833.

One uses notation like
a = r mod b, or a ≡ r (b),

2

or a mixture. We shall adopt the former, so for example

104729 = 833 mod 999, also 104729 = 1 mod 104.

Greatest common divisor. Let a, b be integers. Then gcd(a, b) is the largest positive integer that
divides both a and b . It is undefined when a = b = 0 . It is the same as hcf(a, b) , the highest
common factor of a and b , and is sometimes abbreviated to (a, b) .

If gcd(a, b) = 1 then a and b are called coprime.

Examples.
gcd(24, 15) = 3
gcd(6, 0) = 6

gcd(−12,−24) = 12
gcd(510510, 44) = 22
gcd(104729, 109) = 1.

Proposition. There exist integers x, y such that gcd(a, b) = xa+ by .

Later, we shall recall Euclid’s algorithm that determines x and y . The proposition has the follow-
ing consequences:

Corollary 1. If m is any divisor of a and b and n = gcd(a, b) then m divides n .

Proof. This follows immediately from the formula n = xa + yb, since m must divide the right-
hand side. □

Corollary 2. Let p be a prime number. Then

p | mn ⇒ p | m or p | n.

Proof. Suppose that p - m . Then (p,m) = 1, since the only divisors of p are 1 and p, but the
latter does not divide m . So we can write 1 = xp+ ym . Thus

n = xpn+ ymn,

and (since p divides both terms on the right-hand side) p | n . □

1.3. Modular arithmetic

Definiton. We say that a1 and a2 are congruent (or equal) modulo n if n divides a1 − a2 . In
symbols,

a1 = a2 mod n ⇔ n | (a1 − a2).

We’ll sometimes write a1 ≡ a2 if n has been fixed in advance.

3

Because of the division algorithm (with b = n) we know that any integer is equal modulo n to
some remainder r in

R = {0, 1, 2, . . . , n− 1}.

We can define addition and multiplication on this set by taking remainders modulo n, like on a
clockface.

Example.With n = 7
3 + 5 = 1 mod 7
3 ∗ 5 = 1 mod 7
6 ∗ 6 = 1 mod 7

6 = −1 mod 7

When we are working modulo n, an element r ∈ R really represents all integers obtained from
r by adding or subtracting multiples of n, i.e. it represents the set

{r + kn : k ∈ Z} = r + nZ.

In the laguange of abstract algebra, Z is a ring, nZ is an ideal, and R = Z/nZ is the quotient ring
each of whose elements is a coset r + nZ .

Since R is a ring, almost all the usual laws of arithmetic apply: if a = b mod n then

a+ c = b+ c, ac = bc, a2 = b2, . . . mod n.

Beware though that one can have divisors of zero: the statement

ab = 0 ⇒ a = 0 or b = 0 mod n

is false in general. For example, 2 ∗ 3 = 0 mod 6 . But it is true if n is a prime number:

Proposition. Suppose that n = p is a prime number, and that p does not divide a . Then a has
an inverse modulo p .

Proof. By assumption, gcd(a, p) = 1 since the only factors of p are 1 and p, and p - a . By §1.2,
we know that xa+yp = 1 for some x, y ∈ Z . It follows that xa = 1 mod n, and we can suppose
that 0 < x < n . □

Example.Toperform a sequence of operations, take remainders at each stage. Compute 158 mod 16 .
Note that 15 = −1 mod 16, so 158 = (−1)8 = 1 mod 16 .

Example. Solve 2x = 2 mod 16 . This means

2x = 2 + 16k,

so x = 1 + 8k . There are two solutions modulo 16, namely 1 and 9 ≡ −7 .

Let p ⩾ 2 be a prime number. Then

R∗ = R \ {0} = {1, 2, . . . p− 1}

4

is a group under multiplication modulo p, and R itself is a field (a ring in which multiplication
is commutative and has inverses). Let a be an integer that is not a muliple of p . Its remainder
modulo p is an element of R∗, whose order (by Cauchy’s theorem) divides p− 1 . This implies

Fermat’s little theorem. If p is prime and p - a, then ap−1 ≡ 1 mod p .

We can include the possibility that p | a by simply multiplying both sides by a :

ap ≡ a mod p, ∀a ∈ Z.

Examples.Taking p = 11 and a = 2 gives

210 = 1 mod 11,

which is easy to check immediately as 210 = 1024 .

Note that
88 ≡ 1 mod 9,

because 88 ≡ (−1)8 mod 9, so taking a = 8 and p = 9 satisfies Fermat’s little equation, even
though p is not prime. Even better:

Example.Let n = 561, which is certainly not prime. Then it is known that

a561 = a mod n, for all a ∈ Z ,

which makes 561 a Carmichael number (it is the first).

Proposition. If p is prime, the only solutions of x2 = 1 mod p are x ≡ 1 and x ≡ −1 .
Proof. x2 = 1 mod p means p | (x2 − 1), so

p | (x− 1)(x+ 1).

By an earlier corollary, p must divide at least one of these factors. If p | (x − 1) then x ≡ 1,
whereas p | (x+ 1) implies x ≡ −1 . □

For example, modulo 7, we know that a6 ≡ 1 . A solution of x2 = a6 is x = a3 and we observe
that

13 ≡ 1, 23 ≡ 1, 33 ≡ −1, 43 ≡ 1, 53 ≡ −1, 63 ≡ −1.

1.4. Binary expansions

To find the decimal expansion of an integer, we repeatedly divide by 10, and read the remainders
from bottom to top. For example,

327 = 32 ∗ 10 + 7

32 = 3 ∗ 10 + 2

3 = 0 ∗ 10 + 3

5

The same process works in base 2 (binary)

39 = 19 ∗ 2 + 1

19 = 9 ∗ 2 + 1

9 = 4 ∗ 2 + 1

4 = 2 ∗ 2 + 0

2 = 1 ∗ 2 + 0

1 = 0 ∗ 2 + 1 .

Therefore
39 = 1001112,

which is correct since 39 = 25 + 7 = 1000002 + 1112 . On a computer, 6 bits are needed to
represent 39.

Recall the concept of logarithm to base b . It is the inverse to exponentiation:

if y = bx then x = logb y .

We write
ln y = loge y, lg y = log2 y,

where

e = lim
n→∞

(
1 +

1

n

)n

=

∞∑
n=0

1

n!
= 2.7182818 . . .

It is easy to show that

lg y = log2 y =
ln y
ln 2
≈ 1.44 ln y.

In this course, we shall only use logarithms to base 2 . Here are the key properties:

• lg(2x) = x

• 2lg y = y

• lg is strictly increasing: a < b ⇒ lg a < lg b .

Suppose that n is trapped between two powers of 2 :

2k ⩽ n < 2k+1, so
k ⩽ lgn < k + 1.

It follows that the “floor” of lgn equals k :

blgnc = k.

Here “floor” means the largest integer less than or equal to. Observe that

2k+1 − 1 = 11 · · · 1︸ ︷︷ ︸
k+1

is the largest binary number that can be represented with k+ 1 bits: we need k+ 1 = blgnc+ 1
bits to represent n .

6

Example.How many bits are needed to represent n = 8293417? We must trap n between two
powers of 2 . For this purpose it is useful to know that

103 ' 210.

We can easily calculate
220 = (210)2

= (1024)2

= 1048576.

It follows easily that
222 < n < 223,

and 23 bits are needed. In fact,

n = 111111010001100001010012.

Example.On the piano, 7 octaves are equivalent to 12 perfect fifths. We can write

27 ≈ (3/2)12, so 219 ≈ 312,

where ≈ means ‘approximately equal’. Which side is greater? Musically, the approximation can
be resolved by making every semitone correspond to an interval of 21/12, so that a “perfect” fifth
corresponds to the ratio 27/12 ≈ 1.498 . . . This is the equal temperament system of tuning key-
board instruments, a concept dating back to 1584 or earlier.

7

2. Recurrence relations

2.1. Recursive functions

In this section, we shall be dealingwith functions f : N→ N . We are used to having such functions
defined explicitly, such as

f(n) = 3n + (−2)n − 1
6n−

13
36 .

But one can also define functions in terms of earlier values, using a prescription like

f(n) =

{
0 if n = 0

3f(n− 1) + 1 if n ⩾ 1.

This gives the table
n 0 1 2 3 4

f(n) 0 1 4 13 40
2f(n) 0 2 8 26 80

2f(n) + 1 1 3 9 27 81

from which we might guess that
f(n) = 1

2 (3
n − 1).

This can be proved by induction. But such explicit formulae are often not possible.

Example.Define g : N→ N by

g(n) =

 n if n = 0, 1
g(n/2) + 1 if n ⩾ 2 is even
g(3n+ 1) + 1 if n ⩾ 3 is odd

This function is related to the so-called Collatz conjecture or 3n+ 1 problem. In fact, g(n)− 1 is
the ‘stopping time’ for the Collatz map

f(n) =

{
n/2 if n ⩾ 2 is even
3n+ 1 if n ⩾ 3 is odd;

it equals the number of applications of f needed to reach 1. Note that one can only reach 1
through the sequence 16, 8, 4, 2, 1 though one can reach 16 from both 32 and 5 . It is unknown
if the stopping time is finite for every integer n ⩾ 2, but it has been checked for all integers up to
at least 260 . Of course, g(2k) = k + 1 since f keeps halving.

Let us compute g(7) ; this is done by recording a somewhat tortuous succession of equations so as
to arrive at g(1), and then backtracking with the values:

8

g(1) = 1
g(2) = g(1) + 1 ⇒ g(2) = 2
g(4) = g(2) + 1 g(4) = 3
g(8) = g(4) + 1 g(8) = 4
g(16) = g(8) + 1 g(16) = 5
g(5) = g(16) + 1 g(5) = 6
g(10) = g(5) + 1 g(10) = 7
g(20) = g(10) + 1 g(20) = 8
g(40) = g(20) + 1 g(40) = 9
g(13) = g(40) + 1 g(13) = 10
g(26) = g(13) + 1 g(26) = 11
g(52) = g(26) + 1 g(52) = 12
g(17) = g(52) + 1 g(17) = 13
g(34) = g(17) + 1 g(34) = 14
g(11) = g(34) + 1 g(11) = 15

↑ g(22) = g(11) + 1 g(22) = 16 ↓
start g(7) = g(22) + 1 g(7) = 17 end

We do not know the answer until we have got all the way to the top (and g(1)) and then back
down again on the right, to find that g(7) = 17 .

This set-up is called a stack, since the left-hand column resembles a stack of trays in a cafeteria
(which is why we started at the bottom): g(5) went in first, and g(1) last. Then we could retrieve
g(1) first and g(5) last. This illustrates the principle ‘Last In First Out’ or LIFO. Later on, we
shall meet a different set-up, called a queue, in which the first item in is the first to be processed.
So ‘First In First Out’ or FIFO (like most underground lifts).

Here is a table of values of g(n) for n = 0, 1, 2, . . . , 104 :

0, 1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21, 21, 8, 8, 16, 16, 11, 24, 11, 112,
19, 19, 19, 107, 6, 27, 14, 14, 22, 22, 22, 35, 9, 110, 9, 30, 17, 17, 17, 105, 12, 25, 25, 25, 12, 12,
113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7, 28, 28, 28, 15, 15, 15, 103, 23, 116, 23, 15, 23, 23,
36, 36, 10, 23, 111, 111, 10, 10, 31, 31, 18, 31, 18, 93, 18, 18, 106, 106, 13, 119, 26, 26, 26, 26, 26, 88

2.2. Fibonacci numbers

Leonardo di Pisa (c. 1175–1250) found his famous sequence of numbers in connection with the
breeding of rabbits. One starts with a newly-born pair of rabbits, one male one female. The
idealized assumption is that at one month they mature and become fertile, and at two months
(and at each month thereafter) the female gives birth to another male-female pair. Let Fn = F (n)
denote the total number of rabbit pairs in the middle of the n th month, so F1 = F2 = 1 . Then

Fn = #{immature pairs} + #{mature pairs}
= Fn−2 + Fn−1

for n ⩾ 3 . This is because all pairs from amonth agowill bemature, and the newly-born immature
rabbits are offspring of parents from two months ago.

9

To extend this relation to n = 2, we can set F0 = 0 . We then have the recurrence relation

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

which can be solved recursively. The aim of this section is to show that there is a simple formula
for the Fibonacci number Fn . For this purpose, define

φ = 1
2 (1 +

√
5) = 1.6180 . . . , ψ = 1

2 (1−
√
5) = −0.6180 . . .

In §2.3, we shall show that

Proposition. Fn =
1√
5
(φn − ψn) .

Note that φ and ψ are the roots of x2 − x− 1 = 0 or

x

1
=

1

x− 1
,

and that φ (the positive root) is the so-called golden ratio. We leave proofs of the following state-
ments as exercises.

Corollary 1. The ratio Fn+1/Fn tends to φ as n→∞ .

Corollary 2. Fn is the closest integer to φn/
√
5 for all n .

One can compute the so-called generating function for the sequence (Fn) directly from the recur-
rence relation. Indeed,

Corollary 3. Suppose that |x| < 1/φ . Then

∞∑
n=1

Fnx
n =

x

1− x− x2
. (1)

We can check this by setting λ = x+ x2 and using the binomial expansion

(1− λ)−1 = 1 + λ+ λ2 + λ3 + · · ·
= 1 + x+ x2 + (x2 + 2x3 + x4) + (x3 + 3x4 + 3x5 + x6) + (x4 + · · ·) + · · ·
= 1 + x+ 2x2 + 3x3 + 5x4 + · · ·

In particular,
∞∑

n=1

Fn

10n
=

10

89
= 0.11235955 .

We shall not be concerned with questions of convergence in this course, but Corollary 1 implies
that the radius of convergence of the series (1) equals 1/φ .

A curiosity. Since 1 mile equals 1.609…kilometers, Fibonacci’s numbers (if you can remember
them) give a sufficiently accurate way of converting. For example, 144 km/h is almost exactly
89mph.

10

Example.The sum sn of the first n odd numbers satisfies an obvious recurrence relation:{
sn = sn−1 + 2n− 1,

s1 = 1

We already know that the solution is sn = n2, but the aim will be to solve such relations system-
atically without knowing the answer by other means.

Definition. A recurrence relation of order k will specify

an = f(n, an−1, an−2, . . . , an−k)

as a function of the k preceding values and possibly n itself. One also needs to prescribe k initial
values of the function n 7→ an .

The relation is called linear if the right-hand side equals

c0(n) + c1(n)an−1 + · · ·+ ck(n)an−k,

for some functions ci(n) of n, as in the previous example. Such a linear relation is called homo-
geneous if c0(n) is absent, and it has constant coefficients if c1, . . . , ck are independent of n (so
constants). The usual relation described the Fibonacci numbers is therefore or order 2, linear,
homogeneous with constant coefficients. By contrast,

an = an−1 ∗ an−2

also has order 2, but is is not linear (so the other qualifications are irrelevant).

2.3. Constant coefficients

Consider a recurrence relation with constant coefficients:

an = c1an−1 + · · ·+ ckan−k + c0(n), (NH)

with c0(n) a non-zero function. The associated homogeneous relation is

an = c1an−1 + · · ·+ ckan−k, (H)

without the term at the end. We are likely to consider only k ⩽ 3 .

Proposition. (i) If (an) and (bn) are sequences solving (H) (with bn in place of an) then (Aan+
Bbn) will also solve (H) for any A,B ∈ R .
(ii) There are k linearly independent solutions to (H).
(iii) If (an) and (bb) solve (NH) then (an − bn) solves (H).

The proposition is also valid for linear relations, and there is an analogy with ordinary differential
equations. We omit the proofs here.
For k = 2, ‘linearly independent’ simply means that one solution is not an overall multiple of the

11

other: sequences with an = n2 and bn = n2 +1 are independent, but an = n2 and bn = −7n2
are not.
(iii) implies that the general solution of (NH) is any particular solution to it plus the general solution
of (H).

It is known that solutions of (H) are mostly linear combinations of λn, where λ ∈ R is constant.
The next example will verify this.

Example. Solve {
an = −an−1 + 6an−2, n ⩾ 2

a0 = 2, a1 = −1.

Try an = λn . Substituting into the recurrence relation,

λn = 6λn−2 − λn−1,

and (since we can assume λ 6= 0),

λ2 + λ− 6 = 0 ⇒ (λ− 2)(λ+ 3) = 0.

Taking λ = 2 and λ = 3 gives two independent solutions, and (from (i) and (ii) above) the genral
solution is

an = A ∗ 2n +B ∗ (−3)n.

The constants A,B are determined by the initial conditions, which give

2 = A ∗ 1 +B ∗ 1, −1 = A ∗ 2 +B ∗ (−3) ⇒ A = B = 1.

The final answer is therefore an = 2n + (−3)n .

Example. For the Fibonacci sequence, the equation is λ2 = λ+ 1 or λ2 − λ− 1 = 0, which has
roots

φ = 1
2 (1 +

√
5), ψ = 1

2 (1−
√
5),

giving a general solution Aφn + Bψn . Then A,B are found by solving 0 = F0 (which implies
B = −A) and

1 = F1 = Aφ+Bψ = A(φ− ψ) = A
√
5.

This proves the previous proposition.

To summarize, here is the strategy for solving (H):

Substitute an = λn

Obtain a polynomial equation of degree k in λ
Find its roots λ1, . . . , λk
The general solution is an = A1λ

n
1 + · · ·+Akλ

n
k

Find the constants by solving the initial conditions

There are two possible snags. The roots may be complex, though if the original equation is real,
they will always come in complex conjugates, and the choice of constants Ai will ensure that

12

all solutions are real. Or, there may be repeated roots, in which case (by (ii)) there must exist
additional solutions.

Example.Express the solution of an = −an−2 with a0 = 0 and a1 = 1 in closed form. Of course,

(an) = (0, 1, 0,−1, 0,−1, 0, . . .),
but we are asked for a formula. We have λ2 + 1 = 0 so the roots are ±i where i =

√
−1 . So the

solution is Ain +B(−i)n, with A+B = 0 and i(A−B) = 1 . Then A = −B = − 1
2 i, and the

closed formula is
an = − 1

2 i(i
n − (−i)n) = − 1

2 (i
n+1 + (−i)n+1).

In the case of repeated roots, let us consider what happens when the roots are λ and λ + δ for
δ > 0 . We know from (i) that

(λ+ δ)n − λn

δ
must be a solution. If we let δ → 0 then in the limit this becomes the derivative of λn, namely
nλn−1 . So we expect this (or equivalently nλn) to be a second solution. In fact, a repeated root
of multiplicity m will allow us to introduce solutions

λn, nλn, . . . , nm−1λn.

Example.Find the general solution of an = 2an−1−an−2 . Here, λ2−2λ+1 = 0 or (λ−1)2 = 0,
so we get

an = A ∗ 1n +B ∗ n ∗ 1n = A+Bn.

2.4. Particular solutions

To solve a non-homogeneous linear equation (NH), proceed as follows. The order is important:

Find the general solution of (H) with constants
Determine the form of a particular solution of (NH)
Substitute to determine any constants in the particular solution
Add the two solutions
Apply the initial values to determine the constants relating to (H)

We shall mostly see assigned functions of the form

c0(n) = p(n) ∗ µn,

where p(n) is a polynomial such as 7 or n2 or n3 − n+ 7 . Given such a function, one guesses a
solution q(n) ∗ µn, where q(n) is now an arbitrary polynomial of the same degree as p(n) . Here
are some examples:

c0(n) guess
7 α

n αn+ β

2n α2n

n2 3n (αn2 + βn+ γ)3n

13

One needs to substitute into (NH) to find the constants α, β, γ . This will work provided no term
in the guess is a solution of (H). In the letter case, one needs to multiply by one or more factors of
n . A simple instance follows, though future exercises will clarify this.

Example. Find the general solution of

an = −an−1 + 6an−2 + 2n.

Had 2 not been a root, we would have tried α 2n, but (since 2n solves (H)) this would have given
0 = 2n . So we try an = αn 2n . This gives

αn2n = −α(n− 1)2n−1 + 6α(n− 2)2n−2 + 2n.

Dividing by an−2 ,
4nα = −2α(n− 1) + 6α(n− 2) + 4;

the terms involving n cancel out (as they must), and we are left with

0 = 2α− 12α+ 4.

Thus, α = 2/5 and we finish up with

an = A 2n +B(−3)n + 2
5n2

n.

Example. Solve
an = −an−1 + 6an−2 + n, a0 = 2, a1 = −1.

The homogenous equations has general solution A ∗ 2n + B ∗ (−3)n . For a particular solution,
we substitute an = αn+β . Since the resulting equation must hold for all n, we can separate out
the terms involving n and those that do not. This gives two separate equations, which imply that
α = −1/4 and β = −11/16 . Then we substitute

an = A ∗ 2n +B ∗ (−3)n − 1
4n−

11
16

to find that
2 = A+B − 11

16 , −1 = 2A− 3B − 11
16

giving A = 8/5 and B = 87/80 .

2.5. Derangements

In this section, we will work with some linear recurrence relations that do not have constant coef-
ficients.

Fix a positive integer n . Recall that a permutation of the set Ω = {1, 2, . . . , n} is a bijective
mapping f : Ω→ Ω . There are n! such permutations.

Definition. A derangement of Ω is a permutation f : Ω→ Ω such that no element i ∈ Ω has the
property that f(i) = i . This means that no number ‘stays put’, or (in the language of analysis) f
has no fixed point.

14

Let dn denote the number of derangements of {1, 2, · · · , n} . It is obvious that d1 = 0 (because
there is only the identity permutation), d2 = 1 (only swapping 1, 2 works) and d3 = 2 (because
only the two 3-cycles do not have a fixed point).

Recall that a cycle of order k is a permutation of the form

f : i1 7→ i2 7→ · · · 7→ ik 7→ i1;

here i1, . . . , ik are distinct positive integers. This permutation is denoted by the symbol (i1 i2 . . . ik),
which we regard as a function applied (on the left) to numbers. If ij ⩽ n for all j then f is an
element of order n inside the group of a permutations of {1, 2, . . . , n} . Moreover,

f = σ ◦ (1 2 . . . k) ◦ σ−1,

where σ is any permutation that maps j to ij for all j . This establishes the well-known fact that
any two k -cycles are conjugate in a group of permutations.

To compute d4, we appeal to the description of permutations from group theory. Any permutation
can be expressed (uniquely, up to order of the factors) as a product of disjoiont cycles.

type of permutation example number of them
identity 1
4 cycle* (1234) 6∗

3 cycle (123) 8
2 cycle (12) 6
pair of 2 cycles* (12)(34) 3∗

4! = 24

Only the asterisked permutations are derangements, so d4 = 9 . One can show that d5 = 44 with a
similar table, but then it becomes complicated because of the large variety of cycle decompositions.

Fortunately, we can easily find a way of computing dn using recurrence relations. It is convenient
to define d0 = 1 .

Theorem. (i) dn satisfies the second-order linear homogeneous recurrence relation

dn = (n− 1)(dn−1 + dn−2), n ⩾ 2.

(ii) dn satisfies the first-order linear non-homogeneous recurrence relation

dn = ndn−1 + (−1)n.

(iii) The ratio dn/n! tends to 1/e as n→∞ .

Proof. (i) The definition of d0 makes the formula work for n = 2 . Now let f be a derangement
of {1, 2, . . . , n} for n ⩾ 3 . Suppose that f(1) = k, so k ⩾ 2 . There are two subcases:
(a) f(k) = 1, so the cycle decomposition contains a 2-cycle (1 k) . Forgetting 1, k, what is left
of f is a derangement of n− 2 objects, and there are dn−2 of these. Together with the choice of
i, this gives (n− 1)dn−2 possibilities.
(b) f(k) = j 6= 1 . This time, remove k and define a derangement f̃ of n− 1 objects by setting

f̃(i) =

{
j if i = 1
f(i) if i 6= 1, i 6= k.

15

There are (n− 1)dn−1 possibilities in this subcase.

(ii) Set an = dn − ndn−1 . We want to show that an = (−1)n . Well,

an + an−1 = (dn − ndn−1) + (dn−1 − (n− 1)dn−2)
= dn − (n− 1)(dn−1 + dn−2)
= 0,

the last equality by (1). Since a1 = −1, it follows that an = (−1)n .
(iii) Rewrite (2) as

dn
n!

=
dn−1

(n− 1)!
+

(−1)n

n!

=
dn−2

(n− 2)!
+

(−1)n−1

(n− 1)!
+

(−1)n

n!
.

=
d1
1!

+

n∑
i=2

(−1)i

i!
.

with a total of n− 1 lines. Since d1 = 0, it follows (strictly speaking, by induction) that

dn
n!

=

n∑
i=0

(−1)i

i!
,

since the first two terms in the summation cancel (by convemtion, 0! = 1). As n → ∞, the
summation tends to e−1 . □

Here is a table of values:

n 1 2 3 4 5 6 7

dn 0 1 2 9 44 265 1854 · · ·
n! 1 2 6 24 120 720 5040 · · ·

dn/n! 0 0.5 0.333 0.375 0.367 0.368 0.368 · · ·

Here the ratio is given to three significant figures, so the probability of ‘no snap’ playing with two
decks of 6 shuffled cards is already a good approximation to 1/e .

2.6. Other counting applications

This section highlights two situations in which recurrence equations also occur naturally.

Example.Consider the system of one-way roads illustrated:

16

P1 P2 P3 P4 P5 P6 P7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

S

Let an denote the number of different routes from the starting point S to Pn . (If n ⩾ 7 the
diagram needs extending to the right in the obvious fashion.)

To illustrate the method, we first take n = 6 . One can reach Pn in one step from three directions,
shown in red. Namely, travelling north or north-west from the bottom row, or travelling east from
P5 . There is only one route to any point on the bottom row, so a6 = a5 + 1 + 1, since there are
a5 routes to P5 which can be followed by the one step eastwards. The same argument shows us
that

an = an−1 + 2.

The green steps show that there are 2 routes to P1, so a1 = 2 . The solution of this recurrence
relation is obviously an = 2n .

A similar argument can now be used to count the number bn of routes from S to Qn in the top
row. Again, one should consider the immediate predecessors of Qn, which are Pn, Pn+1, Qn−1,
provided n ⩾ 2 . These furnish an, an+1, bn−1 routes, so

bn = an + an+1 + bn−1 = bn−1 + 4n+ 2, n ⩾ 2.

One can arrive at Q1 from either P1 or P2, so b1 = a1 + a2 = 6 . The homogeneous relation
(H) has general solution bn = C = constant, so for a particular solution of (NH) we try

bn = An2 +Bn,

giving

An2 +Bn = A(n− 1)2 +B(n− 1) + 4n+ 2 ⇒ 0 = −2An+A−B + 4n+ 2 = 0

⇒ A = 2, B = 4.

We also have 6 = b1 = A+B + C, so C = 0 . Therefore

bn = 2n2 + 4n.

Example.A gardener has to plant a row of n ⩾ 2 rose bushes, which come in three varieties (red,
artificially blue, yellow), observing the following rules:

1. the first bush must be red;

2. the last (n th) bush must be red;

17

3. no two colours can be adjacent.

We seek the number rn of different ways of planting the bushes.

The lowest possible value of n is 3 to avoid the two reds together. For n = 3 we just need to
choose the middle colour, so r3 = 2 . More generally, once we know the colour of the k th bush
then there are two choices of colour for bush k + 1 . So without condition 2., there are

1 ∗ 2 ∗ 2 ∗ · · · ∗ 2︸ ︷︷ ︸
n−1

= 2n−1

choices. With condition 2., we must insist that bush n− 1 is not red, after which there is no more
choice. Therefore

bn = 2n−2 − bn−1.

The solution is
rn = 1

3 ∗ 2
n−1 − 2

3 (−1)
n, n ⩾ 3.

When n = 7 (as in the picture), there are 22 ways of planting, illustrated below with each row
now vertical.

18

3. Arithmetical algorithms

3.1. First concepts

Definition. An algorithm is a finite set of unambiguous instructions that when executed terminate
in a finite number of steps.

Named after Muhammad ibn Musa al-Khwarizmi (c. 780–850). A more formal specification (be-
yond the scope of this course) takes one into the area of recursive function theory, Turingmachines
and mathematical logic.

Example. Consider the factorial function N → N . There are two distinct processes that can be
used to compute n!

Firstly, by iteration. This is exemplified by the following SAGE code:

def fac(n):
x = 1
for i in range(2,n+1):

x = x*i
return x

In this code, the command range(p, q) lists integers from p to q − 1 (rather than q). The penul-
timate line has the effect of replacing x by x times i . Note that the program correctly outputs
fac(0) = fac(1) . By regarding i more as a variable than a counter, we can replace the ‘for/do
loop’ by a conditional:

def fac(n):
x = 1
i = 1
while i < n+1:

x = x*i
i = i+1

return x

The time needed to carry out the computation is estimated by counting the number n − 1 of
multiplications (the most ‘expensive’ operation). If we suppose that each multiplication takes one
unit of time, then the total time T = n− 1 satisfies

T = Θ(n).

This equation is shorthand for saying that, for sufficiently large n, there exist constants 0 < c1 <
c2 such that

c1n ⩽ T ⩽ c2n.
Equivalently, T = O(n) and n = O(T), so both T/n and n/T are bounded as n → ∞ .
Observe that it does not matter whether a unit of time is one millisecond or one minute.

19

Alternatively, one can use the recurrence relation an = nan−1; this gives the definition of facto-
rials by recursion:

def fac(n):
if n == 0:

return 1
else:

return n*fac(n-1)

This approach starts by asserting that 0! = 1, which is true for convention, or rather convenience,
as it seems to work in many formulae. Let tn denote the number of times multiplication is used
to compute fac(n) using the last program. Then

tn = tn−1 + 1,

so tn = n . Once again, the total time equals Θ(n), but we also require memory that grows
linearly with n (unlike in the first case). Indeed, the equations stored expand and contract, like
the stacking of trays. At some point of the process, we will have

fac(5) = 5 ∗ (4 ∗ (3 ∗ (2 ∗ (1 ∗ fac(0))))),

and we are stuck if the process is interrupted.

3.2. Powers by squaring

Example. Consider computing xn, where n is a positive integer and x is a number to a given
precision. This could be carried out by iteration, mimicking what we first did for factorials:

def pow(x,n):
y = 1
for i in range(1,n+1):

y = y*x
return y

Thismethod requires n−1 multiplications, but we can find amuchmore efficient way by squaring
at intermediate stages. For example, the calculation

x19 = (x9)2 x
= ((x4)2 x)2 x
= (((x2)2)2 x)2 x

uses only 6multiplications. Here, we have effectivelywritten the exponent 19 = 100112 in binary,
adding x added on the right if and only if the remainder is 1. To convert the binary expansion
of the exponent n into a systematic procedure, read it from the left with initial value 1 in the
‘register’. Then

20

• square for the privilege of processing the digit,

• multiply by x for each digit ‘1’ encountered.

Starting with 19, the first ‘1’ on the left allows us to write 12 ∗ x = x . This is then squared three
times, though in processing the next ‘1’, we multiply by x . The final ‘1’ causes us to square and
multiply by x again, and we are finished. It would be more efficient to ignore the first squaring
(which is always 1∗1) and to process x starting from the second binary digit, but the instructions
are slightly neater to state using the full binary expansion. Here is the pseudocode:

pow(x,n):
y = 1
find the expansion n.binary()
for each bit from left to right:

y = y*y
if bit == 1:

y = y*x
return y

To implement this properly in SAGE one would need to define ‘bit’ as a successive element in the
string consisting of the binary digits of n, but this would obscure the instructions. As it stands,
the process should be sufficiently clear by carrying it out by hand. The only values stored are x,
n and each current value of y . The only operations are squaring and multiplying by x .

Example. If x = 3 and n = 11 = 10112, we display each loop vertically.

n 1 0 1 1

y in 1 3 9 243

y squared 1 9 81 59049

y out 3 9 243 177147

Thus 311 = 177147 was computedwith three squarings (ignoring 1∗1) and three multiplications.
Here is the same example modulo 16 :

y in 1 3 9 3

y squared 1 9 1 9

y out 3 9 3 11

Therefore 311 = 11 mod 16 .

Let’s analyse the efficiency. Recall from §1 that the number of bits needed to encode n in binary
is blgnc + 1 . For each bit, we need to square (a multiplication). Ignoring the first 1 ∗ 1 gives
blgnc+1−1 = lgn operations. Each ‘1’ after the first gives an additional multiplication, so there
are at most blgnc of these. So we have a total of 2blgnc operations, and the algorithm requires
O(lgn) operations, which is much more efficient than the iteration program.

21

3.3. Euclid’s algorithm

Let a, b be integers with b > 0 . The aim is to compute their greatest common divisor gcd(a, b) .
Suppose that

a = qb+ r, 0 ⩽ r < b,

which implies that
a/b = q + r/b. 0 ⩽ r/b < 1.

In this situation, we know that r = a mod b, but to emphasize that r < b we can use the exact
formula

r = a− ba/bcb.
This remainder is denoted a%b in C++ or SAGE.

Lemma. With this notation, gcd(a, b) = gcd(b, r) .

Proof. Suppose that s = gcd(b, r) . Then s|b and s|r . Thus s|a , and s is a common divisor of a
and b . Suppose that t is another common divisor of a and b . Then t|r, so t is also a common
divisor of b and r, and (since s is the greatest such) t ⩽ s . Therefore s is indeed the greatest
common divisor of a and b . □

Eulcid’s algorithm now consists of starting from (a, b), and then repeatedly performing divison
and applying the lemma. Since ri+1 < ri, we must have rn = 0 for some n :

a = q0b+ r1

b = q1r1 + r2

r1 = q2r2 + r3

· · ·
rn−2 = qn−1rn−1 + 0.

Applying the lemma, we are led to gcd(rn−1, 0) = rn−1 . So this equals gcd(a, b) . The code is
therefore quite simple:

def euc(a,b):
if b == 0:

return a
else:

return euc(b,a%b)

If we keep track of ri as a linear combination of ri−1 and ri−2 , simplified at each stage, this we
will obtain integers x, y for which

gcd(a, b) = xa+ yb.

This is called Euclid’s ExtendedAlgorithm. There is a quick way of carrying this out by hand using
matrices. We shall illustrate the method next. We first set up a matrix of the form(

a 1 0
b 0 1

)

22

in which the second column keeps track of coefficients of a and the third column those of b : the
first row is to be interpreted as telling us that a = 1∗a+0∗b and the second that b = 0∗a+1∗b .
One then subtracts the row with the smallest first entry (initially the second if b < a) from the
other row. One repeats this step until one row row begins with a ‘0 ’, in which case the entry above
or below it equals gcd(a, b), and the remaining entries of that row give x and y .

Example.To compute gcd(33, 93), we have(
93 1 0
33 0 1

)
→

(
27 1 −2
33 0 1

)
→

(
27 1 −2
6 −1 3

)
↓(

3 5 −14
0 −11 31

)
←

(
3 5 −14
6 −1 3

)
There is no need to swap the rows each time provided one is happy to subtract the first from the
second. The final ‘0 ’ tells us that gcd(93, 33) = 3 (of course, this was obvious) and

3 = gcd(33, 93) = 5 ∗ 93− 14 ∗ 33

(the coefficients x = 5 and y = −14 were less obvious).

We shall not prove formally that this method does produce the correct result, but one can un-
derstand it as follows. The new numbers 27, 6, 3 in the first columns are simply the remain-
ders r1, r2, r3, with r4 = 0 . And since we are performing elementary row operations, each row
(ri xi yi) tells us that ri = xi ∗ 93+ yi ∗ 33 . The penultimate one gives us the desired expression
for r3 = gcd(93, 33) .

3.4. Consolidation

The aim of this section is to draw togethermany of the topics we have seen so far, namely Induction
(§1,1), the Fibonacci numbers (§2.2), and logarithms (§1.4 and §3.2), in order to analyse the
efficiency of Euclid’s algorithm (§3.3). We shall show that, like our method of exponentiation by
repeated squaring, it executes in ‘log time’.

Definition. Suppose that a > b > 0 . Let s(a, b) denote the number of steps needed in executing
Euclid’s algorithm so that the remainder becomes 0 in the final step.

It is reasonable to suppose that s(a, b) estimates the time required to compute gcd(a, b) . If
s(a, b) = n then we are stating that (in our previous notation) rn = 0 and rn−1 6= 0 .

Examples.One has
s(93, 33) = 4

s(33, 93) = 5.

Computer software quickly reveals that

gcd(100! + 1, 100100 − 1) = 101

s(100! + 1, 100100 − 1) = 337.

23

Fibonacci numbers are relevant to the implementation of Euclid’s algorithm. The following scheme
implements the algorithm to determine the greatest common divisor of two adjacent Fibonacci
numbers:

Fn+2 = Fn+1 + Fn

Fn+1 = Fn + Fn−1

· · · · · ·
F5 = F4 + F3

F4 = F3 + F2

F3 = 2F2 + 0

This is because each Fibonnaci number like Fn+1 divides exactly once into the next higher one
Fn+2 with remainder Fn (because twice Fn+1 into Fn+2 won’t go!). The conclusion is that

gcd(Fn+2, Fn+1) = F2 = 1,

so any two adjacent Fibonacci numbers are coprime. Here is an easy example:

13 = 1 ∗ 8 + 5
8 = 1 ∗ 5 + 3
5 = 1 ∗ 3 + 2
3 = 1 ∗ 2 + 1
2 = 2 ∗ 1 + 0.

Note that s(13, 8) = s(F7, F6) = 5 . More generally, one needs exactly n steps to compute
gcd(Fn+2, Fn+1) , because there are n remainders (including 0) in the general scheme above.
The next results records this fact and generalizes it:

Proposition. (i) We have s(Fn+2, Fn+1) = n for all n ⩾ 1 .
(ii) If a > b > 0 and s(a, b) = n then

a ⩾ Fn+2 and b ⩾ Fn+1.

Proof. It remains to prove the second statement, which we do by induction on n . It is obviously
true for n = 1 since F3 = 2 and F2 = 1 and one only step is needed. Assume that the second
statement is true when n is replaced by n− 1 . Let r be the first remainder:

a = qb+ r = q0b+ r1.

Since s(a, b) = s(b, r) + 1, we have s(b, r) = n− 1 . By hypothesis,

b ⩾ Fn+1 and r ⩾ Fn.

But then
a ⩾ b+ r ⩾ Fn+1 + Fn = Fn+2.

So the second statement is true for our fixed value of n . Therefore it is true for all n . □

There are other striking properties relating Fibonacci numbers to division and Euclid’s algorithm.
We quote without proof the

24

Theorem. Let m,n ⩾ 3 . Then m|n if and only Fm|Fn .

This means that the mapping n 7→ Fn ‘respects’ divisibility, and (as an exercise) it follows from
the theorem that

gcd(Fm, Fn) = Fgcd(m,n).

A simple example is gcd(F8, F12) = gcd(21, 144) = 3 = F4, 4 being gcd(8, 12) .

Another problem a bit beyond the scope of the course is to find the most efficient way of comput-
ing the Fibonacci numbers themselves. For example, how many steps and how much memory is
needed to compute F12 ?

Returning to Euclid’s algorithm, we shall use the formula

Fn =
1√
5
(φn − ψn)

from §2.2, where (recall) φ and ψ are the roots of x2 − x− 1 = 0 with ψ < 0 . If n is odd then
ψn < 0 ; we deduce that

Fn >
1√
5
φn if n is odd.

Now suppose that a > b > 0 and s(a, b) = n . By part (ii) of the last Proposition,

b ⩾ Fn+1 >
1√
5
φn.

The second equality is true for all n , because if n is even we can actually replace φn by φn+1 ,
whereas if n is odd we first use the fact that Fn+1 ⩾ Fn . Therefore

√
5 b > φn and

1
2 lg 5 + lg(b) > n lg(φ).

Dividing by lg(b) shows and letting b→∞ shows that there exists a constant c > 0 such that

s(a, b) = n < c lg b.

This can be expressed in ‘big O’ notation by the

Theorem. Let a > b > 0 . Then

s(a, b) = O(lg b) as b→∞.

We conclude on a more elementary note by constructing a counterpart of the greatest common
divisor. Let a, b ∈ N, and set g = gcd(a, b) . In particular, g is a common divisor and we can
write

a = ga′, b = gb′.

Consider the positive integer

ℓ =
ab

g
= ga′b′.

25

Proposition. ℓ is the lowest common multiple of a and b . That is,

1. a | ℓ and b | ℓ ;
2. if a | m and b | m then ℓ ⩽ m .

Proof. Condition 1. is immediate.
For 2., write m = am1 = bm2, and recall that g = xa+ yb for some x, y ∈ Z . Consider

gm = (xa+ yb)m = xabm2 + ybam1 = ab(ym1 + xm2).

Since ym1 + xm2 ∈ Z, we have ℓ | m . In particular ℓ ⩽ m . □

26

4. Basic graph theory

4.1. Definitions

A graph consists of a finite set V of vertices and a finite family E of pairs of elements of V, the
edges. (The edges are defined as a family rather than a set so as to allow for multiple edges between
two vertices. Moreover, an edge could consist of a loop from a vertex to itself, so the pair should
be an ordered pair even though the order will not matter until we discuss digraphs.)

Examples.A ‘triangle’ with three vertices:

V = {a, b, c} or (a, b, c), E = (ab, bc, ca).

If we add an isolated vertex d, V = {a, b, c, d} but E stays the same.
A ‘figure eight’ with one vertex:

V = {o}, E = (oo, oo).

A lower case ‘theta’ with 2 vertices and 3 edges:

S = {a, b}, E = (ab, ab, ab).

A graph is simple if there are no multiple edges and no loops. (In this case, E can be defined as a
set of unordered pairs of vertices, but it is still easier to write ab or v1v2, or even 12, than {a, b},
{1, 2} etc.)
The graph is directed or a digraph if each edge has an arrow, in which case each edge really is (in
the logical sense) an ordered pair like (a, b) . To emphasize that the order is now important, one
can denote the edge by a→ b, notation that may be closer to its meaning (like a one-way flow).

Example.Quite simple sets give rise to interesting graphs. Let S = {1, 2, 3, 4, 5} and let V be the
set of all subsets of S of size 2. So

V = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}

(where 12 is shorthand for {1, 2} etc., as explained above) and |V | =
(
5
2

)
= 10 . We shall join

two vertices (elements of V) by an edge if and only if the two subsets are disjoint. The result is
called the Petersen graph. It is an example of a regular graph: the degree if every vertex is the same:

27

There are only 15 vertices, though it is impossible to represent the graph in 2 dimensions without
edge crossings, since it is not a planar graph, a topic to be explored later.

Example.We shall define a digraph with vertex set V = {2, 3, 4, 5, 6, 7, 8, 9} using modular arith-
metic. Regard the elements of V as congruence (or residue) classes modulo 11 (we have excluded
0, 1 and 10 ≡ −1). The set of directed edges consists of pairs (i, j) for which j = i2 mod 11 .
The vertices 3, 4, 5, 9 of the ‘square’ are the so-called quadratic residues modulo 11 ; they are
elements admitting a square root mod 11:

2

4

3

9

5

67

8

The degree of a vertex v, written d(v), is the number of occurrences of v as an endpoint in the
family of edges. Note that a loop will contribute 2 to the degree. If the graph G is simple then
the degree is also the number of vertices joined to v by an edge. One often denotes the maximum
degree of any vertex in G by ∆(G), and the minimum by δ(G) .

Proposition. For any graph, the sum of the degrees of all vertices equals twice the number of
edges:

∑
v∈V

d(v) = 2|E| .

28

Proof.Wecan prove this by induction on |E| . Given a graphwith n edges, remove any one. Either
it joined two distinct vertices, or it was a loop at one vertex. In either case, we have reduced the
sum of the degrees by 2. So assuming the result for n − 1 edges (and it certainly holds for one
edge), it remains true for n edges. □

Example.There is no graph with vertex degrees 2, 3, 3, 5 .

Definition. Two graphs G1 = (V1, E1), G2 = (V2, E2) are isomorphic if there exists a bijection
f : V1 → V2 between their vertex sets such that the number of edges between any two vertices
a, b ∈ V1 equals the number of edges between f(a), f(b) ∈ V2 . For simple graphs, this amounts
to the assertion that

(a, b) ∈ E1 ⇐⇒ (f(a), f(b)) ∈ E2.

It is often easy to see that two graphs are not isomorphic, less easy to prove that they are. To show
that two graphs are isomorphic, one must construct an isomorphism. To show that they are not
isomorphic, one looks for some property which is different in the two graphs, such as the sequence
of vertex degrees (if one is lucky), or the existence of cycles of a given length (see §4.2).

Examples.A complete graph with n vertices is a simple graph in which any two vertices are joined
by an edge, so there are

(
n
2

)
edges. Any two are isomorphic so we can speak of the complete graph

with n vertices. It is denoted Kn . The figures shown are representations of K5 and K6 :

4.2. Connectivity

Two vertices u, v of a graph G are adjacent if there is an edge uv ∈ E whose endpoints are u
and v . The edge is said to join u and v .

A walk from u to v is a sequence of edges

v0v1, v1v2, . . . , vn−1vn

with u = v0 and v = vn . The length of the walk is the number n of edges (we also allow u = v
and n = 0).

A walk may be written v0v1 · · · vn . Best not to write v0 → v1 → · · · → vn if G is not a digraph.

29

A trail is a walk with no repeated edges.

A path is a trail with no repeated vertices except possibly v0 = vn .

A walk/trail/path is closed if v0 = vn, i.e. it starts and finishes at the same vertex.

A cycle is a closed path with at least one edge. An n-cycle is a cycle of length n . Hence a loop is
a 1-cycle and a 2-cycle only appears if there is a multiple edge.

Examples.Referring to the old underground map below, consider the stations

A Aldwych!
C Charing Cross H Holborn
O Oxford Circus P Picadilly Circus
S South Kensington T Tottenham Court Road.

Then

LTOPL is a 4-cycle (and path)
SPOTHA path of length 5
SPLTOPC trail (and walk) [repeated vertex]
SPLTOP trail (and walk) [P still repeated]
SPLTOPLH walk [repeated edge]

30

Definition. Two vertices u, v of a graph G are connected if one can walk from one to the other
and we can write u ∼ v . (This implies there is a path between any two vertices, why?) Then ∼
is an equivalence relation, and it partitions V into one or more subsets, the components of G . The
graph G itself is connected if there is just one component, in which case any two of its vertices are
joined by a path.

A subgraph of a graph G = G(V,E) is any graph G′ = G′(V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E . Note that E′ might not include all the edges in G that join vertices in V ′, though if it
does one says that G′ is vertex-induced (from V ′).

A component of a graph G is then a maximal connected subgraph G′, i.e. G′ is connected but if
one more vertex or edge from G is added then the subgraph is no longer connected.

A disconnecting set of a connected graph G is a set of edges whose removal makes the new graph
disconnected. When an edge is removed the vertices which are its endpoints are retained. Of
particular importance is the special case:

Definition. A cutset of a connected graph G is a disconnecting set, no proper subset of which is a
disconnecting set.

Thus, if any one of the edges in a cutset is retained then the graph stays connected. If a cutset
consists of a single edge then this edge is called a cut-edge or a bridge.

A tree is a connected graph with no cycles, though there are alternative definitions (to be seen
later).

A bipartite graph is a graph in which V, the set of vertices, is the union of two disjoint non-empty
sets V1 and V2 and all the edges have one endpoint in V1 and the other endpoint in V2 . (Hence
no two vertices in V1 are adjacent and no two vertices in V2 are adjacent.) One can also prove
the useful

Theorem. A graph is bipartite if and only if there are no cycles of odd length.

Example. Kn,m is the complete bipartite graph where |V1| = n, |V2| = m and every vertex in
V1 is adjacent to every vertex in V2 . Here we see (m,n) = (13, 7) and (3, 3) :

31

4.3. Eulerian graphs

Recall that a cycle is a closed path. It is therefore a walk that passes through no edge twice and
(apart from being joined up so that it finishes where it started) no vertex twice.

Lemma. If a graph G is connected and every vertex has degree at least 2 then G contains a cycle.

Proof. A loop defines a 1-cycle, and a multiple edge defines one or more 2-cycles, so we may
assume that G is simple. Choose any vertex v1 . Let v2 be an adjacent vertex (meaning there is
an edge v1v2). Since v2 has degree at least 2, it must have an adjacent vertex v3 distinct from
v1 . Continuing in this way, since V is a finite set, we must eventually find a vertex already in the
list, say vj = vi with 1 ⩽ i < j, and vi+1, . . . , vj all distinct. Then vivi+1 · · · vj is the desired
cycle. □

Example.Graph theory is said to have begun with Euler’s paper solving the problem of the seven
bridges of Könisberg near the Baltic Sea (now theRussian city of Kaliningrad sandwiched between
Poland and Lithuania and disconnected from Moscow). The question was whether there exists a
trail that crosses each bridge exactly once.

There can’t be one because when one converts the map into a graph with each land mass a vertex
and each bridge an edge, all the vertices have odd degree, so it is impossible to ‘come and go’
without repeating an edge. Next we’ll make this precise.

Definition. A connected graph is semi-Eulerian if there is a trail which includes every edge of
the graph. (Thus it passes along each edge exactly once and goes through every vertex, but some
vertices can be visited more than once.) The graph is Eulerian if such a trail can be found that is
closed.

Theorem. Suppose that G is a connected graph. Then G is Eulerian if and only if every vertex
has even degree.

Corollary. A connected graph is semi-Eulerian if and only if it has at most two vertices of odd
degree.

32

These results were known to Euler, who studied the bridges problem in 1736, though a formal
proof was first given in 1871 by Hierholzer (who died that year aged 31).

Note. No graph can have an odd number of vertices of odd degree, because the ‘total degree’ must
be even. We shall deduce the corollary from the theorem by a neat trick.

Proof of the theorem. If G has a closed ‘Eulerian trail’, then follow along it from a starting vertex.
At each new vertex, we can mark off the arriving edge and the departing edge. Both are traversed
once and only once, so the degree of each vertex (including the start=finish one) must be even.
This justifies the ‘only if’ part of the theorem.

The harder ‘if’ part can be proved by induction on the number of edges of G , using the lemma
to first remove a cycle and work on what is left of G . However we shall explain how one can
effectively construct a closed Eulerian trail using (what is now called) Hierholzer’s algorithm.

Suppose then that G(V,E) is a connected graph, all of whose vertices are of even degree. Fix a
vertex v0 ∈ V . A first observation (which is a refinement of the lemma) is that one always find
a trail (with at least one edge) in G that eventually returns to v0 . This is because, whichever
edge one chooses to walk along and whichever vertex one arrives at, there will always be an edge
available to leave that vertex. (This is guaranteed by the even degree property, even if the trail has
already passed through the same vertex.) But the graph is finite, so we must eventually return to
v0 .

With this observation, we type out the algorithm in pseudocode. Each step can in fact by imple-
mented by instructing a computer how to process data (lists of vertices and edges) representing
the graph. Let T be a closed trail of any length (even zero) starting and ending at v0 .

Hierholzer's algorithm
def aug(T):

if T contains all the edges of G:
return T

else:
walk to the first vertex v1 in T with a spare edge
construct new trail T1 from v1 to v1 using spare edges
insert T1 as a detour into T to form a longer trail T+

return aug(T+)

A ‘spare edge’ means an edge of G that does not appear in G ; there will always be one if T is not
already Eulerian. The argument above shows that the new trail T1 can be found, and inserting it
as a detour into T yields the ‘augmented’ trail T+ . If T is empty, T1 will be a trail with at least
one edge (it could be a loop) based at v0 . We could have asked the programme to output T+, but
in that case it would be necessary to start afresh with T+ in place of T . By calling aug(T+), we
have made the function recursive by requiring the program to keep applying the ‘else’ step until it
finds a trail with all the edges of G .

Example.The complete graph Kn is Eulerian if and only if n is odd (for then all vertex degrees
are even). Let us apply the algorithm to K5 with vertices a, b, c, d, e . Take T to be the empty
trail (denoted ∅) at v0 = a . When it comes to spare edges, let’s always move to a vertex of least

33

alphabetical order. This causes the program to manufacture three separate detours, illustrated
below with the colours red, green, blue, and to return the Eulerian path abdaebcdeca with (as has
to be) 10 edges.

input → T = ∅

T1 =
︷︸︸︷
abca

T+ = abca
T = abca

T1 =
︷ ︸︸ ︷
bdaeb

T+ = abdaebca
T = abdaebca

T1 =
︷︸︸︷
cdec

T+ = abdaebcdeca
T = abdaebcdeca ← output

Proof of the corollary assuming the theorem. Suppose that G has exactly two vertices u, v of odd
degree. Add an extra edge from u to v . In this section, we are not assuming graphs are simple, so
if there was already an edge from u to v (or more than one), we simply add another. The point is
that the new graph has all its vertices of even degree so, by the theorem, it possesses a Eulerian trail,
which must incorporate the extra edge. If the latter is removed, we end up with a Eulerian trail for
G that starts at u and finishes at v . Conversely, if we had such a trail we can make it closed by
again adding an extra edge, and conclude that the modified graph has all its other vertices of even
degree. □

34

A more popular way of finding an Eulerian trail is Fleury’s algorithm. It can be summed up by
the slogan “do not burn bridges”. Recall that a bridge in a connected graph is an edge that when
removed will cause the new graph to be disconnected. We shall mimic our description of the
previous algorithm to define Fleury’s, but instead of proving that it always succeeds we make do
with an example.

We shall implement the algorithm to construct a semi-Eulerian trail, so this time let G be a con-
nected graph with at most two vertices of odd degree. Fix a vertex v0 of odd degree if there is
one, and a trail T starting at v0, possibly empty.

Fleury's algorithm
def fl(T):

G' = G with edges and isolated vertices of T removed
w = last vertex in T
choose an edge of G' at w avoiding a bridge if possible
T+ = T with the new edge added
return fl(T+)

Then fl(T) will be a semi-Eulerian trail for G .

Example. In the graph illustrated immediately below, there are two ‘odd’ vertices, so we start top
right (green), and aim to finish at the adjacent (red) vertex. After traversing 4 edges, we have
constructed a trail T shown in grey. To obtain G′, we discard its 4 grey edges and 1 isolated
vertex. The point then is that we must complete the ‘left wing’ before crossing the top bridge.
(This is obvious to the human eye, but programming a computer to recognize a bridge would be
an unwanted complication.) Thus, T+ will be formed from T by adding either the left horizontal
edge or the vertical one.

35

4.4. Hamiltonian cycles

Definition. A connected graph is Hamiltonian if there is a closed path (and so, a cycle) that visits
every vertex exactly once.

The closed path is called a Hamiltonian cycle. A Eulerian trail must, by its very nature visit every
vertex, but it is allowed to do so more than once. By contrast, a Hamiltonian cycle must visit each
vertex only once, and will not in general pass along every edge. Despite the analogy with Eulerian
trail, deciding when a graph is Hamiltonian is much harder and remains the subject of current
research.

There are no wide-ranging theorems that characterize Hamiltonian graphs, and most results that
are known are rather restrictive and of limited value for the graphs encountered in this course. The
following is one such result, which we state without proof.

Gabriel Dirac’s Theorem. Let G(V,E) be a simple graph with |V | = n ⩾ 3 . If d(v) ⩾ n/2 for
all v ∈ V (equivalently, n ⩽ 2δ(G)) then G is Hamiltonian.

Examples.Since δ(Kn) = n− 1, the theorem does tells us that Kn is Hamiltonian for all n ⩾ 2 .
A bipartite graphwith an odd number of vertices cannot beHamiltonian, because anyHamiltonian
cycle would be odd.
The 12 edges and 6 vertices of an octahedron form a graph that (like those arising from the other
platonic solids) is Hamiltonian.
The Petersen graph is not Hamiltonian, but it does have a (non-closed) path passing though every
vertex. The Grötzsch graph G̈ has 11 vertices and 20 edges, and by contrast is Hamiltonian. Here
are two representations of it:

Exercise. For which values of n does G̈ possess an n-cycle?

A celebrated example of a Hamiltonian graph is the knight’s graph N with 64 vertices, defined as
follows. Consider a knight moving freely on a standard (8× 8) chess board, without other peices

36

to get in the way. Assign a vertex to each square, and declare two vertices to be adjacent if a knight
can move legitimately between them (that is, two squares one way and one sideways). If a knight
starts on one of the 16 squares near the centre of the board, it has 8 squares it can move to, but this
choice is reduced closer to an edge of the board. The edges of the central 6 × 6 square allow 6
moves, except its corners that allow only 4. Overall, N has

4 vertices of degree 2
8 ” 3
20 ” 4
16 ” 6
16 ” 8

It follows that the total number of edges is

e = 1
2 (4 ∗ 2 + 8 ∗ 3 + 20 ∗ 4 + 16 ∗ 6 + 16 ∗ 8) = 168,

and a Hamiltonian cycle uses 64 of them. Not surprisngly, it is difficult to find such a knight’s tour
from scratch. The following instance was constructed (by the lecturer for Module Selection) by
starting in a corner, and using Warnsdorff’s (not infallible) rule: move the knight to a square from
which there is the least number of successive moves possible. The knight therefore hugs the edges as
long as it can; each number (from 1 to 64) labels the start of the corresponding edge of the cycle:

The knight’s graph is bipartite because the vertices (squares) are divided into black and white, and
a knight changes colour each move. From the remarks above, there cannot exist a knight’s tour on
(for example) a 7× 7 chequer board.

37

5. Vertex colouring

5.1. Chromatic number

In this section, all graphs will be simple. The problem then is to assign a colour to each vertex of a
graph so that no two adjacent vertices have the same colour, and to do this using the least number
of colours.

In mathematical language, a vertex colouring of a graph G(V,E) is a mapping c : V → N with
the property

uv ∈ E ⇒ c(u) 6= c(v).

This means that adjacent vertices have different colours (values of c), and to do this with as few
colours as possible means reducing the image of c . We are using positive integers to label the
colours, though in examples we shall use Greek letters in their alphabetical order

α, β, γ, δ, ε, ζ, . . .

On screen, we can use actual colours, such as red, green, blue, and yellow.

A graph is k -colourable if we can find a vertex colouring with | Im c | = k . In this case, one of k
colours can be assigned to each vertex such that no two adjacent vertices have the same colour.

Definition. The chromatic number of a simple graph G, denoted χ(G), is the least value of k for
which G is k -colourable.

Observation. It is impossible to find a vertex colouring if G has a loop uu . Multiple edges do not
affect the colouring problem, but in any case, we restrict to simple graphs.
χ(G) = 1 if and only if all the vertices of G are isolated, not an interesting scenario.
χ(G) = 2 if and only if G is bipartite (see the end of §4.2). This is really the definition of bipartite:
one can regard the colours as ‘positive’ and ‘negative’ or (in the chess example in §4.4) white and
black.
If |V | = n then obviously G is n-colourable and χ(G) ⩽ n , but usually we can make do with
many fewer colours because χ(G) is much more closely related to the degrees of vertices in G .
In this sense, the next example is not typical.

Examples. Since every vertex of Kn is joined to every other, we have χ(Kn) = n .
Let Cn denote the ‘cycle graph’ consisting of the n vertices and n edges of a polygon. Then

χ(Cn) =

{
2 if n is even,
3 if n is odd.

It follows that:

G containsKn as a subgraph ⇒ χ(G) ⩾ n
G contains an odd cycle as a subgraph ⇒ χ(G) ⩾ 3.

38

Application. Vertex colouring can be used to solve the timetabling problem with:

• a set of modules (the vertices);

• groups of students who have selected pairs of modules (the edges);

• a limited number of time slots (the colours);

• an unlimited number of lecture rooms (to simplify the problem).

If no adjacent vertices have the same colour all students can attend all the lectures for the modules
they have chosen!

In the graph G above, a popular module has ‘degree’ 5. Four modules (left) form a complete
subgraph K4, so no less than 4 colours will suffice. Thus χ(G) = 4 .

5.2. Colouring results

The whole theory of vertex colouring depends on the so-called greedy algorithm. This is a natural
way of colouring the vertices when they are put in order, and (in very informal language) can be
exporessed as follows:

label the vertices v_1,v_2,...,v_n
label the colours 1,2,...,n
assign to v_1 colour 1
for j in range(2,n+1):

S = {colours assigned to vertices adjacent to v_j}
assign to v_j the smallest colour not in S

return S and the assignments

Example.Different vertex orderings can give very different numbers of colours. The ‘cube graph’
is bipartite so χ = 2, and this is illustrated on the left. But the greedy algorithm produces 4
colours (here 1 = R, 2 = G, 3 = B, 4 = Y) when applied to the ordering on the right:

39

For any G, it can be shown that there always exists some vertex ordering for which the greedy
algorithm gives the minimum number (namely, χ(G)) of colours.

Recall that
∆(G) = max

v∈V
d(v),

where d(v) is the degree (valency) of the vertex v . For example, ∆(Kn) = n− 1 and χ(Kn) =
n . Here are the main results on vertex colouring, in increasing difficulty.

Lemma. If G is simple then χ(G) ⩽ ∆(G) + 1 .

Proposition. If G is simple, connected and not regular (not all vertices have degree ∆) then
χ(G) ⩽ ∆(G) .

Brooks’ theorem. If G is simple, connected and neither complete nor an odd cycle (so G 6∼= Kn

and G 6∼= C2k+1) then again χ(G) ⩽ ∆(G) .

Question. Why must we add ‘connected’ in the last two statements?

Proof of the lemma. Let k = ∆(G), and fix a set of k + 1 colours. Take the vertices in any order.
Suppose we have managed to colour some (or ∅) of them. The next (or first) vertex is surrounded
by at most n adjacent vertices, so we can colour it without a clash, and move on to the next vertex
in the list. □

Note that the proposition reduces the proof of the theorem to the case of regular graphs. We shall
prove the former, but not the latter. Incidentally, if we assume that ∆(G) ⩾ 3, there is no need to
mention the odd cycle in the theorem.

40

5.3. Brooks’ algorithm

The proof of the proposition is accomplished by implementing a 2-step process that is sometimes
called Brooks’ algorithm. This produces an ordering of the vertices (or a re-ordering if we have one
already), relative to which (as we shall explain) the greedy algorithm will always succeed with at
most ∆ colours.

We shall illustrate it with a modification of the dodecahedral graph with 12 vertices, in which we
have removed one edge (leaving 29) so that the graph is no longer regular. We have labelled the
vertices with numbers 1, 2, . . . , 20 in no special way, and the missing edge is (1, 6) .

Rather than type out the instructions, we shall explain the process with a table.

In general, let G be a graph with ∆(G) = k but not regular. Choose a vertex with degree less
than k to start, and place the vertex in a ‘queue’. At each stage, the first element in the queue
is moved to the left-hand list, and any adjacent vertices not previously queued are added at the
back of the queue (in any order, but for definiteness one can add them in increasing order). In our
example, k = 3, and we can start with vertex 6. Later on, vertex 5 is adjacent to 1, 4, 10 , but
1, 10 have already appeared in the queue, so only 4 is added (see the boxes).

At the end of the process, the list of vertices must be read in reverse order. In our case, we obtain

v1 = 13, v2 = 9, . . . , v20 = 6.

Now apply the greedy algorithm to this (reversed) list. By construction, each vertex in the list can
be adjacent to at most k − 1 previous elements in the list, because it is also adjacent to one of the

41

vertices above it in the table. For example, there is no problem colouring v10 because it is only
adjacent to v4, and without checking we know it must be adjacent to some vj with j > 10 (it
first entered the queue when 10 entered the list).

This scheme shows that we can colour G with at most k colours. In our case, we recover the
colouring shown. If we restore the missing edge, this is not a valid colouring, though Brooks’
theorem implies that the dodecahedral graph is also 3-colourable and has χ = 3 .

list Q
6

v20 = 6 11 15
v19 = 11 15 7 16

15 7 16 10 20
7 16 10 20 2 12
16 10 20 2 12 17
10 20 2 12 17 5 14
20 2 12 17 5 14 19

2 12 17 5 14 19 1 3
12 17 5 14 19 1 3 8
17 5 14 19 1 3 8 18

v10 = 5 14 19 1 3 8 18 4
14 19 1 3 8 18 4 9
19 1 3 8 18 4 9
1 3 8 18 4 9
3 8 18 4 9
8 18 4 9 13
18 4 9 13

v3 = 4 9 13
v2 = 9 13
v1 = 13

This table emphasizes the dynamic nature of the process, and how the data might be stored on a
computer. Each vertex is processed separately and its ‘new neighbours’ put in the queue using the
First InFirstOut (FIFO) principle, which contrasts with that of a stack (FILO)we saw in recursive
relations.

However, there is a lot of redundant information with the diagonals. In practice, one can form a
long queue, ticking off the vertices as they are processed and crossing out vertices on the graph as
soon as they enter the queue (as the initial one or neighbours of the current vertex).

Exercise. Retain the edge (1, 6) and re-do the table starting with vertex 6 again. Youwill probably
find that most vertex colours are the same but that at the final stage one requires a fourth colour.
This is not a contradiction: even though the dodecahedral graph has χ = ∆ = 3, it is important
to remember that Brooks’ algorithm is only guaranteed to use at most ∆ colours when G is not
regular. We have not proved Brooks’ theorem!

42

6. Planarity

6.1. The Platonic graphs

We can represent K4 the ‘complete graph on four vertices’ by the edges and vertices of a tetrahe-
dron with transparent faces:

Unlike a square with its two diagonals added, this has the advantage that there are no ‘false inter-
sections’ of its edges.

Definition. A graph is called planar if it can be drawn in the plane without crossings, so that edges
intersect only in vertices. When it has been drawn that way we shall call it a plane drawing.

The phrase ‘can be drawn’ means ‘is isomorphic to a graph’, so ‘planar’ is a property of an isomor-
phic class — if it is true for one graph, it is true for any isomorphic graph. Our problem then is to
understand how to decide whether such a class is planar.

We shall begin with four more regular planar graphs, namely the ones determined by the vertices
and edges of the remaining platonic solids. A platonic solid is a convex polyhedron (formed by
intersecting a number of planes in space) with congruent faces each of which is a regular polygon.
It is known that such a face must be a triangle, square or pentagon. Let

n denote the number of vertices
e edges
f faces
p edges bounding each face

∆ = q edges joined at each vertex
χ chromatic number

Then the five Platonic solids and properties of the associated graphs are given by the table

name n e f p q χ Eulerian? Hamiltonian?

tetrahedron 4 6 4 3 3 4 no yes
cube 8 12 6 4 3 2 no yes

octahedron 6 12 8 3 4 3 yes yes
dodecahedron 20 30 12 5 3 3 no yes
icosahedron 12 30 20 3 5 4 no yes

43

The Greek prefixes refer to the number of faces, for example dodecameans 2 + 10 = 12 . The last
four come in pairs, in their data we swap n ↔ f and p ↔ q . Here is the cube (or hexahedral)
graph and the octahedral graph:

Recall that the cube graph is bipartite. Its 23 vertices can be labelled by their Cartesian coordi-
nates, which in the image are listed without commas:

000, 001, 010, 011, 100, 101, 110, 111 .
The octahedral graph is the only one of the five whose vertices all have even degree. The dodec-
ahedral and icosahedral graphs are more complicated:

44

To convert f into a number for a plane graph, we must count the outside as one face.

Theorem (Euler’s formula). For any connected plane graph drawing, n− e+ f = 2 .

Proof. This is a remarkably universal formula. It is valid when there is just 1 isolated vertex (and
so 1 outside face). We can proceed by induction on n . Each time we add an edge joined to the
previous graph, either its other end is ‘free’ (the vertex has degree 1) or it joins up an existing
vertex. In the former case, we have added 1 edge and 1 vertex, in the latter case 1 edge and 1 face.
Either way n− e+ f does not change. □

6.2. Detecting nonplanarity

Recall that:

• Kn is the complete graph with n vertices and so
(
n
2

)
= 1

2n(n− 1) edges;

• Km,n is the complete bipartite graph with m+ n vertices and mn edges.

In particular, K5 is the ‘starred pentagon’ and K3,3 is the ‘utility’ graph representing the distri-
bution of broadband, electricity, water to three consumers. Note that the edges and vertices of a
cube form a subgraph of K4,4 obtained by removing four edges.

Proposition. Neither K5 nor K3,3 is planar.

It follows that no planar graph can contain K5 or K3,3 as a subgraph.

Proof. This can be done by first principles (so no theory). Consider K5; suppose it has a plane
drawing with no redundant crossings. Since the abstract graph has a 5-cycle, that (taken on its
own) will determine a pentagon in the plane. The positions of the other five edges in the drawing
remain to be specified, and each one must either lie inside or outside the pentagon. They cannot

45

all lie outside without a crossing, so let us suppose one lies inside. There is no way to distinguish
any of the 5 remaining edges, so we pick one and assume it lies inside. After one more choice, the
inside/outside positions are forced upon us, and we are stuck at the final step.

A similar argument works for K3,3, though this has a 6-cycle. (Recall that any cycle in a bipartite
graph must be even.) □

To formulate two important results, we need two new concepts for modifying graphs, namely
homeomorphism and contraction.

Definition. Two graphs G1, G2 are called homeomorphic if vertices of degree 2 can be added to
one or both so that the resulting graphs are isomorphic.

Roughly speaking, this means ‘adding blobs’ on one or more egdes so that the two graphs cor-
respond. Adding a single vertex of degree 2 will split one edge into two, so adding several will
generate more edges.

To compare G1 and G2 , one could also ‘strip’ them of vertices of degree 2 one by one provided
the result is still a graph. However, this stripping operation can lead to graphs that are not simple,
so the notion of isomorphism is a little more complicated. If G1 and G2 are homeomorphic then
their degree sequences can only differ by their numbers of entries that are ‘2’. This is important
when one is looking for subgraphs that are homeomorphic to a specific graph like K5 , which has
vertex sequence (4, 4, 4, 4, 4) .

Example. Let G be a graph with degree sequence (3, 3, 3, 3, 6, 6) . Draw one that is simple. Any
graph homeomorphic to G must have degree sequence

(2, . . . , 2, 3, 3, 3, 3, 6, 6),

with zero or more ‘2’s. If there are no ‘2’s then the graph will be isomorphic to G , which is a
special case of homeomorphism.

Homeomorphism defines an equivalence relation on graphs in which one disregards vertices of
degree 2. In particular, all cycle graphs Cn with n ⩾ 1 are homeomorphic! But a 1-cycle (a
single vertex with a loop) cannot have its vertex removed, because the result is not a graph!

Adding or removing vertices of degree 2 can be regarded as a ‘trivial’ operation that does not affect
the essence of the graph. It is a topological notion. What we are really doing is concentrating on
the set of points formed by the edges only (this set forms a ‘topological space’), pretending they
are made of stretchable wire. We are only interested in whether one set can be transformed into
another by bending and stretching/compressing.

46

Theorem (Kuratowski, 1930). A graph is planar if and only if it does not contain a subgraph
homeomorphic to K5 or K3,3 .

Expressed another way,

non-planar ⇐⇒ ∃ subgraph homeomorphic to K5 or K3,3 ,

though (as remarked above) the implication ⇐ is obvious. One can think of K5 and K3,3 as
‘germs’, one of which will always be present if the original graph is non-planar.

Example.Recall the Petersen graph P, which has 10 vertices and 15 edges. One guesses correctly
that it is not planar. It is a regular graph with vertex degree 3, so there is no hope of finding a K5

inside, but it does contain a subgraph homeomorphic to K3,3 . One needs to remove the two edges
that are horizontal in the image below, leaving four vertices of degree 2. Note that the edges of a
subgraphmust be edges of P, so in order to talk of a subgraph we must leave the vertices in place,
since they lie on other edges. But we can remove them and unite the edges so as to form a new
graph homeomorphic to the subgraph:

The new graph has 6 vertices and 9 edges, since we removed 2 edges, and another four pairs of
edges became four single ones. It is easy to see that the 6 vertices are partitioned into two groups
of 3, with all possible edges going from one group to the other, so we are dealing with K3,3 .

47

This is all very well, but the operation we have performed is not very natural. Staring at P, it
seems much closer to K5 than K3,3, and the next approach makes this precise.

Definition. If G is a graph, and uv is an edge joining vertices u and v, then the graph obtained
from G by contracting uv, written G/uv, is formed by making u and v coalesce so that any
edges that arrived at either of them now arrive at the new common vertex. In this process, any
loops are eliminated and any multiple edge just becomes a single one.

A simple example would be a triangle with 3 vertices (i.e. a 3-cycle). If we contract any edge,
we simply get a single edge with its two ends as vertices. Notice that the loop and extra edge are
suppressed.

If we contract an edge in a plane diagram, it remains a plane diagram. One can contract a number
of edges by doing one at a time. Contraction is a rough analogue of taking a quotient in other
branches of mathematics.

Five contractions convert the Petersen graph P to the complete graph K5 . In its pentagonal
representation above, we contract the 5 spokes by joining each outer vertex to its nearest neighbour
inside. This is a painless operation that does not even produce multiple edges to combine.

Theorem (Wagner, 1937). A graph is planar if and only if it does not contain a subgraph that can
be contracted to (a graph isomorphic to) K5 or K3,3 .

Expressed another way,

non-planar ⇐⇒ ∃ subgraph contractible to K5 or K3,3 .

But this time, neither of the implications is elementary. The forward direction (⇒) follows im-
mediately from Kuratowski’s theorem, because any subgraph homeomorphic to K5 (resp. K3,3)
can itself be contracted to K5 (resp. K3,3) by contracting edges so as to delete the superfluous
vertices of degree 2. But there are complications the other way – if G is contractible to K5 then
it might not contain a subgraph homeomorphic to K5, but one homeomorphic to K3,3 instead.

Exercise. Identify three edges of P whose contraction yields K3,3 . It might help to use the
following representation of K3,3 :

48

6.3. Further results

Recall Euler’s formula for a plane graph drawing:

n− e+ f = 2.

We gave an informal proof in §5.3 by showing that the left-hand side does not change when the
graph is ‘grown’ by adding one edge at a time. A more rigorous proof can be given by induction
on the number e of edges. We shall illustrate this for the special case of trees.

Recall that a tree is a connected graph with no cycles.

Proposition. If G is a tree then e = n− 1 .

Proof. If e = 1 then n = 2, the result is valid. Assume the result is true for e = N − 1 . Let G be
a graph with N edges. Now any edge uv of a tree is a bridge – its removal disconnects the graph
(because if not, there must be a path from u to v which becomes a cycle with uv). So if an edge
is removed we obtain a graph with exactly two components (no more than two, because a single
edge cannot connect three components). Both of the components must be trees, by definition. By
assumption,

e = 1 + e1 + e2 = 1 + (n1 − 1) + (n2 − 1) = n− 1,

as stated. □

Remarks. (i) We can use a similar induction argument to prove that any tree has a plane diagram
(i.e. without crossings) with just an outside face. Thus f = 1, and the proposition is compatible
with Euler’s formula.
(ii) For a fixed number of vertices n, no connected graph can have less than e−1 edges (exercise).
Using this one can show that if G is connected then e = n− 1 if and only if G is a tree.

Proposition. If G is a simple planar graph with e ⩾ 3 then e ⩽ 3n− 6 .

Proof. Represent G by a plane diagram. Each face (even if there is only one) borders at least 3
edges. Each such edge will be counted twice if it has different faces either side of it, otherwise
counted once. Thus

2e ⩾ 3f = 3(2 + e− n),

which gives the result. □

Lemma. Any simple planar graph has a vertex of degree at most 5, and is 6-colourable.

Proof. Recall that the sum of the vertex degrees equals 2e . If all the degrees are at least 6, then

6n ⩽
∑
v∈V

d(v) = 2e ⩽ 6n− 12,

a contradiction. □

49

We prove that χ ⩽ 6 by induction on the number of vertices, n . Obviously χ ⩽ n, so the result
is true when n ⩽ 6 . Suppose it is true for n = N−1 . If G now has N vertices, remove one (call it
v) of degree at most 5 and its associated edges (at most 5 of them). By assumption, the remaining
graph is 6-colourable. Moreover, v only had 5 neighbouring vertices, so when we replace v and
its edges we still have a 6 th colour left for v . □

The lemma is analogous to saying that χ ⩽ ∆ + 1, and it is not too hard to refine the proof to
conclude that χ ⩽ 5 . This is effectively the five colour theorem, whose equivalent statement for
maps was proved by Heawood in 1890. The four colour theorem was not resolved until almost a
century later, but not without a ‘proof’ that involved substantial computer verification of special
cases:

Theorem (Appel-Haken, 1976). Any simple plane graph is 4-colourable, i.e. χ ⩽ 4 .

*6.4. The fourcolour theorem

The last theorem is more familiar as a statement aboutmaps – only four colours are needed in such
a way that contiguous countries are distinguished.

Here is the idea. A map can be defined as a plane graph drawing for which removing one or
two edges will not disconnect the graph. (This excludes vertices of degree 2 and an outside face
reaching both sides of an edge.) Given a map M, we can form its ‘dual’, which is a plane graph
diagram denoted M∗, which has a vertex for each face of M and an edge joining two vertices
whenever the corresponding faces are contiguous (and this edge crosses only that common border).
Because of our assumptions, M∗ will have no loops or multiple edges. Then a vertex colouring of
M∗ corresponds to a valid colouring of the map, so the theorem implies the map colouring result.

50

The concept of duality is well known in the context of polyhedra – as we remarked, the cube (6
faces, 8 vertices) and octahedron (8 faces, 6 vertices) are dual pairs, as are the dodecahedron (12
faces, 20 vertices) and icosahedron (20 faces, 12 vertices). The dual of a tetrehedron is another
tetrahedron (the graph being K4 with 4 faces, 4 vertices).

We conclude with some comments that link this topic to Geometry of Surfaces. Planar graph dia-
grams can be regarded as graphs on the surface of a sphere in which one point of the sphere (say
the north pole p) corresponds to infinity in the plane. The outside face in the plane becomes a
normal face containing p on the sphere, so this is more natural.

One can show that both K5 and K3,3 can be drawn on the torus without artificial crossings. One
can also try to draw graphs on more complicated surfaces, in particular on a surface of genus g,
which means a ‘torus with g holes’. Provided there are no crossings, it is well known that if f now
counts ‘faces’ on the surface, then

n− e+ f = 2− 2g,

this quantity being the so-called Euler characteristic of the surface. A graph that can be drawn on
a surface of genus g but not on one of genus g−1 is called a graph of genus g . Thus K4 is a graph
of genus 0, and K5 and K3,3 are graphs of genus 1 .

It is also known that a map drawn on a surface of genus g can always be coloured with a maximum
of k colours, where

k = b7 +
√
1 + 48g

2
c.

Taking g = 0 gives the four colour theorem as a special case. Taking g = 1 shows that 7 colours
suffice to colour the vertices of a graph inscribed on a doughnut.

51

7. Navigation in graphs

7.1. Adjacency data

There are two common ways of representing graphs non-pictorially – by means of an adjacency
matrix or an adjacency table. We consider these in turn.

Without assuming that it is simple, a graph G consists of a set V of vertices, and a family E of
edges. Let us label the vertices v1 . . . , vn . To specify E, we need to know the number aij of
edges that join vi to vj . These numbers can be displayed as an n × n symmetric matrix, from
which we can reconstruct G :

A =

0 1 0 1
1 0 1 2
0 1 0 1
1 2 1 0

We can work out the degree of any vertex by taking the sum of the entries in the corresponding
row (or column, since A is symmetric):

d(vi) =

n∑
j=1

aij .

However, for this to work, a single loop at vi should contribute 2 to aii . The graph is simple if
and only if aii = 0 for all i, and every other entry is 0 or 1.

One can decide mechanically whether a graph is connected as follows. First replace any positive
integer by 1, as multiple edges do not affect the answer.
Start from row r1 = 1 and cross out the entire first column.
Scanning from left to right, note the first column with a 1, cross out that entire column and skip
to the corresponding row, call it r2 .
Scan along r2 to find the first 1, ignoring entries already crossed out, this defines r3 .
And so so. If at any stage, there are no more non-zero entries, return to re-scan (in any order) the
rows already visited. If all their entries are eventually crossed out, the corresponding set of vertices
form a component of G .

Two advantages of the matrix approach are that it can be generalized:

• to deal with digraphs by relaxing the condition that aij = aji, so aij = 1 means that i→ j
is a directed edge (with a loop now counting 1), see the next example;

• to deal with simple weighted graphs or digraphs, in which each edge is assigned a non-
negative number. The lower triangular part of the matrix then resembles a table of distances
between cities of the type that used to be common in motoring atlases, except that only
adjacent nodes have non-zero entries.

52

Example.Below is the sparse adjacency matrix of the disconnected digraph that represents squar-
ing modulo 13 , with vertices representing the 12 non-zero residue classes:

The smaller component consists of the residue classes 1 (with the loop), 12 = −1, 5 and 8 = −5
(the last two square to −1 mod 13). If we re-label the vertices so that 1, 5, 21, 26 come at the start
then the matrix will have a block form, making it obvious that there are (at least) two components.

Another method of representing an ordinary graph is by its adjacency table. The one with adja-
cency matrix A above has table

1 2 3 4
2 1 2 1
4 3 4 2

4 2
4 3

The top row lists the four vertices, and each column below lists (in any order) all the vertices
adjacent to the one on top. In this system, there is no need to label the vertices with numbers, in
this example we could equally well use a, b, c, d . In the next section, we provide such a table by
with the columns replaced by rows.

One can easily adapt the matrix methods, for example to detect the existence of cycles

1→ 2 →→ 4→ 1, 1→ 2→ 3→ 4→ 1

by passing from column to column.

7.2. Search trees

We discuss two different methods of searching through the vertices of graphs. These are

• a depth first search (DFS) that uses a stack;

• a breadth first seach (BFS) that uses a queue.

Example.We can convert a maze (left) into a graph (right) by placing a vertex at each position
where a choice is needed (including the start and end) and at a dead-end. A walk in this graph is
a walk in the maze.

53

This graph can be input into a computer by typing its adjacency table. In SAGE, this is

adj = { 1: [4,6],
2: [3],
3: [2,7,9],
4: [1],
5: [6],
6: [1,5,10],
7: [3,12],
8: [12],
9: [1,3,14],
10: [6,15],
11: [12],
12: [7,8,11],
13: [14],
14: [9,13,15],
15: [10,14,16],
16: [15] }

Depth first search. This is carried out by processing the data from the adjacency table in a stack,
shown below (overleaf). At each stage, the vertex being processed is the one on the right. This
represents the ‘top’ of the stack, which we are allowed to ‘peek’. We seek to add or ‘push’ an
adjacent vertex to the stack if there exists an adjacent vertex that has not already been processed.

In our particular implementation of DFS, we add at most §one adjacent vertex to the stack (for
definiteness, the smallest in our list), and we keep a separate record of those vertices that have
(at some point) entered the stack. If the vertex being processed has no new neighbours (either
because it has degree one, or because its neighbours are in the stack), we remove or ‘pop‘ it from
the stack. Each vertex can appear at most once in our stack, and each vertex appears twice in our
table, once added, once removed. This means that the table must contain 2n rows, where n is
the number of vertices (here n = 16).

54

DFS stack ←→ added removed

7 7
7, 3 3
7, 3, 2 2
7, 3 2
7, 3, 9 9
7, 3, 9, 1 1
7, 3, 9, 1, 4 4
7, 3, 9, 1 4
7, 3, 9, 1, 6 6
7, 3, 9, 1, 6, 5 5
7, 3, 9, 1, 6 5
7, 3, 9, 1, 6, 10 10
7, 3, 9, 1, 6, 10, 15 15
7, 3, 9, 1, 6, 10, 15, 14 14
7, 3, 9, 1, 6, 10, 15, 14, 13 13
7, 3, 9, 1, 6, 10, 15, 14 13
7, 3, 9, 1, 6, 10, 15 14
7, 3, 9, 1, 6, 10, 15, 16 16
7, 3, 9, 1, 6, 10, 15 16
7, 3, 9, 1, 6, 10 15
7, 3, 9, 1, 6 10
7, 3, 9, 1 6
7, 3, 9 1
7, 3 9
7 3
7, 12 12
7, 12, 8 8
7, 12 8
7, 12, 11 11
7, 12 11
7 12
∅ 7

DFS abbreviated version. Use of a table is advised to gain confidence in the method, but for some
purposes it suffices to list the vertices in the order in which they are encountered, and add ‘ties’
joining neighbouring vertices that are not already adjacent in the list:︷ ︸︸ ︷

7,
︷ ︸︸ ︷
3, 2, 9,

︷ ︸︸ ︷
1, 4,

︷ ︸︸ ︷
6, 5, 10,

︷ ︸︸ ︷
15, 14, 13, 16,

︷ ︸︸ ︷
12, 8, 11 .

It is a consequence of the methods that all such ties are ‘nested’, with no crossings.

55

We adopt the following conventions, reflecting the fact that we read/type/write from left to right.

• for a stack, items are added on the right, and removed from the right;

• for a queue (next example), items are added on the right, but removed from the left.

Breadth first search. This is carried out by inserting data into a queue. When processing a vertex
in a BFS, it is important to add all its adjacent vertices before moving on. This is exactly what we
did in the 2-part algorithm to re-order vertices prior to colouring them. Although our table should
show each addition and removal step by step, we can save time by using one row for each vertex
being processed (having just been removed). This way, we only have n rows, excluding the first:

removed ← BFS queue←

7
7 3, 12
3 12, 2, 9
12 2, 9, 8, 11
2 9, 8, 11
9 8, 11, 1, 14
8 11, 1, 14
11 1, 14
1 14, 4, 6
14 4, 6, 13, 15
4 6, 13, 15
6 13, 15, 5, 10
13 15, 5, 10
15 5, 10, 16
5 10, 16
10 16
16 ∅

BFS abbreviated version. As in the 2-part colouring algorithm, some of the information can be
presented by a single long list:

√ √ √ √ √ √ √ √ √

vertices: 7 3 12 2 9 8 11 1 14 4 6 13 15 5 10 16
level: 0 1 1 2 2 2 2 3 3 4 4 4 4 5 5 5

Here we have processed up to and including vertex 14, in the latter case by adding 13, 15 . It is a
consequence of the method that vertices are added level by level, and the last row indicates their
‘distance’ to the start.

Definition. Given a connected graph G, a spanning tree is a subgraph of G without cycles that
includes all the vertices of G .

Both searches determine such a spanning tree, although the way they do this reflects their names.
The trees are rooted, because we have distinguished a starting point – vertex 7 is the root. We can
now re-draw the tree growing (by convention) downwards, level by level. The ‘dead-end’ vertices

56

2, 4, 5, 8, 11, 13, 16 all define leaves of the trees, but the BFS tree (right) happens to have an extra
leaf at the finish.

In our example, G was not itself a tree, having a cycle (9, 1, 6, 10, 15, 14, 9) and the two trees
break this in different ways. The DFS tree omits the edge (14, 9) whereas the BFS one omits
(10, 15) . The DFS tree (left) has height 8, this being the maximum number of edges from root to
leaf, achieved by arriving at the dead-end 13 . By contrast, the BFS tree is more spread out and
has height 5 .

7.3. Shortest paths

57

A weighted graph consists of a graph G = G(V,E) in which positive numbers (often, integers)
have been assigned to each edge. We shall assume that G is simple. The weights define a function

d : E −→ (0,∞)

(we use d for ‘distance’ because w could be confusedwith a vertex). An example consists of points
on a transport network with distances or travel times between nodes. The TfL map is arguably
less practical – it displays walking times between stations – but is a good illustration.

The aim of this section is to present and justify Dijkstra’s algorithm for finding shortest paths from
some fixed root vertex to all the others in a weighted graph.

An easy way of doing this in which the weight of each edge equals 1 is based on BFS. Dijkstra’s
algorithm generalizes this procedure by introducing a priority in the queue. It also produces a
tree incorporating the shortest paths but the nature (breadth/depth) of this tree depends on the
weights.

Simple Example. The vertices of this graph represent cities taken from a former Soviet road atlas
(R is Rostov on the river Don):

The problem is to find the shortest path from B to M, in these notes written SP(B,M) . But first
we find the ‘length’ of this path, meaning the sum of the weights of its edges, this is the shortest
distance from B to M, written SD(B,M) .

In this example, we might (or might not) be able to spot the SP: it is

B → T → R→ K →M,

and SD(B,M) = 11 . We illustrate the method with a table. At the start, the shortest distance
from B = v0 to itself is obviously 0 and this it its permanent label. The other distances are
provisionally set to ∞ :

58

B K M O R T U

0 ∞ ∞ ∞ ∞ ∞ ∞
B → ∞ ∞ ∞ 6 2 6

T → ∞ ∞ 4 5 6

O → 9 ∞ 5 6

R→ 7 12 6

U → 7 12

K → 11

M →

Then B is selected as a ‘permanent’ vertex, meaning that its label correctly indicates its shortest
distance from B (obviously so, since this is 0). The row against B then updates the distances of
those vertices adjacent to B . The least of these arises from the edge BT and so T is moved over
and assigned a permanent label of 2 [also boxed] that does not change thereafter. Other distances
are updated if we can reach a vertex in less distance from T (e.g. the distance from B to R reduces
to 5).

We conclude that SD(B,M) = 11 . The method actually determines a tree that encodes the
shortest path from B to every other vertex. To find the edges of the tree, one inspects each
column to find where the boxed distances first appeared:

BT, TO, TR, BU, RK, KM.

A tree spanning 7 vertices must have 7− 1 = 6 edges.

Let’s write down the general procedure.

59

Dijkstra’s algorithm. This takes as input: a weighted graph G(V,E) and a distinguished ver-
tex v0 . Let V = {v0, v1, . . . , vn} . Its output consists of a list of the shortest distances Li =
SD(v0, vi) for each vertex vi . Obviously L0 = 0 .

Vperm = ∅
Vtemp = V

L0 = 0

for j > 0:
Lj =∞

while Vperm 6= V :
choose vi ∈ Vtemp with Li minimal
Vperm = Vperm t {vi}
Vtemp = Vtemp \ {vi}
for vj ∈ Vtemp adjacent to vi:

Lj = min(Li + d(vi vj), Lj)

return (L0, L1, . . . , Ln)

Before applying each ‘while’ loop, the vertex set is partitioned into a disjoint union

V = Vperm t Vtemp.

(Initially, Vperm is empty.) We then select the temporary vertex vi with the least label Li and
make it permanent. Its label Li is not modified again, and (we shall show) represents the length
of a shortest path v0 ⇝ vi . (In the first loop, this is obvious, because we are obliged to choose
v0 with L0 = 0 .) We then use vi to scan each remaining temporary vertex vj adjacent to it,
and update the label Lj if we obtain to shorter path to vj via vi . (In the second loop, this simply
amounts to providing finite labels Lj = d(v0, vj) to all vertices adjacent to v0, but in the third
loop we may discover a vertex vj for which

d(v0, vi) + d(vi, vj) < d(v0, vj)

in which case Lj decreases.)

Sometimes, Vperm is called the closed set, and the subset of Vtemp with finite labels (consisting of
those temporary vertices that have been visited) is called the open set.

Special case. An ordinary graph can be treated as a weighted one in which any two adjacent
vertices u, v have d(u, v) = 1 . In this case, we can still apply the boxed algorithm, but it will just
be matter of moving vertices one by one from Vtemp to Vperm . The labels will be incremented by
1 once we have moved all those with equal labels into Vperm . Once a vertex acquires a finite label,
no re-labelling takes place because an inequality like the one above is impossible. This process
then provides a very effective method for finding the shortest path between any two vertices in a
complicated graph.

60

8. Optimality

8.1 Shortest paths

The aim of this section is to prove that Dijkstra’s algorithm is ‘correct’. The next result is phrased
using the notation of §7.3.

Lemma. Suppose that a shortest path v0 ⇝ u ⇝ vi between two vertices v0, vi in a weighted
graph passes via an intermediate vertex u . Then both subpaths v0 ⇝ u and u⇝ vi are shortest
paths between their respective vertices, and in particular

SD(v0, vi) = SD(v0, u) + SD(u, vi).

Proof. If one of the ‘subpaths’ is not shortest, then we could substitute it with a shorter one, giving
a shorter path v0 ⇝ vi . It’s that simple! □

For the lemma, we are assuming that the path between v0 and vi is a shortest one. If this were
not the case, we only have the triangle inequality

SD(v0, vi) ⩽ SD(v0, u) + SD(u, vi).

The lemma is an instance of an important argument called ‘Bellman’s optimality principle’ that
crops up in different guises in many problems in optimization theroy.

Let us return to Dijkstra’s algorithm. We wish to prove that all the permanent labels of vertices in
Vperm are correct shortest distances:

Theorem. The label Lp that Dijkstra’s algorithm assigns to each vertex vp ∈ Vperm does indeed
equal its shortest distance from v0 .

Proof.We shall prove this by induction on |Vperm| .
The statement is certainly true when |Vperm| = 1 because then Vperm = {v0} and L0 = 0 .
Now let vi ∈ Vtemp denote the temporary vertex chosen at a later stage because its label Li is
minimal. Since the algorithm will then move vi into Vperm and make Li permanent, it suffices to
show that

Li = SD(v0, vi).

Suppose that
v0 ⇝ vp → vq ⇝ vi

is a shortest path from v0 to vi . Here we have chosen intermediate and adjacent vertices vp ∈
Vperm and vq ∈ Vtemp; this is clearly possible and it may be that q = i . Our inductive hypothesis
is that every vertex in Vperm is labelled by its correct shortest distance, so in particular Lp =

61

SD(v0, vp) . Then

Li ⩽ Lq minimality
⩽ Lp + d(vp, vq) definition of Lq when vp scanned vq
⩽ Lp + SD(vp, vi) edge is part of the SP
= SD(v0, vp) + SD(vp, vi) by hypothesis
= SD(v0, vi) by the previous lemma.

But Li is the distance to vi via some path, so it must equal SD(v0, vi), and (incidentally) all the
inequalities are equalities.
This completes the induction. □

Our previous example. The proof helps to explain why after this step

B T O R U K M

0 2 4 5 6 7 12

we can be certain that SD(B,K) = 7 . Since R ∈ Vperm we know that SD(B,R) = 5 . Since
7 < 12 , we can be certain that the SP from B to K must pass through R, and we can take

v0 = B, vp = R, vq = vi = K.

Therefore SD(B,K) = 7 .

The crucial technique in Dijkstra’s algorithm is the act of relabelling: once vi becomes permanent
we scan its adjacent vertices and reduce their labels if passing through vi gives a shorter path:

Lj = min(Li + d(vi, vj), Lj).

The act of relabelling is called relaxation of the edge vivj , and its repeated use allows one to de-
crease the estimated shortest distances until they become correct. Dijkstra’s algorithm has the
characteristic that it grows a tree of shortest paths from the root. There are other shortest path al-
gorithms that apply relaxations in a more brute force (and thus, simpler) way, whilst still eventually
achieving a shortest path.

8.2. Kruskal’s algorithm

In this section, G is always a simple connected weighted graph. Let n denote the number of its
vertices.

We have seen a number of algorithms that, when applied to G, construct a spanning tree. This
is a subgraph with the same vertex set as G, and since it is a tree, it will have n − 1 edges. In
particular, Dijkstra’s algorithm does this, provided we give it a starting vertex to act as root.

A different connectivity problem concerns the construction of a minimal spanning tree or MST.
This means a spanning tree whose total weight∑

uv∈E

d(u, v)

62

is least. Any connected graph has a spanning tree, because whenever there is a cycle one can
remove any edge in that cycle, leaving all the vertices connected, and continue until there are no
more cycles. Therefore a minimal spanning tree must exist, and (if there is more than one) the
total weight of any two are equal by definition.

Kruskal’s algorithm. Its input is a simple connected graph G(V,E) with |V | = n . Its output is
a subset TK ⊆ E of size n− 1 that forms a minimal spanning tree.

It is run by means of the following instructions:

<F = ∅

while |F | < n− 1:
choose an edge uv ∈ E \ F of minimal weight:

if adding uv to F gives a cycle:
discard uv

else:
F = F t {uv}

TK = F

return TK

Example.Applying Dijkstra’s algorithm with root bottom left in the following graph gives a tree of
weight 41. Applying Kruskal’s algorithm gives a MST with weight 34.

63

The vertices are drawn with large circles to allow one to record the labels (temporary and perma-
nent) in applying Dijkstra’s algorithm.

Kruskal’s is a prototype ‘greedy algorithm’ since it executes what seems to be the optimal choice at
each step. One could imagine (for example) that at each stage one should only add edges that are
connected to ones already chosen, so that theMST is ‘grown’ branch by branch. (It turns out that
this procedure is also valid – it is called Prim’s algorithm and works well when the graph is defined
by an adjacency matrix.) In any case, it is far from obvious that Kruskal’s procedure works, but
this is what the next result assures us:

Theorem. TK is a minimal spanning tree.

Proof.Note that at each intermediate stage, F is ‘forest’ consisting of one or more trees, and |F | <
n . Since |TK| = n−1 it can have only one connected component, andmust include all n vertices.
We need to prove that its total weight is minimal amongst all spanning trees.

Let TJ be a minimal spanning tree (one certainly exists!) such that TJ ∩ TK is as large as possible.
Think of elements of TJ as red, of TK as blue.

Choose an element of TK \TJ of least weight, call it uv and set d = d(u, v) . Think of it as DEEP
BLUE!

In a tree, any two vertices are joined by a unique path. (For if the path were not unique, we would
have a cycle, which is impossible.) This observation is used twice next:

64

• The path u⇝ v in TJ must have an edge u′v′ ∈ TJ\TK, otherwise TK would have a cycle.
Think of u′v′ as DEEP RED, and call its weight d′ .

• The path u′ ⇝ v′ in TK must similarly have an edge u′′v′′ ∈ TK \ TJ . It is again DEEP
BLUE; call its weight d′′ .

We now claim that

(i) d ⩽ d′′,
(ii) d ⩽ d′ .

(i) is true because we chose uv to have least weight in TK \ TJ .
(ii) is true because if not d′ would have been added to F ⊆ TK before uv :

To see this, suppose for a moment that ℓ′ < d . At the stage the algorithm is applied
to any edges of weight d′, the edge u′′v′′ would not have been part of F since
d′ < d < d′′ . nor could adding u′v′ have created a cycle in F, because in that case
there would already be a path u′ → v′ in TK preventing the later addition of d′′ . So
u′v′ would have been added to F ⊆ TK . But this is a contradiction.

Finally, consider
(TJ \ {u′v′}) t {uv};

this is an MST with a larger intersection with TK, which is a contradiction. □

8.3. Back to matrices

The aim of this section is to link our study of spanning trees to some matrix algebra. We’ll be using
the prefix ‘ADJ’ for both the ‘ADJacency’ matrix and the ‘ADJugate’ (sometimes called ‘ADJoint’)
matrix.

Revision on matrix algebra. Let A = (aij) be a square n × n matrix, and recall the notion of
cofactor, used in the computation of inverses. Namely, define

cij = (−1)i+j(sub-determinant formed from A by deleting row i and col j).

The transpose C⊤ is the so-called adjugate matrix Ã = adjA :

Ãij = cji,

and
AÃ = (detA)I = ÃA.

Of course,

A =

(
a b
c d

)
⇒ adjA =

(
d −b
−c a

)
.

If A is invertible then
A−1 =

1

detA
Ã.

65

However, Ã can still be useful when A is not intertible; here’s an enticing example:

A =

 1 2 3
4 5 6
7 8 9

 ⇒ Ã = −3

 1 −2 1
−2 4 −2
1 −2 1

 .

Let G be a simple graph with n vertices. Consider the following n× n matrices:

A = the adjacency matrix of G
D = the diagonal matrix of vertex degrees
L = D −A.

L is called the Laplacian matrix of th graph G . It is obviously symmetric, and all its rows (or
columns) add up to zero. In fact, the rank of L equals n minus the number of components of G .

Example.Consider this graph
with 4 vertices and 5 edges:

A =

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 ⇒ L =

2 −1 0 −1
−1 3 −1 −1
0 −1 2 −1
−1 −1 −1 3

 .

Exercise. Compute A2 and check that its (i, j) th entry is the number of walks of length 2 from
vertex i to vertex j . Explain why, more generally, (An)ij is the number of walks of length n from
i to j .

*8.4. The graph Laplacian

Now we turn attention to the matrix L . Consider the characteristic polynomial

det(L− xI) = (λ1 − x)(λ2 − x) · · · (λ4 − x).

Since L is not invertible, at least one eigenvalue must vanish, say λ4 = 0 . Then

det(L− xI) = x4 − 10x3 + (λ1λ2 + λ2λ3 + λ3λ1)x
2 − λ1λ2λ3x.

66

One the other hand, this equals

det

2− x −1 0 −1
−1 3− x −1 −1
0 −1 2− x −1
−1 −1 −1 3− x

 = det

2− x −1 0 −1
−1 3− x −1 −1
0 −1 2− x −1
−x −x −x −x

= det

2− x −1 0 −x
−1 3− x −1 −x
0 −1 2− x −x
−x −x −x −4x

= −4x c44 +O(x2),

where O(x2) gathers all the terms in x2, x3, x4 . (The first step above was to add the first three
rows to the last one to give a row of −x ’s, the second was to add the first three columns to the last
one.) Therefore,

λ1λ2λ3 = 4c44 = 32.

More to the point, by crossing out other rows/columns, we can see that all the cofactors of L are
are equal! The same argument gives

Lemma. For a simple connected graph, all the cofactors of L are equal (to 1/n times the product
of its non-zero eigenvalues).

Kirchoff’s matrix tree theorem. This number equals the number of spanning trees in the simple
connected graph G .

Idea of proof. This is based on another matrix associated to a graph, its incidence matrix. Or rather,
the incidence matrix M associated to a digraph. First, we need to ‘orient’ the edges of G arbi-
trarily, as in the picture on the previous page. Then rows of M represent vertices, columns edges,
and a 1 (resp. −1) in a column means that the edge leaves (resp. enters) the vertex associated to
that row. With vertices labelled 1, 2, 3, 4 and edges labelled a, b, c, d, e, this gives

M =

1 0 0 −1 0
−1 1 0 0 −1
0 −1 1 0 0
0 0 −1 1 1

 .

It is easy to understand that
L =MM⊤.

The sum of the rows of M is also zero. In general, for a connected graph, the rank of M equals
n − 1, and (this is the key point) one can show that a subset of n − 1 edges forms a tree if and only
if the determinant of that submatrix is non-zero. We do not lose information by deleting any row of
M, say the last, to define the reduced incidence matrix R .

The proof of Kirchoff’s theorem is now a matter of computing

cnn(L) = det(RR⊤)

67

as a sum of products of sub-determinants of R . A generalization of the usual rule for det(AB)
says how to do that. □

Example. The complete graph K3 obviously has 3 spanning trees, and K4 has
(
6
3

)
− 4 = 16 .

Using Kirchoff’s theorem (and the trick of adding rows to simplify the cofactor calculation), one
quickly obtains

Corollary. The complete graph Kn has nn−2 spanning trees.

Actually, we can forget about Kn, and nn−2 counts labelled trees with n vertices. This fact was
known to Cayley, and Prüfer explained how such trees can be described by sequences of numbers
(a1, . . . , an−2) with ai ∈ {1, . . . , n} .

68

9. Networks and flows

Assumptions. For the purpose of this course, a network is a weighted digraph, so each edge has
both a positive number and an arrow associated to it, and the underlying graph is simple and
connected.

A network therefore possesses a set V of vertices, and a set E of directed edges that we can regard
as a subset of V ×V . We shall often write uv or u→ v to indicate that (u, v) ∈ E , and u⇌ v to
mean that {u, v} is an edge of the underlying graph. Thus, u⇌ v means that either (u, v) ∈ E
or (v, u) ∈ E , but not both because we are assuming that G is simple. If (u, v) ∈ E , we shall
denote by d(u, v) , or (from §9.2 onwards) c(u, v) , the positive weight assigned to it.

A path will mean a path in the underlying graph without reference to the arrows, so if it has k
edges we can indicate it by

v0 ⇌ v1 ⇌ v2 ⇌ · · ·⇌ vk.

We shall use the expression aligned path from v0 to vk to imply that all the arrows are forward
pointing:

v0 → v1 → v2 → · · · → vk.

All the networks in this section will possess two special vertices, a ‘start’ or ‘source’ s from which
all adjacent edges point away, and an ‘end’ or sink’ t to which all adjacent edges point towards.
We shall impose one extra technical connectivity condition, namely that every vertex v lies on an
aligned path from s to t .

In a network, the vertices are often called ‘nodes’ and the directed edges ‘arcs’.

*9.1. Activity networks

In this set-up, one is given a list of tasks or ‘activities’, each of which takes a given time to perform.
Some activities cannot be started until others have been completed – these are the so-called de-
pendencies. One must determine (i) the minimum total time for all the activities to be completed
with the dependencies being preserved, and (ii) which activities are critical, meaning ones that
delay the whole project if they overrun.

The problem is represented by a network in which:

• the vertices are events, which are points in time;
• the edge represent activities, weighted by duration;
• there is a start vertex s and a finish vertex t .

At the event u, each activity with u as starting point depends on all the activities that have u as
a finishing point. In particular:

• activities that do not depend on others will have s as initial point;
• activities that have no others depending on them have t as endpoint.

Example.The next table generates the network shown below it:

69

activity: α1 α2 α3 α4 α5 α6 α7 α8

duration: 6 7 4 9 12 7 7 8

dependent on: − α1 α2, α5 − α4 α4 α6, α8 α1

It is easy to unintentionally create extra dependencies when drawing the directed graph, so always
check your graph against the original table.

One associates to each event u two numbers:

• E(u) is the earliest start time for all successive activities. It is the length of a longest aligned
path from s to u, and (by the ‘optimality lemma’ from §8.1) satisfies

E(u) = max
x→u

{
E(x) + d(x, u)

}
(the maximum is taken over all arcs from x to u), with E(s) = 0 . We set

E(t) = τ,

this is the least time required to complete the entire project.

• L(u) is the latest finish time for all preceding activities in order to finish the project without
overrunning. It satisfies

L(u) = min
u→y

{
L(y)− d(u, y)

}
,

with L(t) = τ . Then τ − L(u) is the length of a longest aligned path from u to t .

Starting from E(s) = 0, one finds all the E values by working from start to finish (the ‘forward
pass’). At each stage, pick a vertex u for which the E values of all its predecessors have been
calculated and use the formula above to calculate E(u) . Stop when all the E values have been
found, and t has been reached.

Then set E(t) = L(t), and work backwards to find the L values. At each stage, pick a vertex
u for which the L values of all its successors have been calculated and use the formula above to
calculate L(u) . Stop when all the L values have been found.

Given a vertex u, there exist longest aligned paths

s⇝ u with length E(u) , u⇝ t with length τ − L(u) .

70

The combined path is not necessarily longest, so its length is at most τ, thus

E(u) ⩽ L(u).

But we have E(t) = τ − L(s), i.e.
L(s) = 0.

If these relations do not hold there is a mistake!

Back to the example. We find the event table

E(u) L(u)

s 0 0
a 6 10
b 9 9
c 16 18
d 21 21
t 25 25

How much time is allowed for each activity u → v ? This is the difference between the latest
time it can finish and the earliest time it can start, i.e. L(v) − E(u), and can be compared with
the actual duration. The difference is the float or ‘slack’, the extra time that the activity can take
without holding up the project:

F (u, v) = L(v)− E(u)− d(u, v).

Since L(v)− d(u, v) ⩾ L(u), we have

F (u, v) ⩾ L(u)− E(u).

A similar argument allows us to replace u by v on the right-hand side. In any case, we can be
certain that F (u, v) ⩾ 0 .

Definition. (i) An event u is called critical if E(u) = L(u) .
(ii) An activity uv is called critical if F (u, v) = 0 .

The start s and finish t are automatically critical – it’s the other critical events that interest us.
From above, the two ends of a critical activity will be critical events, but more it true:

Lemma. If an activity is critical, it forms part of an aligned path from s to t all of whose edges are
critical.

Such a path is called a critical path and is merely a aligned path from s to t of maximal length τ .
The lemma can then be proved by noting that

F (u, v) = 0 ⇒ L(v) = E(u) + d(u, v) ⩽ E(v),

71

which impies that E(v) = L(v) . This means that there is an aligned path from start to finish via
v of length E(v) + (τ − L(v)) = τ . □

Sometimes the critical activities can be easily identified from a critical path. But if the critical
events give rise to several possible paths from start to finish, one must check each to see which
paths are critical.

Our example has activity table

activity u→ v E(u) L(v) L(v)− E(u) F (u, v)

α1 s→ a 0 10 10 4
α2 a→ d 6 21 15 8
α3 d→ t 21 25 4 0
α4 s→ b 0 9 9 0
α5 b→ d 9 21 12 0
α6 b→ c 9 18 9 2
α7 c→ t 16 25 9 2
α8 a→ c 6 18 12 4

Therefore

• s, b, d, t are the critical events;
• there is a unique critical path s→ b→ d→ t ;
• the critical activities are α4, α5, α3 .

There are two techniques that are often needed to prevent superfluous dependencies. Namely:

(i) Create a dummy activity between two existing events, treat it like an ordinary activity but
with a duration of 0, and denote it by a dotted line.

(ii) Take two copies of an event and add in one or more dummy activities.

Two variations to our original problem will illustrate these respective techniques:

(i) α3 now depends on α6 and α8 as well as α2 and α5, no other dependencies are affected.

(ii) α3 now depends on α6 as well as as α2 and α5, nothing else affected.

The modified networks are illustrated:

72

9.2. Network flow

We now wish to consider the situation in which a weighted directed graph represents a network
of one-way roads (like motorway carriageways and sliproads) carrying traffic, pipes with carrying
fluid or gas at pressure, or a national electricity grid.

Let E denote the set of directed edges, which are ordered pairs of adjacent vertices u, v . As
before, we assume as before that (u, v) ∈ E (also written u → v) or (v, u) ∈ E (also written
v → u or u← v), but not both. If we are not sure which, we shall occasionally type u⇌ v .

The weight of each arc u→ v will now represent capacity, the maximum permitted flow from u
to v, and will accordingly be denoted c(u, v) rather than d(u, v) . For example, in the case of a
gas network, the capacities will be determined by the diameter of the pipes, along which the gas
may travel at something like 20m/s.

As explained at the start of §9, we also assume that our network has a source s and a sink t , and
that every other vertex v belongs to an aligned path s→ · · · → v → · · · → t from source to sink.
Although t is like the final vertex in an activity network, the set-up is very different; we are no
longer concerned with longest paths in which some arcs are irrelevant, but in attempting to use all
the arcs in collaboration to maximize capacity.

Definitions. A flow is a function f : E → [0,∞) that assigns a non-negative number f(u, v) to
each directed arc u→ v with the following properties:

1. 0 ⩽ f(u, v) ⩽ c(u, v) . If f(u, v) = c(u, v) then the arc is called saturated.

2. At any vertex v ∈ V \ {s, t} , flow is conserved, so total ‘inflow’ equals the total ‘outflow’:∑
x→v

f(x, v) =
∑
v→y

f(v, y).

In the electrical setting, this is Kirchoff’s law.

Remark. We have only defined f(u, v) for an edge u→ v . The left-hand side of the last equation
means that we only sum over those edges entering v . One can extend the definition of f by
defining f(v, u) = −f(u, v) . Conservation of flow could then be expressed more succintly by
the equation ∑

x⇌v

f(x, v) = 0,

in which we sum over all vertices adjacent to v . (One could even ensure that flow is conserved
at s and t by artifically adding a directed edge t→ s to the network.) However, we shall always
assume that f(u, v) ⩾ 0 , so in writing f(u, v) we are declaring that u→ v ; similarly for c(u, v) .
We use this approach in the argument directly below.

Consider the linear combination ∑
u→v

(f(u, v)u− f(u, v)v)

taken over all directed eges, in which we treat vertices as a basis for a vector space. In this sum, the

73

terms arising from each individual vertex other than s, t cancel out by condition 2. Thus∑
s→x

f(s, x) =
∑
y→t

f(y, t),

i.e. the flow out from the source equals the flow in to the sink. This number is called the value of
the flow.

Example. The diagram illustrates a flow of value 8 on a network whose capacities are indicated
by the ringed numbers. There are three saturated arcs: s→ a, a→ c, c→ t .

Problem. Given a network with source and sink, find a flow with the maximum possible value, a
so-called maximum flow.

We shall solve problem this using the so-called Labelling Algorithm for augmenting flow, which
when iterated constructs a maximum flow. Each iteration uses a type of BFS with a queue and (if
successful) produces an increment ε and a path along which each flow number can be modified
by ±ε .
Here’s how it works for the example. Starting with s as the current vertex under consideration,
we form a queue by adding adjacent vertices which

(i) have not already been labelled in the current iteration,
(ii) have spare capacity if the arc points forward away from the current vertex,
(iii) have non-zero flow if arc points backwards towards the current vertex.

We’ll apply the labels in a table to avoid further complicating the diagram

s a b c t

1st iteration: ∞ 4c− 1c− 9s+ 1b+ Queue is scabt

Below each vertex is a number indicating the amount of flow that can be transferred towards that
vertex, from which vertex it was transferred, and in which direction. The recipe for giving this
information is given in the next section, and one assigns ∞ to s to make the formula consistent.

We can now update the flow by ε = 1 (the amount reaching t) along the ‘winning path’

s→ c← b→ t,

74

which is remembered with the aid of the symbols in the last row. Forward arcs have the flow
increased by ε, backwards ones have it reduced by ε . We can now remove all the labels and
apply the same procedure to the updated flow to perform a second iteration:

s a b c t

2nd iteration: ∞ 4c− 1a+ 8s+ 1b+ Q is scabt

3rd iteration: ∞ 3c− 7s+ Q is sca

In the third iteration, we cannot augment any arcs beyond a or c because forward ones are satu-
rated and backward ones have flow 0 . This means that the second iteration produced amaximum
flow. The second diagram shows the all the flow numbers after n = 0, 1, 2 iterations, and the
maximum flow has value 10 .

With hindsight, it was obvious that our network admits a flow with value 10 – we can send 2
units along the path sabt and 8 units along the path sct . However, the Labelling Algorithm has
the advantage that it can be applied to any any flow, including the one with all numbers 0, which
would have produced the more obvious maximum flow.

9.3. Max flow, min cut

In our example, the third iteration defined a partition

V = S t T = {s, a, c} t {b, t},

in which the first subset consists of all vertices to which we can increase the flow.

Definition. Given a network with source and sink, a cut is a partition of the set V of vertices of
into two connected subsets, one of which contains s and the other t :

V = S t T, s ∈ S, t ∈ T.

A cut is completely specified by S since T = V \ S . It is also specified by the arcs that need
to be removed to separate S from T . If we remove these arcs, we are assuming that the resulting

75

subgraphs are both connected. A cut can be visualized by means of a line or curve cutting through
the edges joining S to T . An obvious special case is always S = {s}, whilst our third iteration
(attempted in vain) led to the green cut:

Each separating arc is classified as forward or backward, according as whether it runs from S to
T or viceversa. Note that the description ‘forward’ and ‘backward’ for an arc only makes sense
relative to a fixed vertex, cut, path, or similar.
For the red cut, sc, ac, bc, bt are removed and all are forward;
For the green cut, ab, bc, ct are removed and only bc is backward.

Definition. The capacity of the cut S is the sum of the capacities of only forward arcs, and there-
fore represents the maximum flow possible across the cut.

In the example, referring to the original diagram, red has capacity 34, and green only 10 .

Lemma. Given any flow f and any cut S (S being the subset of V containing s),

the value of f ⩽ the capacity of S .

Proof. Define the net flow across S to be the sum of the forward flows minus the sum of the back-
ward flows. A similar argument to defining the value of f in §9.2 shows that this value must equal
the value of the net flow across any cut. This is particularly obvious when the cut is defined by
setting S = {s} or S = V \ {t} . □

Theorem (‘max flow, min cut’). One can always find a flow and a cut for which there is equality
in the lemma. Therefore, the maximum value of all possible flows equals the minimum capacity
of all the cuts.

Definition. Given a network and a flow g, an augmenting path is a path

(s = u0, u1, u2, · · · , uk = m)

from s to some vertex m (not necessaarily t) such that

76

(i) any forward edge is unsaturated, i.e.

(ui, ui+1) ∈ E ⇒ c(ui, ui+1)− g(ui, ui+1) > 0

(ii) any backward edge has non-zero flow, i.e.

(ui+1, ui) ∈ E ⇒ g(ui+1, ui) > 0

Given such a path, let ε denote the minimum of the boxed quantities (one for each of the k edges
defined by i = 0, . . . , k − 1). The flow from s to m can now by increased by

(i) adding ε to each forward arc;
(ii) subtracting ε from each backward arc.

The Labelling Algorithm is based on these observations. In our example, we found two augment-
ing paths, each with ε = 1, allowing us to increase the value from 8 to 9 to 10 .

Proof of the theorem. Let g be a flow ofmaximum value. LetM denote the set of vertices for which
there exists a flow-augmenting path s ⇝ m . We include the empty path, so s ∈ M . Then M
cannot contain the sink, because we are assuming that the flow from s to t cannot be increased.

Let E′ be the set of all arcs separatingM from V \M . If (u, v) ∈ E′ and u ∈M and v ∈ V \M,
then the arc must be saturated or else we could increase the flow to v, implying that v ∈ M .
Similarly, if v ∈M and u ∈ V \M then the flowmust be zero or else we could decrease it, giving
an augmenting path to u .

So every forward arc in E′ is saturated and every backward arc has zero flow. Hence the capacity
of the cut M t(V \M) equals the value of the flow across the cut, which coincides with the value
of g . □

9.4. Labelling Algorithm

In this section, we describe more carefully the algorithm that provides an infallible method for
increasing the flow through a network, if such an increase is possible.

Starting with an initial flow, the strategy is to try to get some extra flow from source to sink. The
initial flow could be one with all numbers set to 0, but it helps to choose one that is non-zero.
(Keep the choice simple, but try to saturate at least one arc, and if you use more than one path
from source to sink make sure they are disjoint.)

Each iteration is performed using a stand-alone algorithm. If the iteration succeeds, one can start
from scratch by applying a new iteration to the updated flow, and perform further iterations until
it is no longer possible to reach the sink.

One uses a label for each vertex to indicate howmuch extra flow can come from the source to that
vertex on the current iteration. In practice, the labels may be best written in a table (as we did in
the previous section) rather than on the diagram.

It is implicit in the following description that we have a network with a set of vertices ordered
(alphabetically or numerically) and including the source s and the sink t . Each directed arc
(u, v) ∈ E is weighted by a capacity c(u, v) .

77

One iteration. In addition to the network, the input consists of a given flow of value σ ⩾ 0 .
The instructions in the box were used to compile the tables shown in the preceding section. They
perform a BFS by adding certain adjacent vertices to a queue Q that initially contains only s :

ε = 0

Q = (s)

L(s) =∞
add (s, L(s)) to the table
while Q is non-empty and has first element x:

while there exists y adjacent to x not already in Q:
if (x, y) ∈ E and f(x, y) < c(x, y):

add y to Q

L(y) = min{L(x), c(x, y)− f(x, y)}
add (y, L(y), x,+) to the table
if y = t:

ε = L(t)

stop
elif (y, x) ∈ E and f(y, x) > 0

add y to Q

L(y) = min{L(x), f(y, x)}
add (y, L(y), x,−) to the table

remove x from Q

return ε and the table

There are two possible outcomes:

(i) ε is output as positive. In this case,the table can be used to construct an augmented flow
with value σ+ ε (as in the first and second iterations in §9.3). One uses the table to trace a
‘winning path’ back from t to s, and one updates the flow on each arc on this path according
to its recorded orientation:

f(x, y) = f(x, y) + ε given the tag (y, L(y), x,+),
f(y, x) = f(y, x)− ε given the tag (y, L(y), x,−) .

(ii) ε is output as zero, which signals that the BFS will have stopped before reaching t . The
table will be incomplete, and the set of vertices processed forms a proper subset S of V
with S and T = V \ S connected. In this case, one can show that the inputted flow was
maximum and the cut V = S t T minimum.

Why does the algorithm work? Consider the two output scenarios again:

(i) Since ε > 0, the various minima are strictly positive and we have increased the flow to
t, provided we understand that the operations of updating the flow on the winning path
are legitimate. No arc has been assigned a flow above its capacity. Conservation of flow
has been preserved at each vertex, with no changes away from the path in question. If
both alternatives ± have a vertex in common, the flow has merely been diverted to allow
more through. The following sketch (in which the initial flow was 2 units on each edge) is
designed to make the last point clear:

78

(ii) This case relates to the proof at the end of §9.3. We are assuming that for any arc crossing
from S to T has flow to capacity, and every arc from T to S has zero flow. Thus the value
σ equals the capacity of the cut, and the flow must be maximal.

*9.5. Dynamic programming

In this section, we shall once again encounter the optimality principle that underlies Dijkstra’s
algorithm for finding shortest paths in a weighted graph, and the labelling of an activity network
to find critical paths.

Example.Deborah has £50K to invest in multiples of £10K in
three companies C1, C2, C3, and wants to maximise the re-
turn. All the money is to be used, but she is not allowed to
invest more than once in any company. The following table
shows the expected returns on investment, with the amount
invested along the top row. All numbers are in units of £10K.

0 1 2 3 4 5

C1 0 3 5 6 7 8

C2 0 2 4 8 10 11

C3 0 0 2 10 11 11

The problem amounts to finding an aligned path in the following network that runs from bottom
left to top right withmaximum total weight. Although only three arrows are shown, all the arcs are
oriented from left to right, and this is akin to the activity network, in which duration is replaced
by financial return.

The first stage consists of deciding how to invest in C1, the second how much to invest in C2 .
The difference has to be invested in C3 : if x1 units are invested in C1 and x2 units in C2 then
0 ⩽ x2 ⩽ 5− x1, and x3 = 5− x1 − x2 units are invested in C3 :

79

With reference to the graph, each event has coordinates (i, yi) where 0 ⩽ i ⩽ 3 and 0 ⩽ yi ⩽ 5 .
At this event, one has concluded a total investment of y = yi in companies up to and including
Ci . There are

6 + 5 + 4 + 3 + 2 + 1 = 1
2 ∗ 6 ∗ (6 + 1) = 21

aligned paths from start (0, 0) to finish (3, 5), but the problem can easily be generalized to more
companies and investment choices.

Our solution below reveals that there are in fact two longest paths (shown red with a final arc in
common) realizing a total return of £150K.

The special feature of this network is that although there are 6 + 21+ 6 = 33 arcs, there are only
18 different weights. These are determined by the functions

ri(x) = return on investment of x units in Ci

from the table, with 0 ⩽ x ⩽ 5 . From these, we shall construct functions

fi(y) = best return at the i th stage for a total investment y ,

where ‘best’ is taken over all possible investment strategies x1, x2, . . . , xi up to the i th stage, and
y denotes the sum x1 + · · ·+ xi . Our aim is to find f3(5) .

Fortunately we do not need to consider all choices. The optimality principle implies that the best
investment (which is a longest path) at each stage will necessarily arise from a best investment
(longest path) at all previous stages. Hence the

Corollary. The ‘best return’ function satisfies

fi(y) = max
0⩽x⩽y

{
fi−1(y − x) + ri(x)

}
or fi(yi) = max

xi

{
fi−1(yi−1) + ri(xi)

}
,

with f0 = 0 . In practice, it may help to use the second equation in which the values of x = xi
and y = x1 + · · ·+ xi at each stage make the discrete nature of y more explicit.

80

The underlying logic of this formula is identical to that of the expression

E(u) = max
x→u

{
E(x) + d(x, u)

}
in §9.1 for finding latest start times. This is in turn a version of relabelling formula

Lj = min(Li + d(vi, vj), Lj)

in §8.1 to relax the temporary labels in Dijkstra’s algorithm, ‘min’ here because we were seeking a
shortest path.

In dynamic programming, the graph overcomplicates the situation, so the work is best organized
into a table, which is headed by the values of y in (traditionally) reverse order. There is really a
separate table for each stage, which applies the corollary to determine fi(yi), though the tables
can be joined together. Strictly speaking, every stage needs a triangular table to cater for all the
combinations of x = xi and yi = x1+ · · ·+xi . However, the first and last are simpler, and in our
example only the second one illustrates the general technique (this is apparent from the structure
of the graph!).

5 4 3 2 1 0 ← y

8 7 6 5 3 0 ← f1(y1)

x2 ↓ r2(x2)↓
5 11 11

4 10 13 10

3 8 13 11 8 ← f1(y1) + r2(x2)

2 4 10 9 7 4

1 2 9 8 7 5 2

0 0 8 7 6 5 3 0

13 11 8 5 3 0 ← f2(y2) = max in∆

13 11 10 15 14 11 ← f2(y2) + r3(x3)

15 ← f3(y3) = max

The first stage is straightforward: we set x = x1 = y and f1(y1) = r1(x1) .

At the second stage, for each value of y, we are allowed to choose any value of x = x2 with
y+ x2 ⩽ 5, and for each such value we add r2(x2) to our return. The total investment y+ x2 is
constant along each diagonal ∆, whichwe scan in order to find themaximum return. For example,
the diagonal returns 7, 8, 9, 11, 10 is associated to a total inestment of 4 units, and its best return
is

f2(4) = max
0⩽x⩽4

{
f1(4− x) + r2(x)

}
= 11.

There are no entries above themain diagonal since those would represent current total investments
of over £50K.

81

Aswe pass to the next stage, we associate themaximum return to the newvalue yi = yi−1+xi, and
place it under the bottom-left entry of the diagonal. In theory, we are ready for another triangular
table, but in our example, there is no choice left since x3 is determined by x1 + x2 . Thus, there
would only be one useful diagonal, which we have shown horizontally to save space.

The best return has value 15 coming from x3 = 3, which in turn comes from an earlier best return
of 5 with either x2 = 2 or x2 = 1 . (These entries have been shown in bold.)

Conclusion. Wise investment produces a best possible return of £150K, arising in two ways: (i)
£20K in C1 plus £30K in C3, or (ii) £10K in C1 and C2 plus £30K in C3 . These two solutions
are the red paths, but the return is not good enough for our Dragon.

Dynamic programming is really a BFSwith ‘pruning’ – one can forget results from previous stages.
Here is an example in which one can compare the technique to Dijkstra’s algorithm, though in this
case the latter is probably quicker.

Example. Find the shortest path from a to h in the weighted digraph below:

Dijkstra’s algorithm will work provided one takes account of the fact that the edges now directed;
for example, d is adjacent to b but not vice versa, so one only scans from left to right. This problem
is therefore layered like the investment one – for each vertex all paths from the start have the same
length. The solution can be again be obtained in ‘vertical’ stages. The key point in problems like
these is that the best solution at the (i+ 1) th stage must arise from the best solutions at the i th stage.

The shortest path can be obtained from the following table:

82

start at: a

dist=0

to get to: b c

dist =7 from a dist =4 from a

to get to: d e

best dist =10 from c best dist =10 from b

to get to: f g

best dist =11 from e best dist =12 from d

to get to: h

dist=15 from g

Exercise. Suppose that the weights in the above network now represent capacities, a is the source
and h is the sink. Show that the value of a maximum flow is 7 and identify a minimum cut.

83

10. Codes

When sending a message, one might wish to:

• transmit it efficiently – achieved with error-correcting codes;

• keep the message private and authenticate the sender – the role of cryptography.

Here is the set-up to keep in mind:

ALICE BOB

message messagey encode/encrypt

x decode/decrypt

codewords ⇝ || ⇝ received words

We shall consider codes first. Bob might receive

104727 IS A MEMORABLE QRIME

but the underlined characters are not what Alice wrote. The second error needs both a dictionary
(or spell-checker) and a realization that the number is not salty, not criminal, not dirty, nor is it
3 cents. The first needs an analysis of primes that differ ‘minimally’ from 104727 (which is itself
divisible by 3).

10.1. Check digits

The idea here is to assign a check digit or digits to each block of numerical data:

The check should involve thewhole block, but ideally be small compared to it and easy to compute.
It should be able to detect when a common error has occurred, even if it will not correct the error.
Examples of some common systems follow.

Parity bit. Each block might consist of 7 bits, to which one check bit is added. For example

1010100 ?

where ‘?’ is chosen so that the overall number of 1 ’s is even. Here it is 1. More generally

x1x2x3x4x5x6x7 x8

must satisfy
∑8

i=1xi = 0 mod 2 . This system defines a set of 27 = 128 code words requiring
8 bits for transmission. It will succeed in detecting an error if exactly one digit x1, . . . , x7 is
transcribed wrongly, but it does not ‘see’ the transposition of two bits.

ISBN 10 (International Standard Book Number, pre 2007). This is a 10-digit number, which we
can type as x1x2x3x4x5x6x7x8x9x10, in which the last digit x10 is a check. For a number to be

84

valid
x1 + 2x2 + 3x3 + · · ·+ 9x9 + 10x10 = 0 mod 11.

The check digit is easily determined by the formula

x10 = −10x1 = x1 + 2x2 + 3x3 + · · ·+ 9x9 mod 11.

If x10 = 10 mod 11, the character ‘X’ is used. For example, the ISBN10number of IrisMurdoch’s
novel “The Sea, the Sea” (the 1978 Booker prizewinner) is

014118616X.

ISBN 10 detects the two commonest errors:

(i) a single wrong digit, like 3491234287 instead of 3491242287.

(ii) a single adjacent transposition, like 3491224287 instead 3491242287.

Let’s verify (i). Suppose that the original 10-digit ‘word’ is x = x1x2x3 · · ·x10, but that this is
received as y with a error in (say) the second position: y = x1y2x3 · · ·x10 . Set

f(x) =
10∑
i=1

i xi,

so that f(x) = 0 mod 11 . Then

f(y) = f(x) + 2(y2 − x2) = 2(y2 − x2) mod 11

can’t be zero because 11 is prime.

IBAN (InternationalBankAccountNumber). The IBANs of a given country have the same number
of digits: for example, the UK and Germany have 22, whilst France and Italy have 27. Here is a
UK example:

GB27 LOYD 3011 2700 1268 86

The two digits (here, 27) after the country code form the check. In general, these two digits
represent an integer c satisfying 2 ⩽ c ⩽ 98 (with c = 2 giving 02 etc). The next four characters
obviously indicates the bank (here Lloyds). What follows is the sort-code (30-11-27) and account
number (00126886).

Digression. The sort-code and account number must pass a separate validation called ‘modulus
checking’ that varies frombank to bank (andwhether the account it a sterling or euro one!). Lloyds
uses a system akin to ISBN 10 with (in our case) the weights shown in the first row:

0 0 3 2 9 8 5 2 6 5 4 3 2 1
3 0 1 1 2 7 0 0 1 2 6 8 8 6
0 0 3 2 18 56 0 0 6 10 24 24 16 6

The sum of the numbers in the last row is 165, which is a mltiple of 11, so the account number is
valid.

85

Returning to the IBAN, move the first four characters to the back and remove spaces:

LOYD30112700126886GB76

Now replace any alphabetic letters by its position in the alphabet plus 9 (so A→10,…, L→11,…,
Y→34). This gives the 26-digit number

2124341330112700126886161176

which (as it stands, expressed to base 10) must equal 1 modulo 97, which it does! This condition
uniquely specifies the check digits, with the assumption 2 ⩽ c ⩽ 98 . Because 97 is prime, any
one of these 97 possibilities can occur. The drawback is that validation requires a computer.

ISBN13 (post 2007). First, some general theory. Suppose that we want to add a single check digit
xn to a string x1x2 · · ·xn−1, using the rule

c0 + c1x1 + · · ·+ cnxn = 0 modN.

In order that xn is determined, we need cn to be coprime to N . For single errors to be detected
we also need ci to be coprime to N for all for all i < n . For transpositions to be detected, we
need ci − cj coprime to N for all i 6= j .

ISBN 13 is validated by the ‘check function’

f(x) = x1 + 3x2 + x3 + 3x4 + · · ·+ 3x12 + x13 mod 10,

but this fails to detect transpositions in which the digits differ by 5, like 27↔ 72 . For

3xi + xi+1, 3xi+1 + xi, xi + 3xi+1, xi+1 + 3xi

are all equal modulo 10, and the check digit will be the same.

Luhn algorithm. This is used to determine the final digit of credit card numbers. First define

2̂x =

{
2x if x ∈ {0, 1, 2, 3, 4},
2x− 9 if x ∈ {5, 6, 7, 8, 9}.

The map x 7→ 2̂x is the permuation

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 7−→ (0, 2, 4, 6, 8, 1, 3, 5, 7, 9)

with fixed points 0 and 9 (so 2̂x is not quite the obvious residue of 2x modulo 9). For a 16-digit
number x = x1 · · ·x16 we define

f(x) = 2̂x1 + x2 + 2̂x3 + x4 + · · ·+ 2̂x15 + x16.

We then require that f(x) = 0 mod 10 . Without the ‘hats’, the function f would not detect
transcriptions differing by 5 . But with the hats its detects all single transcriptions, and all adjacent
transpositions except for 09↔ 90 (thought to be less of a problem since 0 and 9 are far apart on
the numerical keypad). It also corrects most twin errors ii ↔ jj, but not 22 ↔ 55, 33 ↔ 66 or
44↔ 77, since (e.g.) 2 + 2̂ = 5 + 5̂ .

86

10.2. Binary codes

These are based on the alphabet B = {0, 1} . Later, it will be important to realize that (equipped
with addition modulo 2 and multiplication) this set becomes a field. It is commonly denoted Z2,
Z/2Z or Z/(2) . The problem with the first notation is that Z2 also stands for the (infinite) set of
p-adic integers with prime p = 2 . The other notations are clumsy, so we shall use B or (maybe
later) F2 .

The Cartesian product
Bn = B× · · · × B

is a vector space over the field B of dimension n with an obvious basis. We abbreviate (x1, . . . , xn)
to x1x2 · · ·xn .

Definition. A binary code C is a set of strings of 0’s and 1’s of length n, i.e. it is a subset of Bn .

We shall call an element of Bn a string or word, and each element of C a codeword. We regard
x ∈ Bn as ‘valid’ if x belongs to C, which we can think of (for the moment) as a set of valid
account numbers expressed in binary.

Example 1. Take n = 4 and define C = {0000, 0101, 1010, 1111} . You receive 0111 . This is
not in <C, so there must be an error. You can compare it to each element of C :

received codeword # erroneous digits
0111 0000 3
0111 0101 1
0111 1010 3
0111 1111 1

The original message was likely to have been 0101 or 1111 . But that is still two choices – we want
to design codes so that there is only one choice.

Definition. The Hamming distance between two words x, y ∈ Bn is the number of bits by which
they differ. It is denoted ∂(x, y) .

This function satisfies the properties of ametric in the sense of metric space, including the triangle
inequality (for a proof of the latter, see §10.3):

∂(x, y) = 0 ⇔ x = y
∂(x, y) = ∂(y, x)
∂(x, y) ⩽ ∂(x, z) + ∂(z, y).

We shall always adopt the

Minimumdistance (MD) or nearest neighbour principle. If an invalidword x is received, assume
that the codeword y transmitted was one for which ∂(x, y) is as small as possible.

87

Example 2. Let C = {a = 01101, b = 10110, c = 00011} . Then

∂(b, c) = 3, ∂(c, a) = 3, ∂(a, b) = 4.

If we receive x = 01011, we test

∂(x, a) = 2, ∂(x, b) = 4, ∂(x, c) = 1,

so the MD principle tells us to assume that c was transmitted.

Wewant to design C so that each codeword has a unique nearest neighbour (as measuredwith ∂).
One might expect to achieve this if the codewords are well dispersed, which amounts to requiring
that the distance between any two is sufficiently large:

Definition. Let C be a binary code. Its minimum distance is given by

δ = min{∂(x, y) : x, y ∈ C, x 6= y}.

Now suppose that δ ⩾ 2e+ 1 . If x ∈ Bn and y, y′ ∈ C then

∂(x, y) ⩽ e, ∂(x, y′) ⩽ e ⇒ y = y′.

This is an immediate consequence of the triangle inequality:

∂(y, y′) ⩽ ∂(y, x) + ∂(x, y′) ⩽ 2e < δ,

so the definition of δ implies that y = y′ . As a consequence, we obtain the well-known

Lemma 1. A binary code with δ ⩾ 2e+ 1 will correct e errors using the MD principle.

Examples. In Example 1, δ = 2 and this is not enough to correct any errors. In Example 2, δ = 3
so one can detect and correct single errors.

Lemma 2. Let C ⊂ Bn be a binary code with δ ⩾ 2e+ 1 . Then

|C|
(
1 + n+

(
n
2

)
+ · · ·+

(
n
e

))
⩽ 2n.

Proof. The expression in parentheses on the left-hand side equals the number of elements in Bn

that are within distance e of a given codeword y . For example, there are n words that differ from
y by exactly one digit, and

(
n
2

)
that differ by exactly two digits. If we surround each codeword

y by the ‘ball’ or neighbourhood

Ne(y) = {y ∈ Bn : ∂(x, y) ⩽ e},

no two balls can intersect, for Lemma 1 tells us that Ne(y) ∩Ne(y′) = ∅ . □

In the next section, we shall study the case e = 1 of ‘1-error correcting codes’ in more detail, for
which we need to assume that δ ⩾ 3 . Lemma 2 implies that |C|(1 + n) ⩽ 2n, and equality here

88

would imply that both |C| and n+ 1 are powers of 2 . We shall show (in §10.4) that such codes
do in fact exist.

10.3. Binary linear codes

We now specialize the set-up of the previous section to the case in which C is a sub space of Bn .
This condition makes sense because Bn is a vector space over the finite field B = {0, 1} = F2,
with coordinate-wise addition.

Remember that a word like 010101 really stands for the vector (0, 1, 0, 1, 0, 1) . We need not
worry about scalar multiplication since 2 = 0 and −1 = 1 in B ! So we just need to verify that

x, y ∈ C ⇒ x+ y ∈ C.

Any linear code must contain the zero vector 0 = 00 · · · 0 . Moreover, it has a dimension k with
k ⩽ n, and a basis {x1, · · · , xk} consisting of k elements. It then follows that

C =
{ k∑

i=1

akxk : ak ∈ B
}

has 2k elements. The space Bn itself has dimension n and a basis consisting of the vectors {ei}
where ei is the vector or word with a 1 in the i th position and zeros elsewhere.

Examples. Let C = {000, 111} ⊂ B3 . The two codewords
can be visualized as the opposite vertices of a cube. Notice
that δ = 3 and

B3 = N1(000) tN1(111)

is partitioned into two subsets of size 4. This is an example
of a repeat code in which each of two messages (0 and 1) is
repeated twice to enable correction of 1 error.

Words in Bn can be thought of as vertices of an n-dimensional hypercube, but this is hard to
visualize (at least for n > 4 !). Here is a linear code with (n, k, δ) = (5, 2, 3) that we shall return
to:

C = {00000, 10110, 01011, 11101}.

Any two of the nonzero elements form a basis of C .

Definition. The weight of a word x ∈ Bn equals the number of 1 ’s it has:

x = x1 · · ·xn ⇒ w(x) =
n∑

i=1

xi.

Recall the previous definition (of δ).

89

Lemma 3. Given a linear code C,

δ = min{w(x) : x ∈ C, x 6= 0}.

So the minimum distance is also minimum nonzero weight in C .

Proof. Denote (temporarily) the right-handf side by δ′ . The point is that

∂(x, y) = ∂(x− y, 0) = w(x− y),

which holds for any x, y ∈ Bn (we could equally well write + in place of −). If the latter belong
to C then so does x − y, so δ ⩾ δ′ . But w(z) is itself the distance of z from the zero vector
0 ∈ C, so δ′ ⩾ δ . □

We can also use w to prove the triangle inequality for ∂ . If x, y ∈ Bn then

w(x+ y) =
n∑

i=1

x̂i+yi ⩽
n∑

i=1

(xi + yi) = w(x) + w(y),

where x̂i+yi ∈ {0, 1} stands for the reduction of xi+ yi modulo 2. Thus w behaves like a norm
on a real vector space, and

∂(x, y) = w(x− y) = w(x− z+ z− y)
⩽ w(x− z) + w(z− y)
= ∂(x, z) + ∂(z, y).

Key example to illustrate the theory. The first two nonzero elements of the previous example C ⊂
B5 correspond to the columns of the matrix

E =

1 0
0 1
1 0
1 1
0 1

 =

 I2

A

 ,

where In denotes the n × n identity matrix. Our convention is that matrices always act on the
left on column vectors, so this defines a linear transformation

E : B2 −→ B5.

It follows that C = ImE, and each element of C has the form

Ev =

(
v

Av

)
,

where v is one of

west =
(
0
0

)
, north =

(
1
0

)
, south =

(
0
1

)
, east =

(
1
1

)
.

90

We shall freely transpose from rows to columns, using the latter when we need to act on them by
matrices. With this confusion,

Ev = v Av .

Seen this way, Av plays the role of a check block for each of the four possibilities for v, which
might be commands for a robot to move. Observe that here the check is longer than the original
message. This is to enable error correction rather than mere detection: since δ = 3, the block
‘protects’ the direction in the event it is corrupted by 90 degrees.

We can describe C in an equivalent way, using the matrix

H =

 1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 =
(
A
∣∣∣ I 3

)
.

For let

x =

(
b
c

)
∈ B5,

with b ∈ B2 and c ∈ B3 . Then

Hx = 0 ⇔ Ab+ c = 0
⇔ Ab = c
⇔ x ∈ ImE = C.

The matrix H is called the parity-check or check matrix of the linear code C .

Definition. Suppose that r < n . Let H be a matrix of size r × n and entries in B (one can
express this by writing H ∈ Br,n and r is the number of rows). Then the subspace

kerH = {x ∈ Bn : Hx = 0}

of Bn is called the linear code with check matrix H . We shall always assume that r = rankH,
since if not we can delete one or more rows without affecting the kernel.

Example.Take r = 1 and H to be the single row with all 1 ’s. Then C consists of all the elements
of Bn of even weight. We could regard the first n − 1 bits of x ∈ Bn as the ‘message’, and the
final bit xn as a parity check digit, as in §10.1.

10.4. Correcting one error

We have already used three parameters to help describe a linear code:

n = number of bits in transmission
k = n− r = dimension, so |C| = 2k

δ = minimum distance between codewords.

Suppose that we need to correct one error in a transmitted message block. This requires a code
(linear or not) with δ ⩾ 2e+ 1 = 3, and by Lemma 2 from §10.2,

s(1 + n) ⩽ 2n,

91

where s = |C| (s for size). A big question is

Given s, n satisfying this inequality, does there exist C ⊂ Bn with δ = 3 and |C| = s?

Easy exercise. There is no code (linear or not) with |C| = 3, n = 4 and δ = 3 .

At the risk of repetition, let’s summarize the definition of linear codes using matrices.

Such a code is often defined by a check matrix H of size r × n with r < n . Then the set of
codewords is

C = {x⊤ : Hx = 0} ⊂ Bn.

We naturally regard a word as a string written as a row, but it is always transposed to a column
vector for the check matrix to test it. We shall usually omit the transpose symbol ⊤, since context
makes it clear whether one is dealing with a row or a column. So C = kerH, i.e. C is the kernel
of the linear transformation

Bn −→ Br

x 7−→ Hx.

We assume that rankH = r, so that dimC = n− r . We call this dimension k, so that there are
2k codewords.

To make clearer the analogy with check digits, one often takes

H =
(
A
∣∣∣ I r

)
so that the last block is the identity matrix. In this case, H is said to be in standard form, but this is
not always convenient. Note that A has n− r = k columns. We can define an ‘encoding matrix’

E =

(
Ik

A

)
.

By multiplying the blocks, we see that

HE = AIk + IrA = A+A = 0

is the zero matrix (of size r × k). This means that H annihilates the k columns of E, which
must therefore lie in C . But these k columns are linearly independent because they include the
columns of Ik, and they span the image of E : Bk → Bn .

Conclusion. C = kerH = ImE, so as a row any codeword can be written

v Av .

Some authors would (correctly) express this as (r, rA⊤) having preferred to make explicit the row
vector r = v⊤ and having choden to use E⊤ instead of E .

Exercise. Suppose that C = kerH, where

H =

1 0
1 0
1 0
1 1
0 1
0 1
0 1

∣∣∣∣∣∣∣∣∣∣∣∣
I 7

 .

92

What is the size of C ? How many errors does it correct?.

Lemma 4. Let H be the check matrix of a linear code C . Then δ ⩾ 3 (so C corrects at least one
error) provided no column of H is zero and no two columns are equal. Moreover, if x differs from
a codeword y by just one bit in the i th position (i.e. x = y+ ei), then Hx is the i th column of
H .

Proof.We need to ensure that C has no words of weight 1 or 2. A word of weight one means it is
ei for some i, and Hi = Hei is the i th column of H . So this must be nonzero. Similarly, a word
x of weight 2 must equal ei + ej with i 6= j, and so

Hx = Hei +Hej = Hi +Hj = Hi −Hj

must be nonzero. Finally, if x = y+ ei with y ∈ C then Hx = Hi . □

Example.The matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

obviously has rank 3, so defines a linear code of dimension 7 − 3 = 4 . Its parameters are
(n, k, δ) = (7, 4, 3) . If x differs from a codeword only in the i th position then Hx (transposed
to a row) is conveniently the binary expansion of i ! If Hx is nozero, it is called the syndrome of
the word x .

The best way to modify H so that the identity matrix appears on the right is to perform row
operations (as for echelon form) because this will not change the kernel of the matrix. We take r′1 = r1 + r2

r′2 = r1 + r3
r′3 = r1 + r2 + r3

to form

H ′ =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

The encoding matrix associated to H ′ is

E =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 1
1 0 1 1
1 1 0 1

,

and any codeword then has the form v Av ∈ B4+3 .

93

This time, the check block is smaller than the original message v . To quantify this fact, one defines
the information rate of the code as

ρ =
k

n

(
=

lg |C|
n

if C is not linear
)
.

Here we have ρ = 4/7 ∼ 0.57 .

Exercise. Explain in what sense the code in the previous example can detect up to two errors, if it
does not have to correct one!

Definition. Let H be a matrix whose columns are all 2r − 1 nonzero words formed from k bits.
The linear code C = kerH is called a Hamming code; it has parameters (2r − 1, 2r − r − 1, 3) .

Any two Hamming codes of the same size (|C| = 22
r−r−1) are essentially equivalent, because

permuting the columns will merely permute all the bits in C . When r = 2, we can take

H =

(
1 1 0
1 0 1

)
, E =

 1
1
1

 ,

so as to recover the repeat code C = {000, 111} ⊂ B3 .

Hamming codes are perfect, meaning that we have equality in Lemma 2 in §10.2. Another way of
saying this is that the balls

Ne(y) = {x ∈ Bn : ∂(x, y) ⩽ e}
partition C as y ranges over C . For the Hamming code in Bn, we have 2k balls each of size
1 + n = 2r . This was alluded to at the end of §10.2.

The information rate of a Hamming code is

ρ =
k

n
=

2r − r − 1

2r − 1
=

1− (r + 1)2−1

1− 2−r
→ 1 as r →∞.

Already for r = 6 (n = 63) we have ρ > 0.9 .

Apart from the Hamming codes, codes of size 1 and repeat codes

{0 · · · 0, 1 · · · 1} ⊂ Bn

of size 2 with n odd, there is just one other perfect code. This is the mysterious Golay code G23,
a binary linear code with parameters (23, 12, 7) .

94

11. Cryptography

Until the 1970’s encryptingmessages required both sender and receiver to use the same key (‘code-
book’) to encrypt and decrypt. This use of such symmetric keys is not practical for interchange
of secret data on the internet. The concept that led to the introduction of all modern forms of
cryptography is that of an asymmetrical system of keys based on a trapdoor, in the terminology
of a famous paper by Diffie & Hellman (1976). The trapdoor is a mathematical function that can
only be inverted using extra information. This idea was successively implemented in the cele-
brated RSA algorithm, named after Rivest, Shamir & Adleman, who discovered it in April 1977
and patented it that year.

11.1 The RSA algorithm

Years afterwards, it was revealed that the same algorithm had been described by Clifford Cocks
in a GCHQmemo in 1973, working with James Ellis, who had already conceived of the trapdoor
mechanism. Its essence was described by Professor Cocks at Cumberland Lodge in 2018:

Alice (now on the right) wants to send Bob a secret message x, in the form of a number in ordinary
decimal notation. In preparation for this:

• [Key generation] Bob chooses two large prime numbers p, q (nowadays they will typically
each have up to 2048 bits) and computes n = pq . He also chooses a number e (that need
not be so large) that is coprime to ϕ = (p − 1)(q − 1), if not actually prime itself. He also
uses Euclid’s extended algorithm to find the inverse d to e modulo ϕ (with 0 < d < ϕ);

95

this is his private key that should stored with password protection.

• [Key distribution] Bob then makes available to Alice (and indeed, the world) the public key
consisting of the pair (e, n) (in this order on past exams!). These are represented by the
‘open padlock’. The number n can be thought of as the body of the lock, and e a safety
catch needed to snap the lock shut.

All Alice has to do is:

• [Encryption] Make sure her plaintext message x is shorter than n, so we’ll assume 0 < x <
n (if not it must be split it into blocks). She then computes the ciphertext

c = E(x) = xe mod n

usingmodular exponentiation by repeated squaring as taught in themoduleCCM251 (§3.2).
This is sent to Bob, and forms the ‘padlocked case’.

To undo the padlock Bob must:

• [Decryption] Take the ciphertext c and compute

D(c) = cd mod n.

The next result shows that D(c) = x is the original plaintext.

Theorem. With our notation, the operations D and E are inverse to each other, i.e.

xed = x mod n

Before embarking on a proof, we give some number theoretical background. For an arbitrary
integer n, one denotes by φ(n) the number of integers in the range 1, 2, . . . , n that are coprime
to n, i.e. positive integers k ⩽ n such that gcd(k, n) = 1 . The integer mapping φ is called
Euler’s totient function. The notation is due to Gauss around 1800, though Euler had established
the product formula

φ(n) = n
∏
p|n

(
1− 1

p

)
in the 1760’s. If n is prime (so greater than 1), then φ(n) = n− 1 .

Now take n = pq, and set ϕ = φ(n) . The only numbers in the list 1, 2, . . . , n that are not
coprime to n are multiples of p or q . These are

p, 2p, 3p, . . . , qp
q, 2q, 3q, . . . , pq,

and there are q + p− 1 of them (including the zero class, here represented by n). So

ϕ = n− (q + p− 1) = pq − p− q − 1 = (p− 1)(q − 1),

consistently with Euler’s formula. More generally one can show that φ(mn) = φ(m)φ(n) .

96

Proof of the theorem. By assumption, there is an integer y such that 1 = de + yϕ . It suffices to
show that

x = xed mod p and x = xed mod q,

since then pq must also divide x− xed . Consider the first assertion. If p|x then both x and xed

are congruent to 0 modulo p . If not, we can use Fermat’s little theorem to deduce that

x = xed+yϕ = xed(xp−1)(q−1)y = xed mod p,

since xp−1 = 1 mod p . The same applies modulo q . □

The secrecy part of the algorithm derives from the apparent impossibility of inverting the operation
E and factoring large numbers into prime factors. In practice, p and q should have a similar
length but differ but a few powers of 10. Prime numbers can be found using primality tests, like a
probabilistic version of one we shall consider briefly in §10.6. The effectiveness of the algorithm
in this respect cannot be proved mathematically, and there is a serious concern from experts that
within a couple of decades quantum computers could crack the current public keys.

11.2. Examples and comments

We begin with a toy example to understand the procedure. Years provide a repertoire of ‘small’
memorable primes, such as 1999, 2003, 2011, 2017, 2027, 2029, 2039 . Bob chooses

p = 1999, q = 2029,

so the ‘key length’ equals
n = pq = 4 055 971,

and
ϕ = φ(n) = (p− 1)(q − 1) = 4 051 944.

Bob takes
e = 5

so as tomake it easy for Alice for work out xe with her primitive calculator. It is obviously coprime
to ϕ; indeed choosing e to be a prime obviates the need to check that gcd(e, ϕ) = 1 . In addition
ϕ+ 1 is a multiple of 5, and in fact

ϕ+ 1 = 5 ∗ 810389,

so Bob’s ‘PIN’ is d = 810389 . He considers swapping d with e but decides against it.

Alice’s message x is in fact only 3 digits long, nonetheless xe is about 996∗109, just less than one
trillion. But she did the modular calculation almost by hand:

c = 2515 = 251 ∗ (2512)2 mod n
= 251 ∗ (63001)2 mod n
= 251 ∗ (3 969 126 001) mod n
= 251 ∗ (2 386 363) mod n
= 2 749 376 mod n.

97

Bob now uses a computer to discover that

cd mod n = 251,

so Alice had encrypted her module code.

Further comments on the theorem:

• When x is coprime to n, which in practice it will almost always be, the boxed result is also
a corollary of Euler’s theorem:

gcd(x, n) = 1 ⇒ xφ(n) = 1 mod n.

This is proved in the same way as Fermat’s little theorem: the congruence classes of those
numbers that are coprime to n form a group (of size ϕ) under multiplication modulo n . By
Lagrange’s theorem, the order of any element divides the size of the group, so xφ(n) is the
identity.

• Let g = gcd(p− 1, q − 1) and ℓ = lcm(p− 1, q − 1) . Recall that

(p− 1)(q − 1) = gℓ,

so that ℓ divides (p− 1)(q− 1) . The theorem above remains valid if de = 1 mod ℓ . In our
example, g = 6 and we can take d to be the smaller number 135 065 .

Further comments on the algorithm:

• A secret memo dating from 1973 shows that Clifford Cocks actually took e = n but uses
the same operation E . In theory one can use quite a small value of e to make encryption
easy, although this makes the process more vulnerable to attack (especially if xe is already
less than n).

• A popular, but more serious, choice of e is the Fermat prime 216 + 1 = 65537, since its
binary form

100000000000000012

has small Hamming weight, which assists in computing xe .

• In practice, the numbers p, q, e, d will be converted to base 2, and then divided into 64-bit
blocks. These are then displayed using the 64 characters A…Z, a…z, 0…9, + / as well as =
and a series of check digits.

The RSA algorithm can be also be used to authenticate the sender of ciphertext by providing a
digital signature linked to the message, and to enable non-repudiation – Alice can’t deny she was
the author of a command send to Bob.

A list of public keys in a typical known _hosts folder reveals a mix of ‘ssh-rsa’ and ‘ecdsa-sha2-
nistp256’ algorithms. The latter are all based on the elliptic curve
y2 = x3−3x+ 41058363725152142129326129780047268409114441015993725554835256314039467401291

whose study belongs to the realm of number theory and geometry.

98

11.3. Miller’s test

This subsection presents a powerful method for detecting numbers that are not prime, generalizing
Fermat’s little theorem.

Let n = 217 . It is patently obvious that n is divisible by 7 . Indeed, n = 7 ∗ 31 .
Observe that n − 1 is divisible by 23, so set b = 2j ∗ 27 with 0 ⩽ j ⩽ 3 . The following table
displays the values of ab mod n, for 1 ⩽ a ⩽ 10 in the range [−108, 108] :

a=1 2 3 4 5 6 7 8 9 10

b=27 1 −27 −8 78 −92 −1 −77 64 64 97

b=54 1 78 64 8 1 1 70 −27 −27 78

b=108 1 8 −27 64 1 1 −91 78 78 8

b=216 1 64 78 −27 1 1 35 8 8 64

If n were prime, by Fermat’s little theorem we would have an−1 = 1 mod n if 0 < a < n and
so the last row would be all 1 ’s. Moreover, if n is prime and n − 1 = 2m then x = am satisfies
x2 = 1 mod n, i.e. (x − 1)(x + 1) = 0 mod n, and n must divide x − 1 or x + 1 so either
am = 1 mod n or am = −1 mod n . Continuing in this way establishes the

Proposition. Let n be prime and set n−1 = 2j ∗ k where k is odd. If 0 < a < n we have

either (i) ak = 1 mod n,

or (ii) a2
i∗k = −1 mod n for some i with 0 ⩽ i < j .

Proof. Observe that an−1 is found by successively squaring ak . But if n is prime, 1 has no ‘non-
trivial’ square roots modulo n, only ±1 . (As a contrasting example from the table, ±92 is a square
root of 1 modulo 217 .) □

Definition. Fix n > 2 and then a .

• If either (i) or (ii) holds, we say that n passesMiller’s test to base a . If n is not prime, then a
is called a liar since the test would appear to indicate that n is prime; one also says that n
is a strong pseudoprime to base a .

• If both (i) and (ii) fail, we say that n failsMiller’s test to base a, and that a is a witness to the
compositeness of n .

In the example above, the columns in the last row show that a is a witness for n for all a ∈
{2, 3, 4, 5, 7, 8, 9, 10} . But 6 is a liar, and 217 is a strong pseudoprime to base 6 . (The word
‘base’ is an unfortunate one, this has nothing to do with arithmetic to base 6 .)

It is known that if n is an odd composite number then at least 3/4 of the possible a with 0 <
a < n are witnesses. If n < 1 000 000 it even suffices to take a = 2 or 3 to test the primality
of n . Miller’s test becomes a very reliable way of detecting whether n is prime when it is applied
repeatedly for random values of a . This is the Miller-Rabin test, whose performance can also be
related to the so-called generalized Riemann hypothesis.

99

Exercise. Determine whether 353 passes Miller’s test to base 5 . [Answer: Yes, since 352 =
2 ∗ 176 = 25 ∗ 11 and one finds that 5176 = −1 mod 353 . In fact, 353 is prime so it must pass to
any base!]

100

