Random walks and scenery reconstruction

< 🗆 🕨

Dominic Yeo

King's College London

Cumberland Lodge - 25th February 2024

Setting and an initial question

► G is a graph

- For example, G is a cycle with K vertices.
- $\xi: V(G) \rightarrow [c]$ a colouring of the vertices
 - For example, each vertex is coloured *White* or *Blue*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setting and an initial question

- G is a graph. ξ a colouring of the vertices
- S_0, S_1, S_2, \ldots is a random walk on G.
 - Each move has $\frac{1}{2}$ chance clockwise, $\frac{1}{2}$ chance anti-clockwise.
 - lnitial position S_0 is unknown.
- ▶ Observe colours along the walk: eg W, B, W, B, W, W, W,

Central question

Can you reconstruct ξ from these observations?

Reconstruct in what sense?

Central question

• Can you reconstruct ξ from these observations?

Answer: Maybe, but only up to reflection / rotation.

Cumberland Lodge - RWs and Sceneries

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reconstruct in what sense?

Central question

- Can you reconstruct ξ from these observations?
- Answer: Maybe, but only up to reflection / rotation.

What does 'reconstruct' actually mean?

- Possible that the walker doesn't explore the whole cycle.
 - Certainly can't reconstruct if that happens.
 - But this happens with $\mathbb{P} = 0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Reconstruct in what sense?

What does 'reconstruct' actually mean?

Possible that the walker doesn't explore the whole cycle.

Certainly can't reconstruct if that happens.

- But this happens with $\mathbb{P} = 0$.
- So 'reconstruct' means
 - Reconstruct with probability 1.
 - Jargon for $\mathbb{P} = 1$: 'almost surely'.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

How many Whites and Blues?

In the long-run:

- Observed proportion of Bs Actual proportion of Bs.
- Meaning, with probability 1 / almost surely.
- So can distinguish various possibilities with probability 1
 - but this does require an *infinite* number of observations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Technical aside (in the formal language of probabilistic convergence)

▶ *n* large:
$$S_n \stackrel{d}{\approx} \text{Uniform}(G)$$
...

provided K is odd.

▶ But $S_n \longrightarrow X$ makes no sense. $\mathbb{P}(S_n \rightarrow _) = 0$.

• However $S_n \xrightarrow{d}$ Uniform(G) does make sense, as does

$$\frac{\#\{m \le n : S_m \text{ is Blue}\}}{n} \xrightarrow[n]{\text{a.s.}} \frac{1}{K}$$

Cumberland Lodge - RWs and Sceneries

General patterns amongst Whites and Blues

Question

Can you reconstruct number of pairs <u>WW</u> and <u>WB/BW</u> and <u>BB</u>?

Idea: compare

$$B\underline{B}B \text{ and } \begin{cases} W\underline{B}B \\ B\underline{B}W \end{cases} \text{ and } W\underline{B}W.$$

- ▶ We observe instances of "..., \underline{B} , \underline{W} ,..." in the sequence.
- ln principle can induct on length of pattern to reconstruct the whole colouring with $\mathbb{P} = 1$.

Beyond finite settings - reconstruction on $\ensuremath{\mathbb{Z}}$

Challenges and possible questions:

- Can you reconstruct the colouring with $\mathbb{P} = 1$?
- What would 'proportion of Bs' mean here?
 - Proportion of time at any given vertex $\longrightarrow 0$,
 - ► 'Uniform distribution on Z'?
- Can you distinguish any two non-equivalent colourings with $\mathbb{P} = 1$?
 - In fact, even this weaker result is false!
 - But random colourings can be reconstructed with $\mathbb{P} = 1$.
- What about higher dimensions \mathbb{Z}^d for d = 2, d = 3, etc?

Lots of open questions!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Beyond finite settings - sketch argument

Two *special* vertices v_1, v_2 , distance L apart.

- Have two special colours S₁ and S₂
- $\blacktriangleright \mathbb{P}(\mathsf{RW goes } v_1 \stackrel{\text{directly}}{\longrightarrow} v_2) = 2^{-L} > 0.$
- If you ever observe

$$\dots \quad B, B, \mathbf{S_1}, \underbrace{W, B, W, W, B, \dots, B, W}_{L-1}, \mathbf{S_2}, W, B, \dots,$$

Then you have learned the scenery between v_1 and v_2 .

What if you don't know L? Observe

$$\dots, B, \mathbf{S_1}, \underbrace{W, \dots, W}_{L-1}, \mathbf{S_2}, W, \dots \qquad \dots, B, \mathbf{S_1}, \underbrace{W, \dots, W}_{L-2}, \mathbf{S_2}, W, \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Reconstruction - the other direction

Notation reminder:

Walk on graph G: $S_0, S_1, S_2, \ldots,$

Giving colours $\xi(S_0), \xi(S_1), \xi(S_2), \ldots$

So far, we have discussed

• Reconstructing the scenery ξ from the colours on the walk $(\xi(S_0), \xi(S_1), \ldots)$.

What about

▶ Reconstructing the walk $(S_0, S_1, ...)$ from $(\xi(S_0), \xi(S_1), ...)$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Two ideas

Reconstructing a walk from scenery

Idea 3: finite reduction of x_0

Idea 4+: distinguishing finite collections of walks

Proposal: take a product of the two colourings discussed so far with an **IID uniform colouring** on sufficiently many colours.

Does this work?

- **x** is a **self-avoiding walk**.
 - Yes, works with $O(\Delta^2)$ colours.
- **x** is simple **random walk** on (transient) *G*.
 - Yes, works a.s. with two colours.
- **x** is a general deterministic transient walk
 - Conjecture: yes it also works in this case.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・