Around a black hole Eleni-Alexandra Kontou Cumberland Lodge 24th February 2024

Are black holes the vacuum cleaners of the universe?

What is a black hole?

Dark stars

Minimum speed to escape a planet: escape speed

$$v_{esc} = \sqrt{\frac{2GM}{R}}$$

What happens if the escape speed is the speed of light?

No light can escape! Dark star

$$v_{esc} = c$$

$$R = \frac{2GM}{c^2}$$

Special relativity

Newton: Time is absolute

Einstein: Time is relative Every observer measures a different time The speed of light in the vacuum is the same as measured by every observer

Every observer measures the same time

Spacetime

Theory of general relativity

"Matter tells spacetime how to curve and curved spacetime tells matter how to move"

Einstein's equation

Spacetime curvature

Matter, energy and pressure

Spacetime distance

How do we measure distances in spacetime?

Two-dimensional Space

 $(\Delta s)^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 = (\Delta x)^2 + (\Delta y)^2$

Four-dimensional flat spacetime $(\Delta s)^2 = -(c\Delta t)^2 + (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2$ Infinitesimal distance: Minkowski metric $(ds)^{2} = -(cdt)^{2} + (dx)^{2} + (dy)^{2} + (dz)^{2}$

In general curved spacetime

 $(ds)^{2} = f_{0}(t, x, y, z)(dt)^{2} + f_{1}(t, x, y, z)dtdx...$

Very difficult! What matter does it correspond to? Unknown!

Schwarzschild metric

Assumptions:

- 1. Spherical symmetry
- 2. Vacuum solution of the Einstein equation
- 1. Minkowski metric in spherical coordinates:
- $x = r\sin\theta\cos\phi$
- $y = r \sin \theta \sin \phi$
 - $z = r\cos\theta$

$$ds^{2} = -c^{2}dt^{2} + dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

General spherically symmetric metric

 $ds^{2} = -\alpha(r)dt^{2} + \beta(r)dr^{2} + \gamma(r)r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$

2. Vacuum solution

What is R_{c} ?

Schwarzschild metric

What kind of physical system is spherically symmetric and doesn't include any matter?

The limit of weak gravity should give us back Newtonian gravity

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Spacetime outside a star

$$R_s = \frac{2GM}{c^2}$$

Singularities

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Metric becomes sin

General relativity: If we change coordinates the physics should be the same

$$r = \frac{2GM}{c^2}$$
 If we change coordinates, the singula

r = 0

gular at
$$r = 0$$
 and $r = \frac{2GM}{c^2}$

arity disappears: Nothing bad happens!

If we change coordinates, the singularity remains: Something bad happens! Spacetime curvature diverges: Physics?

Geodesics

Geodesics are the shortest paths on space.

Geodesics

What about spacetime? (Timelike) geodesics maximize the time measured by the observer

Geodesics in Schwarzschild

Paths of light: we use coordinates that cover the whole spacetime

Light cannot escape from inside the Schwarzschild radius!

Is the Schwarzschild spacetime real?

Two concerns:

- 2. Could we have "dark stars"? Solid objects with radius smaller than R_{s}

1. Collapse of stars

White dwarf: a compact object that the pressure of electrons is keeping it stable

1. Maybe it just describes the outside of stars: There are no objects that collapse smaller than R_{c}

Is the Schwarzschild spacetime real?

Can that happen for any star mass?

Chandrasekhar: No! If the star has a mass over 3 s

2. Could we have solid objects with radius smaller than R_s ?

No! Anything inside R_s moves towards the singularity

If the star has a mass over 3 solar masses nothing can stop its collapse

Trajectories around a black hole

Geodesics parametrized by λ

$$\left(\frac{dr}{d\lambda}\right)^2 + V(r) = E^2$$

$$V(r) = 1 - \frac{2GM}{rc^2} + \frac{L^2}{r^2} - \frac{2GML^2}{c^2r^3}$$
$$V(r) = \frac{L^2}{r^2} - \frac{2GML^2}{c^2r^3}$$

$$E = \left(1 - \frac{2MG}{c^2 r}\right) \frac{dt}{d\lambda}$$
$$L = r^2 \frac{d\phi}{d\lambda}$$

Energy (of light or particle)

Angular momentum

Both conserved: these quantities do not change

Paths of particles (timelike)

Paths of light

Trajectories around a black hole

Paths of particles

Paths of light

Circular orbits

Circular orbits (r is constant): V'(r) = 0

Paths of light:

$$V'(r) = 0 \Rightarrow r_c = \frac{3GM}{c^2}$$

Maximum: unstable orbit

Paths of particles:

$$r_{c} = \frac{L^{2} \pm \sqrt{L^{4} - 12G^{2}M^{2}L^{2}/c^{2}}}{2GM/c^{2}}$$

Maximum and minimum: both stable and unstable orbits

Summary

- In general relativity black holes are described by a solution to the Einstein equation
- They theoretically exist as a result of the collapse of very massive stars (also experimental evidence!)
- Nothing, not even light can escape from the black hole horizon
- Outside the black hole we can have stable orbits of massive objects: planets!
- Outside the black hole we have an (unstable) orbit of light: photon ring

