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Variant for E(a,b):

Proposition: E(a,b) = 
π N(a , b )
2  M(a, b)

2 2 a = 500  
b = 300

π x  159919.33122347
2 x  393.6235503649

= 638.17497158

Circumference = 2552.6998863
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Similar methods can be used for precise numerical  
evaluation of other definite integrals.

Richard P. Brent, Fast Multiple precision evaluation 
of elementary functions, 1976

Eugene Salamin, Computation of π Using 
Arithmetic-Geometric Mean, 1976. 


