Calculi your maths professors may not tell you about: from shadowy to quite random (or it is all about Hermite polynomials)

Elena Boguslavskaya
elena.boguslavskaya@brunel.ac.uk
March 22, 2023

Hermite Polynomials

Definition

$$
H_{n}(x)=(-1)^{n} e^{\frac{x^{2}}{2}} \frac{d^{n}}{d x^{n}} e^{-\frac{x^{2}}{2}}
$$

$$
\begin{aligned}
H_{0}(x) & =1 \\
H_{1}(x) & =x \\
H_{2}(x) & =x^{2}-1 \\
H_{3}(x) & =x^{3}-3 x \\
H_{4}(x) & =x^{4}-6 x^{2}+3
\end{aligned}
$$

(Umbral $\left.H_{n}(x)=e^{-\frac{D^{2}}{2}} x^{n}.\right)$

Alternative definition with generating function

Definition

$$
H_{n}(x)=\left.\frac{d^{n}}{d u^{n}} e^{u x-\frac{u^{2}}{2}}\right|_{u=0}
$$

The Generating Function

$$
e^{u x-\frac{u^{2}}{2}}=\sum_{n=0}^{\infty} H_{n}(x) \frac{u^{n}}{n!}
$$

$$
\frac{d}{d x} H_{n}(x)=n H_{n-1}(x) .
$$

$$
H_{n}(x)=\int_{-\infty}^{\infty} \delta^{(n)}(u) e^{u x-\frac{u^{2}}{2}} d u
$$

Wiener process

Definition

- $W_{0}=0$
- $W_{t} \sim N(0, t)$
- Independent increments $\left(W_{t}-W_{s}\right),\left(W_{u}-W_{v}\right)$ for all $v<u<s<t$.

Elena Boguslavskaya
Calculi your maths professors may not tell you about: from shad

Differentiation?

$$
\begin{aligned}
d f & =f^{\prime}(x) d x \\
d f & =f^{\prime}(x) d x+\frac{1}{2} f^{\prime \prime}(x)(d x)^{2}+\ldots
\end{aligned}
$$

Taylors?

Variation

$$
\begin{aligned}
F V_{T} & =\lim _{\|n\| \rightarrow 0} \sum_{j=0}^{n-1} \mid f\left(t_{j+1}-f\left(t_{j}\left|=\lim _{\|\Pi\| \rightarrow 0} \sum_{j=0}^{n-1}\right| f^{\prime}\left(t_{j}^{*}\right) \mid\left(t_{j+1}-t_{j}\right)\right.\right. \\
& =\int_{0}^{T}\left|f^{\prime}(t)\right| d t
\end{aligned}
$$

Second variation

What about second variation?

$$
\begin{aligned}
{[f, f](T) } & =\lim _{\|\Pi\| \rightarrow 0} \sum_{j=0}^{n-1} \mid f\left(t_{j+1}-\left.f\left(t_{j}\right)\right|^{2}=0\right. \\
{[W, W](T) } & =\lim _{\|\Pi\| \rightarrow 0} \sum_{j=0}^{n-1} \mid W\left(t_{j+1}-\left.W\left(t_{j}\right)\right|^{2}=T\right.
\end{aligned}
$$

Ito's formula

$$
d f\left(W_{t}\right)=f^{\prime}\left(W_{t}\right) d W_{t}+\frac{1}{2} f^{\prime \prime}\left(W_{t}\right)\left(d W_{t}\right)^{2}
$$

and $\left(d W_{t}\right)^{2}=d t$.

What is a martingale? How is it related to Hermite polynomias?
$\mathcal{H}_{n}\left(W_{t}, t\right)=t^{\frac{n}{2}} H_{n}\left(\frac{W_{t}}{\sqrt{t}}\right)$ is a martingale!
$\mathbf{E}\left(\mathcal{H}_{n}\left(W_{t}, t\right) \mid \mathcal{F}_{f}\right)=\mathcal{H}_{n}\left(W_{s}, s\right)$.

