#### What is a Particle?

#### **Nick Manton**

DAMTP, University of Cambridge N.S.Manton@damtp.cam.ac.uk

KCL Retreat, Cumberland Lodge, Feb. 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 1. Simple Newtonian Particles
- 2. Relativistic Particles
- 3. Fields
- 4. Particles from Quantized Fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ 5. Particles with Structure

## **1. Simple Newtonian Particles**

Particles are treated as pointlike. A particle with velocity v carries momentum and energy

$$P=mv$$
,  $E=\frac{1}{2}mv^2$ .

Momentum and energy are conserved in particle collisions.

- Mass *m* is key parameter. Measured in gravitational balance against standard mass. (Can also use Newton's 2nd law, but you need to understand force acting.)
- Mass of a single particle is constant. If a particle decays and its mass changes, other particles must be emitted (e.g. muon decay to electron accompanied by neutrinos).
- Particles also have spin and electric charge (related to conservation laws of angular momentum, electric charge).

### 2. Relativistic Particles

- Particle mass m is still key parameter. Velocity v is always less than the speed of light c. We choose units c = 1.
- Momentum and energy still conserved in particle collisions, but these quantities depend differently on velocity (velocity can be measured independently by time of flight). Relativistic formulae are

$$P = m\gamma v$$
,  $E = m\gamma$ ,

where

$$\gamma = (1 - v^2)^{-\frac{1}{2}} = 1 + \frac{1}{2}v^2 + O(v^4).$$

Important to note the Einstein relation

$$E^2 = P^2 + m^2$$

This follows from  $\gamma^2 (1 - v^2) = 1$ .

・ロト・日本・モート ヨー うへの

At low velocities

$$P = mv + O(v^3)$$
,  $E = m + \frac{1}{2}mv^2 + O(v^4)$ .

- Novel thing is E = m, particle's rest energy, when v = 0. The mass m is large, hidden source of energy of a particle. Hard to see or exploit this. Chemical reactions just rearrange particles, so there's no change of rest energy.
- In nuclear decays, total mass decreases. Excess energy converts to kinetic energy of products. In black hole mergers, total black hole mass decreases, and excess energy emitted as gravitational waves.
- Particle pair production is possible in relativistic particle collisions, but requires sufficiently large energy.

# 3. Fields

- (i) Coulomb field: Present around an electrically charged particle. When particle moves, field moves with it but not instantaneously. There are time-dependent electric and magnetic fields, E and B.
- Maxwell equations relate time- and space-derivatives of E and B requires a fundamental speed; Maxwell discovered that this is the speed of light, c = 1.
- Maxwell equations have EM (electromagnetic) wave solutions (simplified)

$$A\cos(kx-\omega t)$$
,

where *k* is wave vector and  $\omega$  is wave frequency.

Key relation from Maxwell equations is

$$\omega = \mathbf{k}$$
.

(ii) Nuclear force field: A pion field acts between protons and/or neutrons. The pion field π obeys the Klein-Gordon wave equation

$$rac{\partial^2 \pi}{\partial t^2} - 
abla^2 \pi + M_0^2 \pi = 0$$
.

- Parameter M<sub>0</sub> ~ 1 fm<sup>-1</sup> has dimension of inverse length (inverse time), not mass.
- The equation has a static, Yukawa solution, falling off exponentially fast with distance *R* from the source proton or neutron,

$$\pi=\frac{A}{R}e^{-M_0R}.$$

The equation also has wave solutions A cos(kx – ωt) as before, but now

$$\omega^2 = k^2 + M_0^2$$
 .

## 4. Particles from Quantized Fields

Need to introduce Planck's constant ħ, with units energy × time (or energy × length, when c = 1). Numerically,

 $\hbar=197.3\,\text{MeV}\,\text{fm}$  .

(i) Photons: Quantum states of an EM wave with wave vector k and frequency ω have quantized momentum and energy. The momentum and energy of one photon are

$$P = \hbar k$$
,  $E = \hbar \omega$ .

• Because 
$$\omega = k$$
,

$$E = P$$

for a photon. This is the Einstein relation for a particle of zero mass. Therefore, a photon has zero mass and cannot be at rest.

- These formulae are verified in the photoelectric effect and Compton scattering, where photons interact with electrons.
- A classical EM wave is a coherent superposition of many photons, and carries the momentum and energy of these photons.
- ▶ (ii) Pions: Quantum states of the pion field are pion particles. Again  $P = \hbar k$  and  $E = \hbar \omega$ , but here

$$\omega^2 = k^2 + M_0^2 \,,$$

so (multiplying by  $\hbar^2$ )

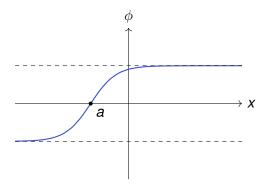
$$\mathsf{E}^2=\mathsf{P}^2+\hbar^2\mathsf{M}_0^2\,.$$

This is the Einstein relation for a pion particle of mass  $M = \hbar M_0$ , which has the right dimensions for a mass.

► We see that in quantum field theory, the mass of a particle arises as a quantum mechanical effect. (This can be hidden if units are chosen where ħ = 1.)

## **Provisional Summary**

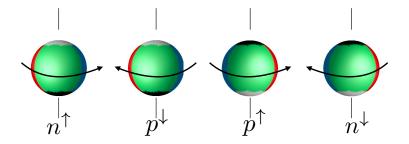
- In quantum field theory, particles are quantum states of fields. Particles obey the relativistic (Einstein) energy-momentum relation. There is a fundamental field for each fundamental particle.
- For particles like electrons and neutrinos with spin <sup>1</sup>/<sub>2</sub>ħ, relevant wave equation is the Dirac equation. A Dirac field needs to be quantized.
- The field's algebraic structure determines the particle's spin. E.g. A photon has spin ħ, because of the vector character of E and B, and because EM waves can be polarised; a pion has spin 0.
- Nonlinear field equations imply nonlinear evolution of classical waves. In quantum field theory, nonlinearity leads to particle scattering (particle interactions, including decays), and is essential for describing nature.


# 5. Particles with Structure

- A classical point particle has singularities in its matter density and electric charge density. Creates subtle problems in electromagnetic theory.
- A field has wave solutions (of definite frequency) with infinite extent. Quantized particle states have no structure.
- Both these particle models are unsatisfactory. Nonlinearity can come to the rescue!

(ロ) (同) (三) (三) (三) (○) (○)

- Some particles have a clear structure, and a finite size. E.g. A proton has a measured charge radius, and measured matter radius. Both are approximately 1 fm.
- A field's wave equation can have an (inverse) length parameter M<sub>0</sub>, but this is not enough to create structure.
- A combination of nonlinearity and a length scale are needed for a classical, particle-like solution. This can have a mass *M*, and energy-momentum obeying the Einstein relation. The mass *M* combines a nonlinear coupling parameter with *M*<sub>0</sub>.


 (i) Kink soliton in 1-dimension: Field nonlinearity implies two vacua, related by symmetry. Kink interpolates between them – it has a topological stability.



Field approaches each vacuum exponentially fast. The (classical) kink is one type of particle in this field theory. Quantized field oscillations around vacuum give a second type of particle.

- (ii) Skyrmions in 3-dimensions: Skyrmion is a solution of a nonlinear, pion field theory, with parameter M<sub>0</sub>.
   Skyrmions represent proton/neutron sources for the pion field, and have finite energy (mass).
- A Skyrmion, like a kink, has a topological stability.
- Asymptotic field of a Skyrmion is a (triplet of) pion dipoles.

- Skyrmion is classical, and can be static or moving. Its rotational motion needs to be quantized. The quantum state distinguishes a proton from a neutron, and determines whether the spin state is up or down.
- There are also pion particles with mass  $M = \hbar M_0$ .



Classically spinning B = 1 Skyrmions, approximating p and n states [D. Foster and NSM]

ヘロト 人間 とくほ とくほ とう

э

## Summary

- In quantum field theory, all particles are quantum states of fields. Particles with no known structure, e.g. electrons and photons, each need a fundamental field.
- Structured particles can be bound states of more fundamental particles, e.g. protons as bound states of quarks; pions as quark-antiquark states. This QCD picture is hard to implement theoretically, and unhelpful in studies of nuclei.
- An attractive alternative model is that the proton/neutron is a soliton – a Skyrmion – in the pion field. This is the approach of Effective Field Theory.
- In Skyrme theory, one field gives rise to several particle types: the spin 0 pions, and the spin ½ħ proton and neutron.