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Introduction
A quantum system is in an entangled state if performing a localised 
measurement (in space and time) may instantaneously affect local 
measurements far away.

A typical example: a pair of opposite-spin 
electrons [Bell States]

With:  and 

, 

|00⟩ = |0⟩ ⊗ |0⟩

|0⟩ = [1
0] |1⟩ = [0

1]
Electrons in Bell states are known to be 
“maximally entangled”



Maximally Entangled
Unlike a state such as: 

 

entangled states cannot be factorised.

1
2

( |01⟩ + |10⟩ + |11⟩ + |00⟩) =
1
2

( |0⟩ + |1⟩) ⊗ ( |0⟩ + |1⟩)

The property of one particle (i.e. spin) is inextricably 
linked (upon measurement) to the property  of the other 
particle, so that measuring the state of the first electron 
reveals everything about the state of the second electron 
without the need to measure again. 

Quantum 
Superposition 

Spooky action at a distance! [EPR Paradox 1935]





Quantum Information
•The properties of Quantum Entanglement and 

Quantum Superposition [the idea that a particle 
(qubit) can be in a superposition of states] can 
be used as resources for quantum computation 
protocols and this connects to the areas of 
Quantum Computing and Quantum Information. 

• There are several “classical” examples of 
problems that can be solved much more 
quickly or only by exploiting these properties. 
Let’s see one example!

IBM Q (100 qubits)

Shor’s algorithm for prime factorisation



Qubits & Quantum Computers

Optical lattices use lasers to separate 
rubidium atoms (red) for use as 
information bits in neutral-atom quantum 
processors.

1 classical bit=one state 
1 qubit= a superposition of 2 (or more) states 

20 classical bits = 20 states 
20 qubits = states 

     = 1 048 576 states 
220



Shor’s Algorithm (1994)
• Problem: Given and integer N find its prime factors [e.g. 5055=5x3x337]
• Shor’s algorithm can do 

this in polynomial time.This 
is exponentially faster 
than the most efficient 
classical algorithms.

• The efficiency of Shor's 
algorithm is due to the 
efficiency of the quantum 
Fourier transform, and 
modular exponentiation 
by repeated squarings.

https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://en.wikipedia.org/wiki/Quantum_Fourier_transform
https://en.wikipedia.org/wiki/Modular_exponentiation
https://en.wikipedia.org/wiki/Exponentiation_by_squaring


1.Pick a random number a < N 
2.Compute gcd(a, N). This may be done using the Euclidean algorithm. 
3.If gcd(a, N) ≠ 1, then there is a nontrivial factor of N, so we are done. 
4.Otherwise, use a period-finding subroutine to find the period of:    
f(x) = ax mod N, i.e. the smallest integer r for which f(x + r) = f(x). 
5.I f t h e n o r 

 
6.If r is even then  
7.Assuming N=p.q and that  then p=  
and q= 

ax+r(mod N) = ax(mod N) ar(mod N) = 1(mod N)
ar − 1 (mod N) = 0 (mod N)

ar − 1 (mod N) = (a r
2 − 1)(a r

2 + 1) (mod N)
(a r

2 ± 1) (mod N) ≠ 0 gcd(a r
2 − 1,N)

gcd(a r
2 + 1,N)

Shor’s Algorithm: Classical Part

https://www.quantiki.org/search/node/greatest%2Bcommon%2Bdivisor
https://www.quantiki.org/search/node/Euclidean%2Balgorithm


• The bit of Shor’s algorithm that uses quantum superposition and quantum 
entanglement is the finding of the period  of the function . 

• Consider and example and a (very simplified) explanation of the main steps: take 
N=15 and a=7. 

• Let us initialise our quantum computer using two “registers”

r f(x) = ax (mod N)

Shor’s Algorithm: Quantum Part

|0⟩ |0⟩ ↦ ( |1⟩ + |2⟩ + |3⟩ + …) |0⟩ ↦ |1⟩ | f(1)⟩ + |2⟩ | f(2)⟩ + |3⟩ | f(3)⟩ + …

↦ |1⟩ |7⟩ + |2⟩ |4⟩ + |3⟩ |13⟩ + |4⟩ |1⟩ + |5⟩ |7⟩ + ⋯
• Performing a measurement of the second register gives any result with equal 

probability. Suppose that we got the result . Then this means that the 
first state is  from which the period (r=4) can be read off.

|7⟩
|1⟩ + |5⟩ + |9⟩⋯

This operation can 
be done in a single step 
(the function acts on a 

superposition)

This is 
generally an entangled 



Here is Shor himself speaking about his algorithm: 

https://www.youtube.com/watch?v=hOlOY7NyMfs 

and here is a slightly longer video of Shor as well: 

https://www.youtube.com/watch?v=6qD9XElTpCE

https://www.youtube.com/watch?v=hOlOY7NyMfs
https://www.youtube.com/watch?v=6qD9XElTpCE


Theoretical Physics and Entanglement
• A lot of theoretical research 

on entanglement is instead 
interested on what constitutes 
a g o o d m e a s u r e o f 
entanglement and what that 
measure can tell us about the 
properties of a quantum 
system. 

• The first obvious question is how to define entanglement in a system 
consisting of more than two qubits (unlike Bell states). For instance, many 
people are interested in quantum spin chains or many-body quantum systems.



Bipartite Measures
• The most popular measures are bipartite, that is based on dividing the 

system into two parts and looking at their mutual entanglement.  
• Among these measures, the most famous is the Von Neumann Entropy or, 

simply, the Entanglement Entropy. 
• The starting point is a bipartition of a quantum system into two 

complementary parts A and B. Suppose the system’s state is described by a 
pure state . 

• We define a reduced density matrix . This provides a 
measure of the correlations “seen” by subsystem A when we “forget” about 
subsystem B. 

• Then, the Von Neumann Entropy is given by .

|Ψ⟩

ρA = TrB( |Ψ⟩⟨Ψ | )

S = − TrA(ρA log ρA)



Example: A Bell State
• Let us consider again a Bell state. If we identify the first spin as subsystem A and 

the second spin as subsystem B we have for : 

•
 

• So,  where  are the eigenvalues of the 

density matrix. In our case  which gives 

|Ψ⟩ =
1

2
( |00⟩ + |11⟩)

ρA = TrB( |Ψ⟩⟨Ψ | ) =
1
2

TrB( |00⟩⟨00 | + |11⟩⟨11 | + |00⟩⟨11 | + |11⟩⟨00 | )

=
1
2

( |0⟩⟨0 | + |1⟩⟨1 | ) =
1
2 [10

01]
S = − Tr(ρA log ρA) = −

2

∑
j=1

ηj log ηj ηj

η1 = η2 =
1
2

S = log 2



A Good Measure
•S(ρ) is zero if and only if ρ represents a pure state. 
•S(ρ) is maximal and equal to ln N for a maximally mixed state, N being the 
dimension of the Hilbert space. 
•S(ρ) is invariant under changes in the basis of ρ, that is, S(ρ) = S(UρU†), with U 
a unitary transformation. 

•S(ρ) is concave, which means, given  such that  and density 

operators  we have that  

ηi > 0 ∑
i

ηi = 1

ρi S(∑
i

ηiρi) ≥ ∑
i

ηiS(ρi)

•S(ρ) is strongly subadditive. Given three systems A, B, 
C we have:  where 

 are reduced density matrices of  
S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC)

ρB, ρAB, ρBC ρABC



Many-Body Quantum Systems
• Bell states are very simple, but what happens if we have a system made of a very large 

number of spins and compute its EE? 

• A famous example is the Ising spin chain 

•  

• h=1 (critical in scaling limit) 

• h>1 (near-critical QFT) 

•  

•

H = −
J
2

N

∑
j=1

[σx
j σx

j+1 + hσz
j ]

J → ∞, a → 0,Ja = v

S(L) =
1
3

log L + constant

Subsystem A of L Spins

Logarithmic Scaling vs Saturation

S(L) =
1
3

log ξ + constant −
1
8 ∑

i

K0(2miL)



Scaling Limit

https://www.youtube.com/watch?v=fi-g2ET97W8


So, What is this Useful For?
• Entanglement measures disp lay Universal 

Behaviours which means that they provide a natural 
way to classify quantum systems or “quantum states 
of matter” 

• The value of the EE and other measures gives 
information about the state of a quantum system 
and about how feasible or not it is to simulate that 
state in a classical computer with classical 
algorithms (i.e. DMRG, ITEBD, MPS…)

*density matrix renormalisation group ,  infinite time-evolving block decimation, matrix product states…

Another Universal Feature: the EE 
density grows linearly in time and then saturates 

after a “quantum” quench



Conclusions
Entanglement Measures are of interest in many areas: 

• Pure Mathematics 

• Information Theory/Quantum Computation 

• Theoretical Physics: Quantum Field Theory (including String theory) and 
Astrophysics/Gravity Theory (e.g. Black Holes)  

They have interesting and sophisticated mathematical properties.  

Can be computed numerically using advanced simulation techniques for many-body 
quantum systems 

In some cases, analytical formulae can be found, usually showing universal trends 
in QFT. 



What do People do Now?
• They come up with ever new and more sophisticated 

measures of entanglement for different kinds of 
states/geometries/dimensionalities.  

• They study their mathematical properties and 
develop analytical methods to compute them.  

• They develop numerical algorithms to simulate 
quantum systems in all their complexity. 

• They develop quantum technology (quantum 
encryption, quantum computers…) 

• They carry out experiments involving many qubit 
(cold atom experiments) 

• They develop techniques to measure entanglement 
in the laboratory….
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