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What is a Paradox in the context of Mathematics?

I Not particularly well defined, some things just happen to be
named a paradox

I The term paradox comes from the ancient Greek terms for
“against” or “beyond” (παρά) and “expectation” or “opinion”
(δóξα)

I Typically you will see them come in one of two forms

I A logical sequence or construction of an object which “breaks
the rules” of Mathematics (falsidical)

I A correct result which does not conform to our intuition
(veridical)

I Historically, Mathematics was developed to solve real world
problems, so many of the structures obey a sense of real world
intuition



Some well known Paradoxes (there are a lot)
I The Banach-Tarski paradox
I Russel’s paradox
I
∑∞
n=1 1 = −1

2
I
∑∞
n=1(−1)n−1n = 1

4
I Gabriel’s Horn
I Hilbert’s Grand Hotel
I The friendship paradox
I The intransitive dice paradox
I The potato paradox
I The staircase paradox
I The string girdling Earth paradox
I Simpson’s paradox
I Freedman’s paradox
I The Will Rogers phenomenon
I Lindley’s paradox
I The inspection paradox
I Braess’s paradox
I Berkson’s paradox
I The accuracy paradox
I Abelson’s paradox
I The false positive paradox
I The Cramer-Euler paradox
I Grice’s paradox
I The two envelope paradox
I Proebsting’s paradox

I Cantor’s paradox



The Banach-Tarski Paradox (veridical)

I The Paradox: A three dimensional ball may be decomposed
into five disjoint sets such that after each is subjected to a
rigid transformation, the resulting set is two copies of the
original ball

I Our intuition tells us that the volume of a set in R3 must be
preserved under rigid transformations

I Our intuition also tells us that the volume of a set in R3 is
equal to the sum of volumes of disjoint subsets

I These are both correct statements, if we restrict the word
volume to only apply to certain sets

I The Banach-Tarski “paradox” relies on decomposing the ball
into non-measurable sets

I I encourage you to look up this decomposition, it is
surprisingly easy to understand considering the result



0 = 1 (falsidical)

I Consider the following computation:

0 = (1− 1)
= (1− 1) + (1− 1)
= (1− 1) + (1− 1) + (1− 1) + · · ·
= 1 + (−1 + 1) + (−1 + 1) + · · ·
= 1

I This relies on the misuse of infinite series
I In particular, they must be defined in terms of a limit of the

partial sums, which in this example do not converge
I Also, “...” can be a very misleading symbol, but I don’t have

time to go into that



Nature of the examples discussed today
I Each result discussed here is a veridical type paradox

I Except one, because I want to emphasize an important point

I The examples will each begin with a question that should be extremely
easy to understand regardless of mathematical background

I So you can take these to parties and impress all of your friends

I Each Paradox in Probability will be based on a question about the
probability of an event or the expected value or distribution of a
random variable

I Distinct from paradoxes in Statistics, but those are also very
interesting to consider

I Audience participation!!!!! When you see this symbol: !!! just shout out
your gut feeling answer

I But if you are familiar with the question, please let me have my fun
(be quiet)

I I will certainly run out of time before presenting all of my examples
I Come find me if you want to hear more!



The Birthday Paradox

I Suppose n people are in a room

I Each person has a birthday (month and day) which is
uniformly random (from 365 days, ignoring leap years for
simplicity) and fully independent of each other

I The probability that at least two people have the same
birthday is P (n)

I What is the smallest value of n such that P (n) > 0.5? !!!

1− P (n) = 364
365 ·

363
365 ·

362
365 · · ·

365− (n− 1)
365
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The Birthday Paradox

I P (22) = 0.476 and P (23) = 0.507

I Thus, the answer is n∗ = 23

I Why do most people find this counterintuitive?

I As an individual, the probability that one other person has
your birthday is 1/365

I On average you would have to meet 365 people before meeting
one with your birthday

I We naturally conflate this situation with the question of the
Birthday Paradox, which is different!



The Monty Hall Problem

I Modification of the game show Let’s Make a Deal (and
named after the original host, Monty Hall)

I You are presented three closed doors
I Behind one of the closed doors is a car, behind the other two

doors are goats
I You select a door, the implication being you will receive the

prize behind it
I Of the remaining two doors, Monty Hall opens one of them

and will always reveal a goat
I You are now given the opportunity to switch your choice to

the other remaining closed door, or stay with the original
choice

I What should your choice be? Does it make a difference? !!!
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The Monty Hall Problem

I For most people, the intuitive answer is that switch and stay
are equally likely to win the car

I After all, once Monty reveals a goat, there are two doors left
and the car’s position is uniformly distributed

I We can explicitly compute the winning probability of both
strategies

I Without loss of generality, suppose your initial selection is
Door 1

I Three sub-cases: the car is behind Door 1, 2, or 3 with equal
probability

I Door 1: Monty can open either Door 2 or 3
I Door 2: Monty must open Door 3
I Door 3: Monty must open Door 2

I Switch wins the car with probability 2
3 !
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The Two Child Problem

I Your friend Arthur mentions that they have two children, the
oldest is a boy

I What is the probability that the other child is a girl? !!!

I 0.5

I Your friend Beth mentions that they have two children, at
least one of which is a boy

I What is the probability that the other child is a girl? !!!

I This can be explicitly computed
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The Two Child Problem

I Assume each child is born boy or girl with equal probability
and the outcomes of the two children are independent

I The state space has exactly four points

I (G,G), (G,B), (B,G), (B,B)

I Each of these is equally likely

I Conditional on at least one child being a boy, one of the
above outcomes is impossible, leaving three equally likely
outcomes

I Thus, the probability that there is a girl, given that there is
at least one boy, is 2

3 !
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The Two Child Problem - But Even More Fun!

I Your friend Charles mentions that they have two children, at
least one of which is a boy born on a Tuesday

I What is the probability that the other child is a girl? !!!

I Obviously 2
3 because the additional information is irrelevant
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{B,G} and {1, . . . , 7} uniformly and independently

I The state space for one child has 14 points, and so the state
space for both children has 196 points

I Taking into account the given information, 169 points are
impossible, leaving 27 equally likely outcomes, 14 of which
include a single girl

I Thus, the probability that the other child is a girl is 14
27 ≈ 0.52
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The Two Child Problem - But Even More Fun!

I Your friend Charles mentions that they have two children, at
least one of which is a boy born on a Tuesday

I What is the probability that the other child is a girl? !!!

I Obviously 2
3 because the additional information is irrelevant

I Use the same procedure as before, each child is assigned
{B,G} and {1, . . . , 7} uniformly and independently

I The state space for one child has 14 points, and so the state
space for both children has 196 points

I Taking into account the given information, 169 points are
impossible, leaving 27 equally likely outcomes, 14 of which
include a single girl

I Thus, the probability that the other child is a girl is 14
27 ≈ 0.52
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Die Against the Odds

I A standard 6-sided die is rolled repeatedly (and
independently) until the result is a 6

I What is the expected number of rolls? !!!
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I What is the expected number of rolls conditional on none
of the rolls being odd? !!!

I If none of the rolls are odd, then there are effectively 3 sides to
this die

I Thus, it is equivalent to the expected number of rolls to see a
particular value on a 3-sided die
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Die Against the Odds - Crank it up to 11

I Same problem, but now it’s a one-million-sided die

I Expected number of rolls until the first 6? !!!

I 1, 000, 000

I What is the expected number of rolls until a 6 conditional on
no rolls being odd? !!!

I 500, 000
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really believe that all of the rolls were even?

I NO! The conditional probabilities put very low weight on
long sequences of rolls without stopping

I We can again explicitly compute this expected value
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Die Against the Odds - General Solution
I For a general N sided die:

I Let T be the random variable which is the number of rolls
until the first 6

I Let E be the event that all rolls are even

E[T |E] =
∞∑

k=1
kP(T = k|E)

=
∞∑

k=1
k
P(T = k and E)

P(E)

I It is not difficult to compute P(T = k and E) and P(E):

P(T = k and E) =
( N

2 − 1
N

)k−1 1
N

P(E) =
∞∑

k=1

( N
2 − 1
N

)k−1 1
N



Die Against the Odds - General Solution

I The rest of the computation is a simple exercise in infinite
series summation

E[T |E] = 2N
N + 2

I For the original 6-sided die, the result is 1.5

I For the one-million-sided die, the result is 1,000,000
500,001 ≈ 1.999996

I Less than 2!
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Paradox of the Greats - (Borel-Kolmogorov)
I Consider the 2-dimensional unit sphere with the standard

embedding in R3

I Let X be a random point uniformly distributed on the
sphere

I We parameterize X in spherical coordinates
X = (cos(θ) cos(ϕ), sin(θ) cos(ϕ), sin(ϕ))

with θ ∈ [0, 2π] and ϕ ∈ [−π
2 ,

π
2 ]

I The random variables θ and ϕ are independent with densities

f1(θ) = 1
2π f2(ϕ) = 1

2 cos(ϕ)

I Thus, when parameterized in spherical coordinates the density
of X is

f(θ, ϕ) = 1
4π cos(ϕ)
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Paradox of the Greats - (Borel-Kolmogorov)
I What is the conditional distribution of X on a great circle?
!!!

I X is uniformly distributed and great circles have a nice
straightforward symmetry to them

I The conditional distribution is uniform on any great circle

I We can explicitly confirm this conditional distribution

I Consider the equator given by ϕ = 0

f1(θ) = 1
2π , θ ∈ [0, 2π] =⇒ uniform on equator

I Consider also a great circle connecting the poles, like θ = 0

f2(ϕ) = 1
2 cos(ϕ), ϕ ∈

[
− π

2 ,
π

2

]
=⇒ not uniform!
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Paradox of the Greats - (Borel-Kolmogorov)

I The original statement of the problem is rotationally
symmetric

I How can the choice of parameterization affect the result?

I Conditional expectations and conditional probabilities are
not defined on events with probability zero!

I Conditional distributions come from conditional
probabilities

I Conditional densities are perfectly fine to deal with, but a
density function always appears inside an integral!
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Did you like the dice question?
I Alice rolls a die until a result of 6 is seen three times

I Bob rolls a die until a result of 6 is seen three times in a row

I Who has a lower expected number of rolls? !!!

I Both can be computed explicitly, but we won’t do that here
I In particular, Bob’s time is typically done with computations

related to a Markov chain

I Results by Monte Carlo simulation:

I Alice finishes with an average of 18 rolls
I Bob finishes with an average of 258 rolls

I Note: 258 = 6 + 62 + 63

I This makes sense because in order to roll three 6’s in a row
you need to roll at least three 6’s
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What are the lessons here?

I Humans often don’t have good intuition for probability

I This is especially true for conditional probability

I Every example given involved conditional probabilities, except
for the first (Birthday Paradox) and the last (Penny’s Game)

I Every example was also veridical, except the Great Circle
Paradox which is somewhere on the boundary between
veridical and falsidical



Conditional Expectation (measure theoretic)
I This talk is not complete without the definition of
conditional expectation

Let (Ω,F ,P) be a probability space, let X be an integrable
random variable, and let G be a sub-σ-algebra of F .

Suppose a random variable Y is G-measurable and satisfies∫
A
Y dP =

∫
A
XdP

for all A ∈ G. Then we call Y the conditional expectation of X
given G and write

Y = E[X|G]

From this we define conditional probability of and event E given
G to be

P(E|G) = E[1E |G]



Thanks for your attention!

Ryan Donnelly

ryan.f.donnelly@kcl.ac.uk


