Official Title: Paradoxes in Probability

Title I wanted to use: You are bad at Probability

Ryan Donnelly

Department of Mathematics, King's College London

February 2025

What is a Paradox in the context of Mathematics?

- Not particularly well defined, some things just happen to be named a paradox
- The term paradox comes from the ancient Greek terms for "against" or "beyond" $(\pi \alpha \rho \dot{\alpha})$ and "expectation" or "opinion" $(\delta \delta \xi \alpha)$
- Typically you will see them come in one of two forms
 - A logical sequence or construction of an object which "breaks the rules" of Mathematics (falsidical)
 - A correct result which does not conform to our intuition (veridical)
- Historically, Mathematics was developed to solve real world problems, so many of the structures obey a sense of real world intuition

Some well known Paradoxes (there are a lot)

- The Banach-Tarski paradox
- Russel's paradox
- $\sum_{n=1}^{\infty} 1 = -\frac{1}{2}$
- $\sum_{n=1}^{\infty} (-1)^{n-1} n = \frac{1}{4}$
- Gabriel's Horn
- Hilbert's Grand Hotel
- The friendship paradox
- The intransitive dice paradox
- The potato paradox
- The staircase paradox
- The string girdling Earth paradox
- Simpson's paradox
- Freedman's paradox
- The Will Rogers phenomenon
- Lindley's paradox
- The inspection paradox
- Braess's paradox
- Berkson's paradox
- The accuracy paradox
- Abelson's paradox
- The false positive paradox
- The Cramer-Euler paradox
- Grice's paradox
- The two envelope paradox
- Propheting's paradov

The Banach-Tarski Paradox (veridical)

- The Paradox: A three dimensional ball may be decomposed into five disjoint sets such that after each is subjected to a rigid transformation, the resulting set is two copies of the original ball
- ► Our intuition tells us that the volume of a set in ℝ³ must be preserved under rigid transformations
- ► Our intuition also tells us that the **volume** of a set in \mathbb{R}^3 is equal to the sum of **volumes** of disjoint subsets
- These are both correct statements, if we restrict the word volume to only apply to certain sets
- The Banach-Tarski "paradox" relies on decomposing the ball into non-measurable sets
- I encourage you to look up this decomposition, it is surprisingly easy to understand considering the result

0 = 1 (falsidical)

Consider the following computation:

$$0 = (1 - 1)$$

= (1 - 1) + (1 - 1)
= (1 - 1) + (1 - 1) + (1 - 1) + \cdots
= 1 + (-1 + 1) + (-1 + 1) + \cdots
= 1

- This relies on the misuse of infinite series
- In particular, they must be defined in terms of a limit of the partial sums, which in this example do not converge
- Also, "..." can be a very misleading symbol, but I don't have time to go into that

Nature of the examples discussed today

- Each result discussed here is a veridical type paradox
 - Except one, because I want to emphasize an important point
- The examples will each begin with a question that should be extremely easy to understand regardless of mathematical background
 - So you can take these to parties and impress all of your friends
- Each Paradox in Probability will be based on a question about the probability of an event or the expected value or distribution of a random variable
 - Distinct from paradoxes in Statistics, but those are also very interesting to consider
- Audience participation!!!!! When you see this symbol: !!! just shout out your gut feeling answer
 - But if you are familiar with the question, please let me have my fun (be quiet)
- I will certainly run out of time before presenting all of my examples
 - Come find me if you want to hear more!

• Suppose n people are in a room

- Suppose n people are in a room
- Each person has a birthday (month and day) which is uniformly random (from 365 days, ignoring leap years for simplicity) and fully independent of each other

- Suppose n people are in a room
- Each person has a birthday (month and day) which is uniformly random (from 365 days, ignoring leap years for simplicity) and fully independent of each other
- ► The probability that at least two people have the same birthday is P(n)

- Suppose n people are in a room
- Each person has a birthday (month and day) which is uniformly random (from 365 days, ignoring leap years for simplicity) and fully independent of each other
- ► The probability that at least two people have the same birthday is P(n)
- What is the smallest value of n such that P(n) > 0.5? !!!

- Suppose n people are in a room
- Each person has a birthday (month and day) which is uniformly random (from 365 days, ignoring leap years for simplicity) and fully independent of each other
- ► The probability that at least two people have the same birthday is P(n)
- What is the smallest value of n such that P(n) > 0.5? !!!

$$1 - P(n) = \frac{364}{365} \cdot \frac{363}{365} \cdot \frac{362}{365} \cdots \frac{365 - (n-1)}{365}$$

▶
$$P(22) = 0.476$$
 and $P(23) = 0.507$

• Thus, the answer is $n^* = 23$

- Why do most people find this counterintuitive?
- ► As an individual, the probability that one other person has your birthday is 1/365
 - On average you would have to meet 365 people before meeting one with your birthday
- We naturally conflate this situation with the question of the Birthday Paradox, which is different!

 Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)

- Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)
- You are presented three closed doors

- Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)
- You are presented three closed doors
- Behind one of the closed doors is a car, behind the other two doors are goats

- Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)
- You are presented three closed doors
- Behind one of the closed doors is a car, behind the other two doors are goats
- You select a door, the implication being you will receive the prize behind it

- Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)
- You are presented three closed doors
- Behind one of the closed doors is a car, behind the other two doors are goats
- You select a door, the implication being you will receive the prize behind it
- Of the remaining two doors, Monty Hall opens one of them and will always reveal a goat

- Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)
- You are presented three closed doors
- Behind one of the closed doors is a car, behind the other two doors are goats
- You select a door, the implication being you will receive the prize behind it
- Of the remaining two doors, Monty Hall opens one of them and will always reveal a goat
- You are now given the opportunity to switch your choice to the other remaining closed door, or stay with the original choice

- Modification of the game show Let's Make a Deal (and named after the original host, Monty Hall)
- You are presented three closed doors
- Behind one of the closed doors is a car, behind the other two doors are goats
- You select a door, the implication being you will receive the prize behind it
- Of the remaining two doors, Monty Hall opens one of them and will always reveal a goat
- You are now given the opportunity to switch your choice to the other remaining closed door, or stay with the original choice
- What should your choice be? Does it make a difference? !!!

For most people, the intuitive answer is that switch and stay are equally likely to win the car

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed
- We can explicitly compute the winning probability of both strategies

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed
- We can explicitly compute the winning probability of both strategies
- Without loss of generality, suppose your initial selection is Door 1

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed
- We can explicitly compute the winning probability of both strategies
- Without loss of generality, suppose your initial selection is Door 1
 - Three sub-cases: the car is behind Door 1, 2, or 3 with equal probability

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed
- We can explicitly compute the winning probability of both strategies
- Without loss of generality, suppose your initial selection is Door 1
 - Three sub-cases: the car is behind Door 1, 2, or 3 with equal probability
 - Door 1: Monty can open either Door 2 or 3
 - Door 2: Monty must open Door 3
 - Door 3: Monty must open Door 2

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed
- We can explicitly compute the winning probability of both strategies
- Without loss of generality, suppose your initial selection is Door 1
 - Three sub-cases: the car is behind Door 1, 2, or 3 with equal probability
 - Door 1: Monty can open either Door 2 or 3
 - Door 2: Monty must open Door 3
 - Door 3: Monty must open Door 2

• Switch wins the car with probability $\frac{2}{3}$!

- For most people, the intuitive answer is that switch and stay are equally likely to win the car
- After all, once Monty reveals a goat, there are two doors left and the car's position is uniformly distributed
- We can explicitly compute the winning probability of both strategies
- Without loss of generality, suppose your initial selection is Door 1
 - Three sub-cases: the car is behind Door 1, 2, or 3 with equal probability
 - Door 1: Monty can open either Door 2 or 3
 - Door 2: Monty must open Door 3
 - Door 3: Monty must open Door 2

• Switch wins the car with probability $\frac{2}{3}$!

Your friend Arthur mentions that they have two children, the oldest is a boy

Your friend Arthur mentions that they have two children, the oldest is a boy

What is the probability that the other child is a girl? !!!

- Your friend Arthur mentions that they have two children, the oldest is a boy
- What is the probability that the other child is a girl? !!!
 - ▶ 0.5

- Your friend Arthur mentions that they have two children, the oldest is a boy
- What is the probability that the other child is a girl? !!!

Your friend Beth mentions that they have two children, at least one of which is a boy

^{► 0.5}

- Your friend Arthur mentions that they have two children, the oldest is a boy
- What is the probability that the other child is a girl? !!!

- Your friend Beth mentions that they have two children, at least one of which is a boy
- What is the probability that the other child is a girl? !!!

^{► 0.5}

- Your friend Arthur mentions that they have two children, the oldest is a boy
- What is the probability that the other child is a girl? !!!

► 0.5

- Your friend Beth mentions that they have two children, at least one of which is a boy
- What is the probability that the other child is a girl? !!!
- This can be explicitly computed

Assume each child is born boy or girl with equal probability and the outcomes of the two children are independent

- Assume each child is born boy or girl with equal probability and the outcomes of the two children are independent
- The state space has exactly four points
 - $\blacktriangleright \ (G,G), \ (G,B), \ (B,G), \ (B,B)$

- Assume each child is born boy or girl with equal probability and the outcomes of the two children are independent
- The state space has exactly four points
 - ▶ (G,G), (G,B), (B,G), (B,B)
 - Each of these is equally likely

- Assume each child is born boy or girl with equal probability and the outcomes of the two children are independent
- The state space has exactly four points
 - ▶ (G,G), (G,B), (B,G), (B,B)
 - Each of these is equally likely
- Conditional on at least one child being a boy, one of the above outcomes is impossible, leaving three equally likely outcomes

- Assume each child is born boy or girl with equal probability and the outcomes of the two children are independent
- The state space has exactly four points
 - ▶ (G,G), (G,B), (B,G), (B,B)
 - Each of these is equally likely
- Conditional on at least one child being a boy, one of the above outcomes is impossible, leaving three equally likely outcomes
- ► Thus, the probability that there is a girl, given that there is at least one boy, is ²/₃!

Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!
 Obviously ²/₃ because the additional information is irrelevant

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!

• Obviously $\frac{2}{3}$ because the additional information is irrelevant

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!
 Obviously ²/₃ because the additional information is irrelevant
- ▶ Use the same procedure as before, each child is assigned {B,G} and {1,...,7} uniformly and independently

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!

• Obviously $\frac{2}{3}$ because the additional information is irrelevant

- Use the same procedure as before, each child is assigned $\{B,G\}$ and $\{1,\ldots,7\}$ uniformly and independently
- The state space for one child has 14 points, and so the state space for both children has 196 points

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!

 \blacktriangleright Obviously $\frac{2}{3}$ because the additional information is irrelevant

- Use the same procedure as before, each child is assigned $\{B,G\}$ and $\{1,\ldots,7\}$ uniformly and independently
- The state space for one child has 14 points, and so the state space for both children has 196 points
- Taking into account the given information, 169 points are impossible, leaving 27 equally likely outcomes, 14 of which include a single girl

- Your friend Charles mentions that they have two children, at least one of which is a boy born on a Tuesday
- What is the probability that the other child is a girl? !!!

• Obviously $\frac{2}{3}$ because the additional information is irrelevant

- Use the same procedure as before, each child is assigned $\{B,G\}$ and $\{1,\ldots,7\}$ uniformly and independently
- The state space for one child has 14 points, and so the state space for both children has 196 points
- Taking into account the given information, 169 points are impossible, leaving 27 equally likely outcomes, 14 of which include a single girl

▶ Thus, the probability that the other child is a girl is $\frac{14}{27} \approx 0.52$

A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!
 - ▶ 6

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!
 6
- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- ► What is the **expected number of rolls**? !!!
 - ▶ 6
- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls conditional on none of the rolls being odd? !!!

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!
 - ▶ 6
- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls conditional on none of the rolls being odd? !!!
 - ► If none of the rolls are odd, then there are effectively 3 sides to this die

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!
 - ▶ 6
- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls conditional on none of the rolls being odd? !!!
 - ► If none of the rolls are odd, then there are effectively 3 sides to this die
 - Thus, it is equivalent to the expected number of rolls to see a particular value on a 3-sided die

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!
 - ▶ 6
- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls conditional on none of the rolls being odd? !!!
 - ► If none of the rolls are odd, then there are effectively 3 sides to this die
 - Thus, it is equivalent to the expected number of rolls to see a particular value on a 3-sided die
 - ▶ 3

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls conditional on none of the rolls being odd? !!!
 - If none of the rolls are odd, then there are effectively 3 sides to this die
 - ► Thus, it is equivalent to the expected number of rolls to see a particular value on a 3-sided die
 - ► 3

^{▶ 6}

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls? !!!

- A standard 6-sided die is rolled repeatedly (and independently) until the result is a 6
- What is the expected number of rolls conditional on none of the rolls being odd? !!!
 - If none of the rolls are odd, then there are effectively 3 sides to this die
 - Thus, it is equivalent to the expected number of rolls to see a particular value on a 3-sided die
 - ► 3
- Conditioning on no odd outcomes is not the same as removing all odd outcomes

^{▶ 6}

Same problem, but now it's a one-million-sided die

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000
- What is the expected number of rolls until a 6 conditional on no rolls being odd? !!!

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000
- What is the expected number of rolls until a 6 conditional on no rolls being odd? !!!
 - ▶ 500,000

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000
- What is the expected number of rolls until a 6 conditional on no rolls being odd? !!!
 - ► 500,000

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000
- What is the expected number of rolls until a 6 conditional on no rolls being odd? !!!
 - ► 500,000
- ► If I told you the first 6 appeared on the 2000th roll, would you really believe that all of the rolls were even?

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000
- What is the expected number of rolls until a 6 conditional on no rolls being odd? !!!
 - ► 500,000
- ► If I told you the first 6 appeared on the 2000th roll, would you really believe that all of the rolls were even?
- NO! The conditional probabilities put very low weight on long sequences of rolls without stopping

Die Against the Odds - Crank it up to 11

- Same problem, but now it's a one-million-sided die
- Expected number of rolls until the first 6? !!!
 - ▶ 1,000,000
- What is the expected number of rolls until a 6 conditional on no rolls being odd? !!!
 - ► 500,000
- ► If I told you the first 6 appeared on the 2000th roll, would you really believe that all of the rolls were even?
- NO! The conditional probabilities put very low weight on long sequences of rolls without stopping
- We can again explicitly compute this expected value

- ► For a general N sided die:
 - ► Let *T* be the random variable which is the number of rolls until the first 6
 - \blacktriangleright Let E be the event that all rolls are even

$$\begin{split} \mathbb{E}[T|E] &= \sum_{k=1}^{\infty} k \mathbb{P}(T=k|E) \\ &= \sum_{k=1}^{\infty} k \frac{\mathbb{P}(T=k \text{ and } E)}{\mathbb{P}(E)} \end{split}$$

▶ It is not difficult to compute $\mathbb{P}(T = k \text{ and } E)$ and $\mathbb{P}(E)$:

$$\mathbb{P}(T = k \text{ and } E) = \left(\frac{\frac{N}{2} - 1}{N}\right)^{k-1} \frac{1}{N}$$
$$\mathbb{P}(E) = \sum_{k=1}^{\infty} \left(\frac{\frac{N}{2} - 1}{N}\right)^{k-1} \frac{1}{N}$$

The rest of the computation is a simple exercise in infinite series summation

$$\mathbb{E}[T|E] = \frac{2N}{N+2}$$

The rest of the computation is a simple exercise in infinite series summation

$$\mathbb{E}[T|E] = \frac{2N}{N+2}$$

 \blacktriangleright For the original 6-sided die, the result is 1.5

The rest of the computation is a simple exercise in infinite series summation

$$\mathbb{E}[T|E] = \frac{2N}{N+2}$$

- For the original 6-sided die, the result is 1.5
- ▶ For the one-million-sided die, the result is $\frac{1,000,000}{500,001} \approx 1.999996$

The rest of the computation is a simple exercise in infinite series summation

$$\mathbb{E}[T|E] = \frac{2N}{N+2}$$

- For the original 6-sided die, the result is 1.5
- ▶ For the one-million-sided die, the result is $\frac{1,000,000}{500,001} \approx 1.999996$
- Less than 2!

 \blacktriangleright Consider the 2-dimensional unit sphere with the standard embedding in \mathbb{R}^3

- \blacktriangleright Consider the 2-dimensional unit sphere with the standard embedding in \mathbb{R}^3
- ► Let X be a random point **uniformly distributed** on the sphere

- \blacktriangleright Consider the 2-dimensional unit sphere with the standard embedding in \mathbb{R}^3
- ► Let X be a random point **uniformly distributed** on the sphere
- We parameterize X in spherical coordinates

 $X = (\cos(\theta)\cos(\varphi), \sin(\theta)\cos(\varphi), \sin(\varphi))$

with $\theta \in [0,2\pi]$ and $\varphi \in [-\frac{\pi}{2},\frac{\pi}{2}]$

- \blacktriangleright Consider the 2-dimensional unit sphere with the standard embedding in \mathbb{R}^3
- ► Let X be a random point **uniformly distributed** on the sphere
- We parameterize X in spherical coordinates

 $X = (\cos(\theta)\cos(\varphi), \sin(\theta)\cos(\varphi), \sin(\varphi))$

with $\theta \in [0,2\pi]$ and $\varphi \in [-\frac{\pi}{2},\frac{\pi}{2}]$

• The random variables θ and φ are **independent** with densities

$$f_1(\theta) = \frac{1}{2\pi}$$
 $f_2(\varphi) = \frac{1}{2}\cos(\varphi)$

- \blacktriangleright Consider the 2-dimensional unit sphere with the standard embedding in \mathbb{R}^3
- ► Let *X* be a random point **uniformly distributed** on the sphere
- We parameterize X in spherical coordinates

 $X = (\cos(\theta)\cos(\varphi), \sin(\theta)\cos(\varphi), \sin(\varphi))$

with $\theta \in [0,2\pi]$ and $\varphi \in [-\frac{\pi}{2},\frac{\pi}{2}]$

- ► The random variables θ and φ are **independent** with densities $f_1(\theta) = \frac{1}{2\pi}$ $f_2(\varphi) = \frac{1}{2}\cos(\varphi)$
- Thus, when parameterized in spherical coordinates the density of X is

$$f(\theta,\varphi) = \frac{1}{4\pi}\cos(\varphi)$$

What is the conditional distribution of X on a great circle?

- What is the conditional distribution of X on a great circle?
 - ► X is **uniformly distributed** and great circles have a nice straightforward **symmetry** to them

- What is the conditional distribution of X on a great circle?
 - ► X is **uniformly distributed** and great circles have a nice straightforward **symmetry** to them
 - ► The conditional distribution is **uniform** on any great circle

- What is the conditional distribution of X on a great circle?
 - ► X is **uniformly distributed** and great circles have a nice straightforward **symmetry** to them
 - The conditional distribution is uniform on any great circle
- We can explicitly confirm this conditional distribution

- What is the conditional distribution of X on a great circle?
 - ► X is **uniformly distributed** and great circles have a nice straightforward **symmetry** to them
 - The conditional distribution is uniform on any great circle
- We can explicitly confirm this conditional distribution
- \blacktriangleright Consider the equator given by $\varphi=0$

$$f_1(\theta) = \frac{1}{2\pi}, \quad \theta \in [0, 2\pi] \implies \text{uniform on equator}$$

- What is the conditional distribution of X on a great circle?
 - ► X is **uniformly distributed** and great circles have a nice straightforward **symmetry** to them
 - The conditional distribution is uniform on any great circle
- We can explicitly confirm this conditional distribution

• Consider the equator given by
$$\varphi = 0$$

 $f_1(\theta) = \frac{1}{2\pi}, \quad \theta \in [0, 2\pi] \implies$ uniform on equator

 \blacktriangleright Consider also a great circle connecting the poles, like $\theta=0$

$$f_2(\varphi) = rac{1}{2}\cos(\varphi), \quad \varphi \in \left[-rac{\pi}{2}, rac{\pi}{2}
ight] \implies ext{not uniform!}$$

- What is the conditional distribution of X on a great circle?
 - ► X is **uniformly distributed** and great circles have a nice straightforward **symmetry** to them
 - ► The conditional distribution is uniform on any great circle
- We can explicitly confirm this conditional distribution
- Consider the equator given by $\varphi = 0$ $f_1(\theta) = \frac{1}{2\pi}, \quad \theta \in [0, 2\pi] \implies$ uniform on equator
- \blacktriangleright Consider also a great circle connecting the poles, like $\theta=0$

$$f_2(\varphi) = rac{1}{2}\cos(\varphi), \quad \varphi \in \left[-rac{\pi}{2}, rac{\pi}{2}
ight] \implies ext{not uniform!}$$

- The original statement of the problem is rotationally symmetric
- How can the choice of parameterization affect the result?

- The original statement of the problem is rotationally symmetric
- How can the choice of parameterization affect the result?
- Conditional expectations and conditional probabilities are not defined on events with probability zero!

- The original statement of the problem is rotationally symmetric
- How can the choice of parameterization affect the result?
- Conditional expectations and conditional probabilities are not defined on events with probability zero!
 - Conditional distributions come from conditional probabilities

- The original statement of the problem is rotationally symmetric
- How can the choice of parameterization affect the result?
- Conditional expectations and conditional probabilities are not defined on events with probability zero!
 - Conditional distributions come from conditional probabilities
- Conditional densities are perfectly fine to deal with, but a density function always appears inside an integral!

► Alice rolls a die until a result of 6 is seen three times

- ► Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row

- ► Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!
- Both can be computed explicitly, but we won't do that here
 - In particular, Bob's time is typically done with computations related to a Markov chain

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!
- Both can be computed explicitly, but we won't do that here
 - In particular, Bob's time is typically done with computations related to a Markov chain
- Results by Monte Carlo simulation:

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!
- Both can be computed explicitly, but we won't do that here
 - In particular, Bob's time is typically done with computations related to a Markov chain
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 18 rolls

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!
- Both can be computed explicitly, but we won't do that here
 - In particular, Bob's time is typically done with computations related to a Markov chain
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 18 rolls
 - Bob finishes with an average of 258 rolls

Did you like the dice question?

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!
- Both can be computed explicitly, but we won't do that here
 - In particular, Bob's time is typically done with computations related to a Markov chain
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 18 rolls
 - Bob finishes with an average of 258 rolls
 - Note: $258 = 6 + 6^2 + 6^3$

Did you like the dice question?

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls? !!!
- Both can be computed explicitly, but we won't do that here
 - In particular, Bob's time is typically done with computations related to a Markov chain
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 18 rolls
 - Bob finishes with an average of 258 rolls
 - Note: $258 = 6 + 6^2 + 6^3$
- This makes sense because in order to roll three 6's in a row you need to roll at least three 6's

- ► Alice rolls a die until a result of 6 is seen three times
- Bob rolls a die until a result of 6 is seen three times in a row

- Alice rolls a die until a result of 6 is seen three times
- ► Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls conditional on all rolls being even? !!!

- Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls conditional on all rolls being even? !!!
- Results by Monte Carlo simulation:

- ► Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls conditional on all rolls being even? !!!
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 4.5 rolls

- ► Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls conditional on all rolls being even? !!!
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 4.5 rolls
 - **Bob** finishes with an average of ≈ 3.8 rolls

- ► Alice rolls a die until a result of 6 is seen three times
- ▶ Bob rolls a die until a result of 6 is seen three times in a row
- Who has a lower expected number of rolls conditional on all rolls being even? !!!
- Results by Monte Carlo simulation:
 - Alice finishes with an average of 4.5 rolls
 - **Bob** finishes with an average of ≈ 3.8 rolls
- Even though you have to roll at least three in order to roll three in a row, the skewed probabilities push the likelihood of finishing with a run of three towards the beginning

► Alice flips a coin repeatedly until seeing the sequence HTH

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT

- ► Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!

- ► Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same
- Suppose the sequence begins as ...xxHT and put yourself in the shoes of each player

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same
- Suppose the sequence begins as ...xxHT and put yourself in the shoes of each player
 - If Alice doesn't end on the next flip (...xxHTT) she has to begin all over again

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same
- Suppose the sequence begins as ...xxHT and put yourself in the shoes of each player
 - If Alice doesn't end on the next flip (...xxHTT) she has to begin all over again
 - But if Bob doesn't end on the next flip (...xxHTH) he has already begun his target sequence again

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same
- Suppose the sequence begins as ...xxHT and put yourself in the shoes of each player
 - If Alice doesn't end on the next flip (...xxHTT) she has to begin all over again
 - But if Bob doesn't end on the next flip (...xxHTH) he has already begun his target sequence again
- Another great exercise in computations using Markov chains

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same
- Suppose the sequence begins as ...xxHT and put yourself in the shoes of each player
 - If Alice doesn't end on the next flip (...xxHTT) she has to begin all over again
 - But if Bob doesn't end on the next flip (...xxHTH) he has already begun his target sequence again
- Another great exercise in computations using Markov chains
 - ▶ Alice finishes on average with 10 rolls

- Alice flips a coin repeatedly until seeing the sequence HTH
- Bob flips a coin repeatedly until seeing the sequence HTT
- Who has a lower expected number of coin flips? !!!
 - All sequences of coin flips are equally likely
 - Obviously the expectations are the same
- Suppose the sequence begins as ...xxHT and put yourself in the shoes of each player
 - If Alice doesn't end on the next flip (...xxHTT) she has to begin all over again
 - But if Bob doesn't end on the next flip (...xxHTH) he has already begun his target sequence again
- Another great exercise in computations using Markov chains
 - ▶ Alice finishes on average with 10 rolls
 - **Bob** finishes on average with 8 rolls

A coin is flipped repeatedly

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!
 - Alice's sequence takes fewer rolls to see on average compared to Bob's, so Alice wins

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!
 - Alice's sequence takes fewer rolls to see on average compared to Bob's, so Alice wins

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!
 - Alice's sequence takes fewer rolls to see on average compared to Bob's, so Alice wins
- Consider again that the sequence starts with ...xxHT

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!
 - Alice's sequence takes fewer rolls to see on average compared to Bob's, so Alice wins
- Consider again that the sequence starts with ...xxHT
- They are equally likely to win from this point

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!
 - Alice's sequence takes fewer rolls to see on average compared to Bob's, so Alice wins
- Consider again that the sequence starts with ...xxHT
- They are equally likely to win from this point
- Penny's Game is non-transitive:

- A coin is flipped repeatedly
- If HTH is seen before HTT, Alice wins
- If HTT is seen before HTH, Bob wins
- Who has the higher chance of winning? !!!
 - Alice's sequence takes fewer rolls to see on average compared to Bob's, so Alice wins
- Consider again that the sequence starts with ...xxHT
- They are equally likely to win from this point
- Penny's Game is **non-transitive**:
 - ► For any sequence of three coin tosses, there is a different sequence that has greater than 0.5 probability of winning

What are the lessons here?

- Humans often don't have good intuition for probability
- This is especially true for conditional probability
 - Every example given involved conditional probabilities, except for the first (Birthday Paradox) and the last (Penny's Game)
- Every example was also veridical, except the Great Circle Paradox which is somewhere on the boundary between veridical and falsidical

Conditional Expectation (measure theoretic)

 This talk is not complete without the definition of conditional expectation

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let X be an integrable random variable, and let \mathcal{G} be a sub- σ -algebra of \mathcal{F} .

Suppose a random variable Y is $\mathcal G\text{-measurable}$ and satisfies

$$\int_A Y d\mathbb{P} = \int_A X d\mathbb{P}$$

for all $A \in \mathbb{G}$. Then we call Y the **conditional expectation** of X given \mathcal{G} and write

$$Y = \mathbb{E}[X|\mathcal{G}]$$

From this we define ${\bf conditional\ probability}$ of and event E given ${\mathcal G}$ to be

$$\mathbb{P}(E|\mathcal{G}) = \mathbb{E}[1_E|\mathcal{G}]$$

Thanks for your attention!

Ryan Donnelly

ryan.f.donnelly@kcl.ac.uk

