Measure the surface area of this shape:

 $\int \int dxdy$ $= \iint 1_A dxdy$ IR^2

- = Limh h² (Number of)
- = Lim h² (Number of ,)

Measure the surface area of this shape:

Make a model using some homogeneous sheet material, then measure with a scale.

Use a planimeter!

George Green (1793-1841): Green's formula

Divergence Theorem

Lagrange, Gauss, Ostrogradskii

Stokes, deRham

$$\iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy = \oint_{\partial D} (-P dy + Q dx)$$

P(x, y) Vector field Q(x, y)

Flow of a gas in the plane.

$$\iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy = \oint_{\partial D} (-P dy + Q dx)$$

Creation inside D Flow through 2D

$$P(x, y) = x$$
 $Q(x, y) = y$

Flow of a gas in the plane.

ydx - xdy

2 Area(D) =
$$\iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dx dy = \oint_{\partial D} (-P dy + Q dx)$$

Creation inside D Flow through 2D

₩ TexNotes.tex — Edited

Labels Templates

NOTES

TexNotes.pdf

(*) A Q Q

Q Search

ETER JOSSEN, FEBRUARY 22, 2025

meter at the origin in the Euclidean plane \mathbb{R}^2 , and denote by m rm and the tracer arm respectively, as indicated in the following

ple, differentiable curve enclosing the domain D. According to a of D is equal to

$$dx) = \frac{1}{2} \int_0^1 c_1(t)c_2'(t) - c_2(t)c_1'(t)dt = \frac{1}{2} \int_0^1 r^2(t)\varphi'(t)dt$$

TexNotes.tex — Edited

NOTES

TexNotes.pdf

Q Search

PETER JOSSEN, FEBRUARY 22, 2025

We place the basis of the planimeter at the origin in the Euclidean plane \mathbb{R}^2 , and denote by m and l the lengths of the guiding arm and the tracer arm respectively, as indicated in the following diagram.

Denote by $c:[0,1] \longrightarrow \mathbb{R}^2$ a simple, differentiable curve enclosing the domain D. According to Green's Theorem, the surface area of D is equal to

Area(D) =
$$\frac{1}{2} \int_{\gamma} (xdy - ydx) = \frac{1}{2} \int_{0}^{1} c_{1}(t)c_{2}'(t) - c_{2}(t)c_{1}'(t)dt = \frac{1}{2} \int_{0}^{1} r^{2}(t)\varphi'(t)dt$$

"I had a feeling once about Mathematics – that I saw it all. Depth beyond depth was revealed to me – the Byss and Abyss. I saw – as one might see the transit of Venus or even the Lord Mayor's Show – a quantity passing through infinity and changing its sign from plus to minus. I saw exactly why it happened and why the tergiversation was

inevitable but it was after dinner and I let it go."