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Motivation

The first time you were ever asked to add fractions, you probably thought:
a
b + c

d = a + c
b + d . (1)

You were told by your teacher that this is wrong, and the correct way was:

a
b + c

d = ad + bc
bd . (2)

If this can be reassuring, you weren’t completely wrong!
Expression (1) is called a Farey sum.
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Motivation

Let the denominator map be the map given by

DZ : Q → Z>0, x ↑→ DZ(x) := b,

where x = a
b , with gcd(a, b) = 1 and b > 0.

Write the Farey sum using the notations ↓ and DZ, we get

x ↓ y = DZ(x)x + DZ(y)y
DZ(x) + DZ(y) .

Farey sums are just weighted averages! And have lots of nice properties!
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Farey sequence

The Farey sequence F is defined using the following rules:
1 First two elements in F are 0 and 1, and are Farey neighbours.
2 For x , y ↔ F, if x and y are Farey neighbours, add x ↓ y to F, and

declare that the Farey neighbours of x ↓ y are x and y .
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Farey sequence

Facts.
a The Farey sequence F is simply a reordering of the set of all rational

numbers in the interval [0, 1] by the size of their denominators.
b As we keep repeating this procedure, we will eventually reach any

rational number 0 < x < 1.
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Farey neighbours

1 Let F be the set of all rational numbers in the interval [0, 1].
2 Recall that 0 and 1 are Farey neighbours.
3 For x ↔ F, with 0 < x < 1, consider the set

Fx := {y ↔ F : DZ(y) < DZ(x)} .

Note that Fx is finite (Exercise).
The Farey neighbours of x are the two elements in x1, x2 ↔ Fx , with
the largest denominators, such that x1 < x < x2.
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Farey tiling of the Poincaré upper half plane

The Poincaré upper half plane is defined by

H := {z ↔ C : Im(z) > 0} .

The Farey tiling or tessellation of H is obtained as follows:
1 If x , y ↔ F are Farey neighbours, join them by a semi-circle centred on

the x -axis.
2 Draw vertical lines from 0, 1 towards ↗.
3 For any integer n ↔ Z, translate the above picture by n.
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Farey tiling of the Poincaré upper half plane
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Farey tiling of the Poincaré upper half plane
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Farey tiling of the Poincaré upper half plane

Remark.
1 Farey tiling is a very important 2-dimensional hyperbolic geometry.
2 In hyperbolic geometry, one can show that the (basic) hyperbolic

triangles are all isometric.
3 In hyperbolic geometry, the shortest distance between any two points

z , z → ↔ H is the length of the arc on a semi-circle centred on the
x -axis going through z and z →.

4 The Farey titling uses those semi-circles that touch the x -axis at
Farey neighbours.
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Möbius action on Poincaré upper half plane

SL2(Z) ↘ H → H

(ω, z) ↑→ ω · z := az + b
cz + d , ω :=

(
a b
c d

)

.

This is well-defined because:
1 cz + d ≃= 0, for all c , d ↔ R since Im(z) > 0.
2 Im(ωz) = Im(z)

|cz + d |2 , for all z ↔ H and ω ↔ SL2(Z).

Theorem
For all ω ↔ SL2(Z), the map (H → H, z ↑→ ωz) is bi-holomorphic. The
inverse holomorphic map is given by (H → H, z ↑→ ω↑1z).

Lassina Dembélé (King’s) Farey neighbours and tilings CLR 2025



Extended Poincaré upper half plane
Cusps: P1(Q) := Q ⇐ {↗}.
Extended upper half plane: H

↓ := H ⇐ P1(Q).

For a cusp ε ↔ P1(Q), set

ωε :=






↗, if ε = ⇒d
c ;

aε + b
cε + d , if ε /↔ {⇒d

c , ↗};

a
c , if ε = ↗.

Get extended action:

SL2(Z) ↘ H
↓ → H

↓

(ω, z) ↑→ ωz := az + b
cz + d
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Distance to a cusp
The Siegel distance to a cusp is defined by

P1(Q) ↘ H → R>0
(ε, z) ↑→ d(ε, z), z := x + it, x ↔ R, t ↔ R>0,

d(ε, z) :=






1
t , if ε = ↗,

DZ(ε)(x ⇒ ε)2 + t2

t , else.

Theorem
The distance map is SL2(Z)-invariant, i.e.

d(ωε, ωz) = d(ε, z), for all z ↔ H and ε ↔ P1(Q).
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Equidistant locus to two distinct cusps

The equidistant locus to two distinct cusps ε, ϑ ↔ P1(Q) is defined by

!(ε, ϑ) := {z ↔ H : d(ε, z) = d(ϑ, z)}.

Theorem
Let ε, ϑ ↔ P1(Q) be distinct cusp. Then, we have

!(ε, ϑ) =






C(ε, DZ(ε)↑1), if ϑ = ↗.
C(ε ⇑ ϑ, ϖ(ε, ϑ)), if ε, ϑ ≃= ↗, DZ(ε) ≃= DZ(ϑ),
{z ↔ H : |z ⇒ ε| = |z ⇒ ϑ |}, else.

where C(ε, ϖ) is the circle of centre ε and radius ϖ,

ϖ(ε, ϑ) := DZ(ε) DZ(ϑ)|ε ⇒ ϑ |
| DZ(ε) ⇒ DZ(ϑ)| .
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Farey neighbours and equidistant locus

Theorem
Let ε ↔ P1(Q) be a finite cusp such that 0 < ε < 1. Let 0 ⇓ ϑ1, ϑ2 ⇓ 1
two finite cusps such that DZ(ϑ1), DZ(ϑ2) < DZ(ε). Then, ϑ1 and ϑ2 are
the Farey neighbours of ε if and only if ϖ(ε, ϑ1) and ϖ(ε, ϑ2) are the two
smallest equidistant radii among such cusps. In that case, we have

ϖ(ε, ϑ1) = 1
DZ(ε ⇑ ϑ1) ,

ϖ(ε, ϑ2) = 1
DZ(ε ⇑ ϑ2) .
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Farey graph

Theorem
Let ε ↔ P1(Q) be a finite cusp such that 0 < ε < 1, and ϑ1 and ϑ2 be the
Farey neighbours of ε. Then, the circles C(ε ⇑ ϑ1, ϖ(ε, ϑ1)) and
C(ε ⇑ ϑ2, ϖ(ε, ϑ2)) intersect at a unique point zω ↔ H.

We call zω the Farey vertex at ε.
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Farey graph

The geometric Farey graph G = (V , E ) is obtained as follows:
1 V consists of all the Farey vertices associated to (finite) cusps.
2 Let ε ↔ P1(Q) be a finite cusp such that 0 < ε < 1; and let ϑ1 and ϑ2

be the Farey neighbours of ε. We connect zω to zω↔ε1 and zω↔ε2 with
the arc on the semi-circles C(ε ⇑ ϑ1, ϖ(ε, ϑ1)) and C(ε ⇑ ϑ2, ϖ(ε, ϑ2)).
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Farey graph: Denominator at most 5
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Farey graph: Denominator at most 20
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Farey graph: Denominator at most 20

0 1�1 1
2�1

2
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Application

Theorem
Every matrix ω ↔ SL2(Z) can be written as a finite product (word) in

T :=
(

1 1
0 1

)

and S :=
(

0 1
⇒1 0

)

.

Lassina Dembélé (King’s) Farey neighbours and tilings CLR 2025



Thank you for your attention!
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