Farey neighbours and tilings of the Poincaré upper half plane

Lassina Dembélé

King's College London

Cumberland Lodge Retreat – 23 February 2025

Lassina Dembélé (King's)

Farey neighbours and tilings

The first time you were ever asked to add fractions, you probably thought:

$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}.$$
 (1)

You were told by your teacher that this is wrong, and the correct way was:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$
 (2)

If this can be reassuring, you weren't completely wrong! Expression (1) is called a Farey sum. Let the denominator map be the map given by

 $\mathsf{D}_{\mathbb{Z}}: \mathbb{Q} \to \mathbb{Z}_{>0}, \ x \mapsto \mathsf{D}_{\mathbb{Z}}(x) := b,$

where $x = \frac{a}{b}$, with gcd(a, b) = 1 and b > 0.

Write the Farey sum using the notations \oplus and $D_{\mathbb{Z}},$ we get

$$x \oplus y = \frac{\mathsf{D}_{\mathbb{Z}}(x)x + \mathsf{D}_{\mathbb{Z}}(y)y}{\mathsf{D}_{\mathbb{Z}}(x) + \mathsf{D}_{\mathbb{Z}}(y)}.$$

Farey sums are just weighted averages! And have lots of nice properties!

イロト イポト イヨト ・ヨー

The Farey sequence \mathfrak{F} is defined using the following rules:

- **(**) First two elements in \mathfrak{F} are 0 and 1, and are Farey neighbours.
- ② For x, y ∈ 𝔅, if x and y are Farey neighbours, add x ⊕ y to 𝔅, and declare that the Farey neighbours of x ⊕ y are x and y.

\mathfrak{F}_1 :						0		1						
\mathfrak{F}_2 :						0	$\frac{1}{2}$	1						
\mathfrak{F}_3 :					0	$\frac{1}{3}$	$\frac{\overline{1}}{2}$	$\frac{2}{3}$	1					
\mathfrak{F}_4 :				0	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{2}{3}$	$\frac{3}{4}$	1				
\mathfrak{F}_5 :		0	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{\overline{1}}{2}$	$\frac{3}{5}$	$\frac{2}{3}$	$\frac{3}{4}$	$\frac{4}{5}$	1		
F6 :	0	$\frac{1}{6}$	1	$\frac{1}{4}$	1/2	2	$\frac{1}{2}$	3	$\frac{2}{2}$	3	4	5	1	

Facts.

- The Farey sequence \$\vec{s}\$ is simply a reordering of the set of all rational numbers in the interval [0, 1] by the size of their denominators.
- As we keep repeating this procedure, we will eventually reach any rational number 0 < x < 1.

- **(**) Let \mathfrak{F} be the set of all rational numbers in the interval [0, 1].
- Recall that 0 and 1 are Farey neighbours.
- For $x \in \mathfrak{F}$, with 0 < x < 1, consider the set

 $\mathfrak{F}_{x} := \{ y \in \mathfrak{F} : \mathsf{D}_{\mathbb{Z}}(y) < \mathsf{D}_{\mathbb{Z}}(x) \} .$

Note that \mathfrak{F}_x is finite (Exercise).

The Farey neighbours of x are the two elements in $x_1, x_2 \in \mathfrak{F}_x$, with the largest denominators, such that $x_1 < x < x_2$.

The Poincaré upper half plane is defined by

$$\mathfrak{H}:=\left\{z\in\mathbb{C}:\mathrm{Im}(z)>0
ight\}.$$

The Farey tiling or tessellation of \mathfrak{H} is obtained as follows:

- If $x, y \in \mathfrak{F}$ are Farey neighbours, join them by a semi-circle centred on the *x*-axis.
- 2 Draw vertical lines from 0, 1 towards ∞ .
- **③** For any integer $n \in \mathbb{Z}$, translate the above picture by n.

Farey tiling of the Poincaré upper half plane

æ

Farey tiling of the Poincaré upper half plane

Lassina Dembélé (King's)

CLR 2025

Remark.

- Farey tiling is a very important 2-dimensional hyperbolic geometry.
- In hyperbolic geometry, one can show that the (basic) hyperbolic triangles are all isometric.
- In hyperbolic geometry, the shortest distance between any two points z, z' ∈ ℌ is the length of the arc on a semi-circle centred on the x-axis going through z and z'.
- The Farey titling uses those semi-circles that touch the x-axis at Farey neighbours.

Möbius action on Poincaré upper half plane

$$\mathsf{SL}_2(\mathbb{Z}) imes \mathfrak{H} o \mathfrak{H}$$

 $(\gamma, z) \mapsto \gamma \cdot z := rac{az+b}{cz+d}, \ \gamma := egin{pmatrix} a & b \ c & d \end{pmatrix}.$

This is well-defined because:

Theorem

For all $\gamma \in SL_2(\mathbb{Z})$, the map $(\mathfrak{H} \to \mathfrak{H}, z \mapsto \gamma z)$ is bi-holomorphic. The inverse holomorphic map is given by $(\mathfrak{H} \to \mathfrak{H}, z \mapsto \gamma^{-1}z)$.

Lassina Dembélé (King's)

Extended Poincaré upper half plane

• Cusps:
$$\mathbf{P}^1(\mathbb{Q}) := \mathbb{Q} \cup \{\infty\}.$$

• Extended upper half plane: $\mathfrak{H}^* := \mathfrak{H} \cup \mathsf{P}^1(\mathbb{Q}).$

For a cusp $\sigma \in \mathbf{P}^1(\mathbb{Q})$, set

$$\gamma \sigma := \begin{cases} \infty, & \text{if } \sigma = -\frac{d}{c}; \\ \frac{a\sigma + b}{c\sigma + d}, & \text{if } \sigma \notin \{-\frac{d}{c}, \infty\}; \end{cases} \begin{array}{c|c} \sigma & \vdots & \vdots \\ \hline a \\ \frac{a}{c}, & \text{if } \sigma = \infty. \end{cases}$$

Get extended action:

$$\mathsf{SL}_2(\mathbb{Z}) imes \mathfrak{H}^* o \mathfrak{H}^*$$

 $(\gamma, z) \mapsto \gamma z := rac{az+b}{cz+d}$

CLR 2025

8

Distance to a cusp

The Siegel distance to a cusp is defined by

$$egin{aligned} \mathbf{P}^1(\mathbb{Q}) imes \mathfrak{H} o \mathbb{R}_{>0} \ (\sigma, z) \mapsto d(\sigma, z), \, \, z := x + it, x \in \mathbb{R}, t \in \mathbb{R}_{>0}, \end{aligned}$$

Theorem

The distance map is $SL_2(\mathbb{Z})$ -invariant, i.e.

$$\mathsf{d}(\gamma\sigma,\gamma z)=\mathsf{d}(\sigma,z),\,\, ext{for all }z\in\mathfrak{H}\,\, ext{and }\sigma\in\mathsf{P}^1(\mathbb{Q}).$$

Lassina Dembélé (King's)

Farey neighbours and tilings

CLR 2025

∃⇒

・ロッ ・ 一 ・ ・ ・ ・

Equidistant locus to two distinct cusps

The equidistant locus to two distinct cusps $\sigma, \tau \in \mathbf{P}^1(\mathbb{Q})$ is defined by

$$\Delta(\sigma,\tau) := \{z \in \mathfrak{H} : d(\sigma,z) = d(\tau,z)\}.$$

Theorem

Let $\sigma, \tau \in \mathbf{P}^1(\mathbb{Q})$ be distinct cusp. Then, we have

$$\Delta(\sigma,\tau) = \begin{cases} C(\sigma, \mathsf{D}_{\mathbb{Z}}(\sigma)^{-1}), & \text{if } \tau = \infty.\\ C(\sigma \ominus \tau, \varrho(\sigma, \tau)), & \text{if } \sigma, \tau \neq \infty, \ \mathsf{D}_{\mathbb{Z}}(\sigma) \neq \mathsf{D}_{\mathbb{Z}}(\tau),\\ \{z \in \mathfrak{H} : |z - \sigma| = |z - \tau|\}, & \textit{else.} \end{cases}$$

where $C(\sigma, \varrho)$ is the circle of centre σ and radius ϱ ,

$$\varrho(\sigma,\tau) := \frac{\mathsf{D}_{\mathbb{Z}}(\sigma)\,\mathsf{D}_{\mathbb{Z}}(\tau)|\sigma-\tau|}{|\,\mathsf{D}_{\mathbb{Z}}(\sigma)-\mathsf{D}_{\mathbb{Z}}(\tau)|}.$$

< ロ > < 同 > < 三 > < 三 >

э

Theorem

Let $\sigma \in \mathbf{P}^1(\mathbb{Q})$ be a finite cusp such that $0 < \sigma < 1$. Let $0 \le \tau_1, \tau_2 \le 1$ two finite cusps such that $D_{\mathbb{Z}}(\tau_1), D_{\mathbb{Z}}(\tau_2) < D_{\mathbb{Z}}(\sigma)$. Then, τ_1 and τ_2 are the Farey neighbours of σ if and only if $\varrho(\sigma, \tau_1)$ and $\varrho(\sigma, \tau_2)$ are the two smallest equidistant radii among such cusps. In that case, we have

$$arrho(\sigma, au_1) = rac{1}{\mathsf{D}_{\mathbb{Z}}(\sigma\ominus au_1)},
onumber \ arrho(\sigma, au_2) = rac{1}{\mathsf{D}_{\mathbb{Z}}(\sigma\ominus au_2)}.$$

Farey graph

Theorem

Let $\sigma \in \mathbf{P}^1(\mathbb{Q})$ be a finite cusp such that $0 < \sigma < 1$, and τ_1 and τ_2 be the Farey neighbours of σ . Then, the circles $C(\sigma \ominus \tau_1, \varrho(\sigma, \tau_1))$ and $C(\sigma \ominus \tau_2, \varrho(\sigma, \tau_2))$ intersect at a unique point $z_{\sigma} \in \mathfrak{H}$.

CLR 2025

- The geometric Farey graph G = (V, E) is obtained as follows:
 - V consists of all the Farey vertices associated to (finite) cusps.
 - 2 Let σ ∈ P¹(Q) be a finite cusp such that 0 < σ < 1; and let τ₁ and τ₂ be the Farey neighbours of σ. We connect z_σ to z_{σ⊕τ1} and z_{σ⊕τ2} with the arc on the semi-circles C(σ ⊖ τ₁, ρ(σ, τ₁)) and C(σ ⊖ τ₂, ρ(σ, τ₂)).

Farey graph: Denominator at most 5

CLR 2025

Farey graph: Denominator at most 20

Farey graph: Denominator at most 20

CLR 2025

э

Theorem

Every matrix $\gamma \in \mathsf{SL}_2(\mathbb{Z})$ can be written as a finite product (word) in

$$T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and $S := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

• • = • • = •

æ

Thank you for your attention!

æ