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A Novel Method for Strategy Acquisition and
its Application to a Double-Auction Market

Game

Steve Phelps, Peter McBurney, Simon Parsons

Abstract—We introduce a method for strategy-
acquisition in non-zero-sum n-player games, and empiri-
cally validate it by applying it to a well-known benchmark
problem in this domain, viz the double-auction market.
Many existing approaches to strategy-acquisition focus on
attempting to find strategies that are robust in the sense
that they are good all-round performers against all-comers.
We argue that in many economic and multi-agent scenarios
the robustness criterion is inappropriate; in contrast, our
method focusses on searching for strategies that are likely
to be adopted by participating agents, formalised as the
size of a strategy’s basins of attraction under the replicator
dynamics.

I. INTRODUCTION

We introduce a heuristic method for searching for
strategies in multi-agent interactions such as auction mar-
ketplaces. Many existing heuristic methods for strategy
acquisition, such as co-evolutionary search, attempt to
search for strategies which yield high payoff irrespective
of opponents’ behaviour [1]. In contrast, our method
searches for strategies that are likely to be adopted by a
population of agents using social learning [2, p. 67]. We
shall argue that the latter criteria is particularly useful
in the context of a mechanism design [3] problem. In a
mechanism design problem, the task of the designer is
to choose the rules of a game, such as an auction, in
such a way that the designer’s objectives are met when
agents play their equilibrium strategies.

The traditional approach to mechanism design in-
volves evaluating outcomes under conditions of Nash
equilibria [4]. There are two main difficulties with this
approach. Firstly, the traditional game-theoretic approach
assumes that the space of strategies for each agent is
common knowledge. However, in many realistic multi-
agent interactions, the space of possible policies for
each agent is not known apriori, making computation
of the Nash equilibria intractable in the general case.
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Secondly, for arbitrary mechanisms we may observe
multiple equilibria for a given game and it may not
be clear which of these multiple potential outcomes are
likely to be adopted in the long-run.

This paper focuses on a specific problem domain –
the double auction. The double auction has come to
be recognized as an important benchmark problem, in
both economics and multi-agent systems. In particular, a
landmark workshop held in Santa Fe [5] motivated much
contemporary research in this area by highlighting the
difficulty of agents’ decision problems in non-idealized
variants of this type of marketplace.

The outline of this paper is as follows. In section II
we describe the double-auction game. In section III we
detail the methodology that we use to analyse this game
heuristically. In section IV we formalise a space of
possible strategies for the double-auction. In section V
we formalise the objective-function that we use to search
for new strategies. In section VI we describe the search-
space of strategies. In section VII we describe our search
algorithm. In section VIII we report the results of an
empirical validation of our algorithm. In section IX we
discuss potential applications of our algorithm and we
conclude in section X.

II. THE DOUBLE AUCTION MARKET

A double-auction is a generalisation of the more
commonly-known single-sided auctions in which a sin-
gle seller sells goods to multiple competing buyers (or
the reverse). In a double-auction, as well as multiple
buyers competing against each other resulting in price
rises, multiple sellers of the same commodity compete
against each other resulting in price falls. Institutions of
this type are also known as exchanges.

Our model of the double-auction is adapted from [6],
[7], [8], [9], and is an attempt to describe these different
market scenarios within a unified model. In this model,
time is represented in discrete slices t ∈ N. We will
follow the convention of representing the value of any
time-dependent variable X at time t by subscripting with
t: Xt.

The market place is populated by a finite number of
traders, represented by the set A = {a1, a2, . . . an}. A
single commodity is traded in the market place. The
commodity is traded in discrete, indivisible units.

Traders are divided into two mutually-excusive sets:
buyers, represented by the set B ⊂ A; and sellers,
represented by the set S ⊂ A. We assume that agents
are risk-neutral (utility increases linearly with increased
wealth). Buyers purchase resource for consumption, and
sellers produce sellers for sale. Each agent ai has a
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private valuation vi ∈ R which determines the utility
of a transaction in the marketplace. If a single unit is
transacted at price p then buyers obtain utility vi − p
whereas sellers obtain p− vi.

Trade is conducted through a bidding process in which
agents submit limit-orders for a specified price, quantity,
and direction (buy or sell). Limit-orders are analogous to
bids in a single-sided auction; they specify the maximum
(minimum) price at which an agent is willing to buy
(sell). The double-auction uses a limit-order book to
match orders from opposing directions, producing a
set of transactions which determine the price, quantity
and counter-parties of any given trade in the market.
The process of producing transactions from orders is
called clearing. There are many variants of the double-
auction market; in this paper we analyse a clearing-house
mechanism with uniform-pricing, meaning that: i) orders
from all participants are queued up prior to the clearing
operation, and ii) all trades take place at the same price
(the mid-point of the market-quote as advertised prior to
clearing).

III. METHODOLOGY

Since a traditional game-theoretic analysis of the
double-auction is intractable [10], we analyse the double-
auction market game using the heuristic methodology
described in [11], [10]. The central idea is to restrict
attention to small representative sample of “heuristic”
strategies that are known to be commonly played in
a given multi-state game. For many complex n-player
games representative of real-world economic interac-
tions, such as the double-auction, unsurprisingly none
of the strategies commonly in use can be proven to
be dominant over the others. Given the absence of a
dominant strategy, it is then natural to ask if there are
mixtures of these “pure” strategies that constitute game-
theoretic equilibria.

For small numbers of players and heuristic strategies,
we can construct a relatively small normal-form payoff
matrix which is amenable to game-theoretic analysis.
This heuristic payoff matrix is calibrated by running
many iterations of the game; variations in payoffs due
to different player-types (e.g., private valuations) or
stochastic environmental factors (e.g., PRNG seed) are
averaged over many samples of type information result-
ing in a single mean payoff to each player for each cell
in the payoff matrix. Players’ types are assumed to be
drawn independently from the same distribution, and an
agent’s choice of strategy is assumed to be independent
of its type, which allows the payoff matrix to be further
compressed, since we simply need to specify the number
of agents playing each strategy to determine the expected

payoff to each agent. Thus for a game with j strategies,
we represent entries in the heuristic payoff matrix as
vectors of the form

~p = (p1, . . . , pj)

where pi specifies the number of agents who are playing
the ith strategy. Each entry p ∈ P is mapped onto an
outcome vector q ∈ Q of the form

~q = (q1, . . . , qj)

where qi specifies the expected payoff to the ith strategy.
For a game with n agents, the number of entries in the
payoff matrix is given by

s =
(n + j − 1)!
n!(j − 1)!

For small n and small j this results in payoff matrices
of manageable size; for j = 3 and n = 6, 8, and 10
we have s = 28, 45, and 66 respectively. Although
this technique is only tractable for small numbers of
simultaneous players n, these are precisely the scenarios
that are typically more difficult to analyse. Interactions
amongst small numbers of agents afford more oppor-
tunity for individual agents to have a large effect on
the final outcome, whereas systems with large numbers
of interacting agents can be more readily modelled as
a collection of homogeneous particle-like entities. The
constraint on small j is more limiting; we shall return
this issue in Section VIII-A.

Once the payoff matrix has been computed we can
subject it to a rigorous game-theoretic analysis, search
for Nash equilibria solutions, and apply different models
of learning and evolution, such as the replicator dynam-
ics model, in order to analyse the dynamics of adjustment
to equilibrium.

We use the framework described above to search for
a novel strategy for a specific trading game, viz: the
double-auction. In the next section we describe the space
of heuristic strategies used in our analysis.

IV. HEURISTIC STRATEGIES

Each agent ai has an associated trading strategy ζi,
which specifies a mapping between its valuation vi and
the order that it will place at time t. For simplicity, we
shall assume that: buyers always submit orders to buy
(bids), sellers always submit orders to sell (asks), each
agent only submits orders for a single unit; thus ζ merely
specifies the price of the order according to the strategy
being deployed.

We use three representative classes of strategy: truth-
telling (TT), reinforcement-learning (RL) and Gjerstad-
Dickhaut (GD) which are described in detail below. The
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TT strategy was chosen since it is the simplest strategy
that is able to achieve high efficiency outcomes in a
homogeneous population in the clearing house mecha-
nism; the GD strategy was chosen as a representative
of the class of highly-principled and highly-engineered
strategies that analyse historical market data, and finally
we included reinforcement-learning strategies since they
are commonly used to model human game-playing be-
haviour in experimental economics [12].

A. The Truth-Telling Strategy

The truth-telling strategy (abbreviation TT) simply
places orders equal to the agent’s valuation: ζ(i, t) = vi.

Although it is extremely simple, the truth-telling strat-
egy is of fundamental importance, since in an incentive-
compatible mechanism by definition this strategy is
guaranteed to obtain the optimal payoff for agent ai no
matter what strategies are adopted by the other agents
[13].

B. The Gjerstad-Dickhaut strategy

The Gjerstad-Dickhaut (abbreviation GD) [14] strategy
uses historical data to estimate the probability of a
order being accepted as a function of its price, and
then chooses the price that maximises expected utility
accordingly. This strategy is described in detail in [14].

C. Reinforcement-learning Strategies

Reinforcement-learning strategies rely only on the im-
mediate feedback from interacting with the mechanism;
the surplus that each agent was able to obtain in the most
recent round of trading.

These strategies choose their markup over their valu-
ation price thus:

ζ(i, t) = vi + RLλi
(t)RLµi

⇐⇒ ai ∈ S

ζ(i, t) = vi −RLλi
(t)RLµi

⇐⇒ ai ∈ B

based on a reward signal RLρi
(t) which represents the

utility of the most recent trade of agent ai.
The function RLλi

: N → Θi represents the output of
learning algorithm λ where Θi = [0, RLki

) ⊂ N is the
set of possible outputs from λ.

1) The Dumb-Random learning algorithm: The
dumb-random learning algorithm (abbreviation DR) is
a control algorithm that in fact performs no learning
and chooses actions randomly: RLλi

= δit
, where δit

is a discrete random variable distributed uniformly in
the range [0, RLki

). This algorithm can be used in
control experiments by substituting it for one of the other
algorithms below; if an observation is preserved under
this substitution we can conclude that our observation is
not likely to be due to learning behaviour.

2) The Roth-Erev learning algorithm: The Roth-Erev
algorithm (abbreviation RE) is designed to mimic human
game-playing behaviour in extensive form games [12].
Agents bid probabilistically according to: RLλi

(t) =
REi(t) = δit

where δit
∈ Θi is a discrete random

variable distributed:

P (δit
= x) = REp(x, i, t)

The propensities are initialised based on the scaling
parameter REsi

; ∀ai ∈ A and ∀θ ∈ Θi:

REq(θ, ai, t0) =
REsi

RLki

the REq are then updated based on the experience
function REε:

REq(θ, ai, t) = (1−REρi
)REq(θ, ai, t− 1)

+ REε(θ, ai)

where the experience function depends on the most
recent reward signal RLρ and the last action chosen by
the agent REi(t− 1):

REε(θ, ai, t) = RLρi
(t− 1)[1−REηi

]

⇐⇒ θ = REi(t− 1)

REε(θ, ai, t) = RLρi
(t− 1) REηi

RLki
−1

⇐⇒ θ 6= REi(t− 1)

and then normalized to produce a vector of probabilities;
let Qit

denote the sum of all the propensities for agent
i:

Qit
=

∑

θ∈Θi

REq(θ, ai, t)

Then ∀θ ∈ Θi and ∀ai ∈ A:

REp(θ, ai, t) =
REq(θ, ai, t)

Qit

3) Nicolaisen et al.’s modified Roth-Erev algorithm:
Nicolaisen, Petrov and Tesfatsion [8] (abbreviation NPT)
used a modified version of the Roth-Erev algorithm for
their trading strategy which they used to explore market
power effects in a simulated electricity market:

RLλi
(t) = RE′

i(t)

where RE′
i(t) is computed identically to REi(t) but for

a modification to the experience function:

REε′(θ, ai, t) = RLρi
(t− 1)[1−REηi

]

⇐⇒ θ = RLI(t− 1)

REε′(θ, ai, t) = REqi

REηi

RLki
−1

⇐⇒ θ 6= REi(t− 1)
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4) The Stateless Q-Learning algorithm: The Stateless
Q-learning algorithm (abbreviation SQ) is a single-state
version of a temporal-difference reinforcement-learning
algorithm called Q-Learning [15]. The algorithm main-
tains a table SQQ(θ, ai, t) which can be thought of as
an estimate of the payoff to each possible action θ ∈ Θi.
The estimates are updated using the rule:

SQQ(θ, ai, t + 1) =

SQQ(θ, ai, t) + SQαi

[
RLρi

+

SQγi
max

θ′
SQQ(θ′, ai, t)− SQQ(θ, ai, t)

]

where SQγi
∈ R is a discount factor and SQαi

is a
parameter controlling the rate of convergence.

Actions are chosen to maximise estimated payoff
using an ε-greedy rule:

RLλi
(t) = δit ⇐⇒ ε′it ≤ SQεi

RLλi
(t) = arg max

θ∗
SQQ(θ∗, ai, t) ⇐⇒ ε′it > SQεi

where ε′it ∈ R is a random variable distributed uniformly
on the interval [0, 1] and δit ∈ N is a discrete random
variable distributed uniformly on the interval [0, RLki

−
1].

V. OBJECTIVE FUNCTION

In a conventional game-theoretic analysis, we solve
the game by finding either a dominant strategy or the
Nash equilibria: the sets of strategies that are best-
responses to each other. However, because classical
game-theory is a static analysis, it is not able to make
any predictions about which equilibria are more likely
to occur in practice. Such considerations are of vital
importance in analysing real-world problems. For exam-
ple, if we are interested in using game-theory to analyse
economic outcomes, we should give more consideration
to outcomes that are more likely than low probabil-
ity outcomes; if there is a Nash equilibrium for our
mechanism which yields very low allocative efficiency,
we should not worry too much if this equilibria is
extremely unlikely to occur in practice. On the other
hand, we should give more weight to equilibria with high
probability.

As in [10], we use evolutionary game-theory to model
how agents might gradually adjust their strategies over
time as they learn to improve their behavior in response
to their payoffs. Thus we use the replicator dynamics
equation [16]:

ṁj = [u(ej , ~m)− u(~m, ~m)]mj

where ~m is a mixed-strategy vector, u(~m, ~m) is the mean
payoff when all players play ~m, and u(ej , ~m) is the

average payoff to pure strategy j when all players play
~m, and ṁj is the first derivative of mj with respect to
time. Strategies that gain above-average payoff become
more likely to be played, and this equation models a
simple co-evolutionary process of mimicry learning, in
which agents switch to strategies that appear to be more
successful [2, p. 67].

Those Nash equilibria that are stationary points at
which a larger range of initial states will end up, are
equilibria that are more likely to be reached (assuming
an initial distribution of mj that is uniform); in the
terminology of dynamic systems they have a larger basin
of attraction. The basin of attraction for a stationary
point is proportion of mixed strategies in 4 which have
flows terminating at that point. This intuitive definition
of basin size is formalized as follows. Let the function

T : 4n × 24
n → N

represent the trajectories that terminate at each coordi-
nate in the n-dimensional unit-simplex 4n ⊂ Rn, so that
we have:

T (~x,M ⊂ 4n) =

|{~y : ~y ∈ M ∧ ~m(0) = ~y ∧ ∃t ~m(t) = ~x ∧ ṁ(t) = 0}|
where M is a set of starting points and ~x is a limit state.
Let β(~x,M) denote the proportion of the elements of
M that terminate at ~x:

β(~x,M) =
T (~x,M)
|M | (1)

If we choose a random sample M ⊂ 4 that is distributed
uniformly over the simplex, the function β will provide
us with an estimate of the probability of arriving at any
given stationary point, assuming that all starting points
in the simplex are equally likely; that is, it will provide
an estimate of the true basin size of the limit state ~x,
denoted by β(~x), and:

lim
M→4

β(~x,M) = β(~x)

Our method searches for strategies that are likely to be
adopted under the replicator dynamics. More formally,
we use an objective function that estimates the expected
frequency with which our candidate strategy will be
played in equilibrium outcomes. Thus our objective
function is:

F (i, S, [H]) =
∑

~x∈ε[H]S

β[H](~x,M) · xi (2)

where: i is the index of the candidate heuristic strategy
being evaluated from amongst the set of heuristic strate-
gies S with heuristic payoffs [H], β[H] denotes the basin
size of an equilibrium in the game defined by payoffs [H]
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as specified by Equation 1 (p. 4), and ε[H]S is the set of
heuristic equilibria ε[H]S = {~x ∈ 4|S| : β[H](~x,M) >
2× 10−2}.

VI. SEARCH SPACE

We use the objective function described in the pre-
vious section to search for strategies that are able
to achieve high adoption rates under the replicator-
dynamics model of social learning. We start with a
population of agents able to use three different heuristic
strategies: TT , GD, and RE which is an RL strat-
egy that uses the Roth-Erev algorithm (section IV-C2)
calibrated with parameters that best fit the data from
human experiments [17], viz: ∀i REki

= 50 REρi
=

0.1 REηi
= 0.2 REsi

= 9 RLµi
= 1.

Our goal is to search a space of strategies to acquire a
new strategy that is likely to be adopted by this existing
population. In previous work [18] a sensitivity analysis
demonstrated that small perturbations in payoff estimates
in favour of the RE strategy yielded subtantial im-
provements in basin-size for this strategy. This suggested
generalisations of the RE strategy as possible candidates
for further optimisation. RE belongs to the class of RL
strategies, which we use as our search space. Thus in
our experiment we have S = {s*, TT,GD, RE}; s* is a
strategy represented as a 50-bit string, where:
• bits 1-8 code for parameter RLµ in the range

(1, 10);
• bits 9-16 code for the parameters SQε or REη in

the range (0, 1);
• bits 17-24 code for parameter RLk in the range

(2, 258);
• bits 25-32 code for parameters SQγ or REρ in the

range (0, 1);
• bits 33-40 code for parameter REs in the range

(1, 15000);
• bits 41-42 code for the choice of learning algorithm

amongst RE, NPT, SQ or DR; and
• bits 43-50 code for parameter SQα in the range

(0, 1).

VII. SEARCH ALGORITHM

A genetic-algorithm (GA) was used to search this
space of strategies, where the fitness of each individual
strategy in the search space was computed by estimat-
ing its basin size under the replicator dynamics under
interaction with our existing three strategies: GD, TT

and RE. Since we recompute all entries in the heuristic-
payoff matrix in support of each candidate strategy, we
use lower sample sizes in order to facilitate evaluation
of many strategies. The sample size for the number

of games played for each entry in the heuristic payoff
matrix was increased as a function of the generation
number: 10 + int(100 ln(g + 1)) allowing the search-
algorithm to quickly find high-fitness regions of the
search-space in earlier generations and reducing noise
due to sampling error thus allowing more refinement of
solutions in later generations. We used a constant number
of replicator-dynamics trajectories |M | = 50 in order
to estimate the basin size from the payoff matrix once
it had been recomputed for our candidate strategy. The
entire search process is summarised in pseudo-code in
Algorithm 1; we call this the FiSH algorithm, since we
will use it to “fish” for a new heuristic strategy.

input : A set of heuristic strategies S = {s1, s2, . . . , sn}
output: A new heuristic strategy OS

[H] ← GetHeuristicPayoffMatrix(S);

F̂ ← 0;
for i ← 1 to n do

[H]′ ← perturb payoffs in [H] in favour of si;
if F (i, S, [H]′) > F̂ then

F̂ ← F (i, S, [H]′);
ÔS ← si;

end
end

Π ← create a search space based on generalisations
of ÔS;
[H]∗ ← GetHeuristicPayoffMatrix(s*∪ S);
OS ← arg maxs*∈Π F (1, s*∪ S, [H]∗);

Algorithm 1: FiSH

A GA was chosen principally because of its ability
to cope with the additional noise that the lower sample
size introduced into the objective function. The GA was
configured with a population size of 100, with single-
point cross-over, a cross-over rate of 1, a mutation-rate of
10−4 and fitness-proportionate selection. The GA was run
for 32 generations, which took approximately 1800 CPU
hours on a dual-processor Xeon 3.6Ghz workstation.

As in [10], at the start of each game half the agents
are randomly assigned to be buyers and the remainder as
sellers. For each run of the game, valuations are drawn
as in [10]:

∀i vi ∼ U(a, a + b)

a ∼ U(161, 260)

b ∼ U(60, 100)

but valuations remain fixed across periods in order to
allow agents to attempt to learn to exploit any market-
power advantage in the supply and demand curves
defined by the limit prices for that game. The 64-
bit version of the Mersenne Twister random number
generator [19] was used to draw all random values used
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Fig. 1. Mean fitness of the GA population with one standard
deviation

in the simulation. Each entry in the heuristic payoff
matrix was computed by averaging the payoff to each
strategy across 104 simulations.

VIII. RESULTS

Figure 1 shows the mean fitness of the GA population
for each generation. As can be seen, the variance in
fitness values in later generations is still large. However,
inspection of a random sample of strategies from each
generation revealed a partial convergence of phenotype,
but with significant fluctuations in fitness values due
to small sample sizes (see above). Most notably, the
fittest individual at generation 32 had also appeared
intermittently as the fittest individual five times in the
previous 10 generations, and thus this was taken as the
output from the search.

The optimised strategy (denoted OS) that we evolved
used the stateless Q-learning algorithm (SQ) with the
following parameters: RLµ = 1.210937, RLk = 6,
SQε = 0.18359375, SQγ = 0.4140625 and SQα =
0.1875.

The notable feature of this strategy is the small number
of possible markups RLk, and the narrow range of
the markups [0, (RLk − 1)RLµ] as compared with the
distribution of valuation distribution widths. This feature
was shared by all of the top five strategies in the last
ten generations, and is another factor that indicated
convergence of the search.

We proceeded to analyze our specimen strategy under
a full heuristic-strategy analysis using 104 samples of the
game for each of the 455 entries in the payoff matrix.
Figure 2 shows twenty trajectories of the replicator-
dynamics plotted as a time-series graph for each strategy,
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Fig. 2. Replicator dynamics time series plot for a 12-agent clearing-
house auction showing interaction between optimised strategy (OS)
versus GD, TT and the original Roth-Erev strategy (RE)

and shows the interaction between the new, optimised
strategy, OS, together with the existing strategies: GD,
TT and RE.

Taking M ⊂ 44 : |M | = 103 randomly sampled
initial mixed-strategies, we calculate that there are two
attractors: ~A = (0, 0, 1, 0) and ~B = (0.67, 0.32, 0, 0)
over (OS,TT,GD, RE). Attractor A captures only
β( ~A,M) = 0.03 that is, three percent of trajectories,
whereas attractor B captures virtually the entire four-
dimensional simplex: β( ~B, M) = 0.97. Although this
basin is very large, our optimized strategy shares this
equilibrium with the truth-telling strategy (TT), giving
us a final total market share F = 0.67 × 0.97 = 0.65.
This compares favourably with a market-share of 32%
for truth-telling and 3% for GD. The original RE strategy
is dominated by our optimised strategy.

A. An iterative approach

This method can be generalised to an arbitrary set of
initial heuristic-strategies, as shown in Algorithm 1, the
FiSH Algorithm.

We have validated FiSH empirically by applying
it to a highly complex game, the double-auction, and
demonstrated that it is capable of finding a new strategy
with interesting properties, as demonstrated in the pre-
vious section. However, one might ask whether our new
strategy OS, or more accurately our new set of equilibria
over OS ∪ S, is not susceptible to the same process
of systematically searching for an invader? Of course,
the answer is that this is indeed a possibility. We could
straightforwardly test for this by applying exactly the
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same analysis to our new set of equilibria; that is, we
could perform another sensitivity analysis to see whether
our new equilibria are stable under payoff perturbation.
If they were, then we might conclude that our equilibria
are comparatively stable for the time being. If they
are not stable, however, we could then perform another
systematic search for variations in the current strategies
which are good candidates for potential invaders of the
status quo; that is, new strategies which form equilibria
with estimated large basin size in interaction with the
incumbents. By performing this process repeatedly we
will eventually end up with a refined set equilibrium
strategies. The pseudo-code for this process is shown
in Algorithm 2, called the FiSH+ Algorithm.

IX. APPLICATIONS

Many algorithms for strategy-acquisition focus on
searching for strategies that are generally robust when
played against existing strategies. However, it is ex-
tremely difficult to formulate objective metrics for rank-
ing the robustness of strategies in the non-zero-sum n-
player games which typify interactions in marketplaces
and multi-agent systems. In contrast, our method for
strategy acquisition focusses on searching for strategies
that are likely to be adopted by the participants. This
has several applications in both economics and computer
science, which we discuss below.

Firstly, the level of adoption of a particular strategy
may be a real-world design consideration in and of itself.
For example, the inventor of a trading strategy such
as ZIP [6] may have intellectual property rights that
generate revenue in proportion to its level of adoption.
In a wider context, many other software artifacts exist in
a competitive ecology [20].

Secondly, the primary economic application of our
method is to the mechanism design problem [21], [3].
In a mechanism design problem one attempts to define
market “mechanisms”, that is, the rules of the market, in
such a way that design objectives such as maximising
the market efficiency EA are achieved when agents
follow their utility-maximising strategies. The revelation
principle [13, p. 82] states that we can restrict this
search problem to mechanisms in which agents directly
reveal their valuations to the auctioneer; it then suffices
to demonstrate that the TT strategy (Section IV-A) is
a dominant strategy under our candidate mechanism
(this property is called incentive-compatibility), and that
efficiency, or other design objectives, are maximised
when all agents adopt TT. However, real-world consider-
ations mean that it is rarely possible to design incentive-
compatible mechanisms in which a simple strategy such
as TT is unequivocally dominant (and hence likely to

be adopted), especially in the case of double-sided
mechanisms, or when we have legacy constraints on
design [22]. In such scenarios it may more practical
to demonstrate that design-objectives such as high ef-
ficiency are satisfied when agents use an existing non-
truthful strategy such as ZIP [6] or GD, provided that this
strategy is likely to to be adopted. However, in many
cases it will be difficult to demonstrate that a single
existing strategy has a high probability of adoption. The
FiSH algorithm can be used in precisely such a situation
in order to search for highly-adoptable strategies.

Finally, there is a sense in which our algorithm may
be useful for searching for robust strategies in non-
zero-sum n-player games. In 2-player zero-sum games
the Nash solution is guaranteed to yield the security
level of the game, and is thus demonstrably robust,
however this result does not generalise to n-player non-
zero-sum games. In such games, the best we can do
is play a best-response to the strategies adopted by
other agents; however, in the general case (i.e., with
multiple equilibria) there is no unequivocal method that
will tell us which strategies will be selected by our
opponents. The FiSH algorithm escapes from this logic
by searching for hitherto unconsidered strategies that are
likely to be adopted by agents who learn. Thus if we
modify Equation 2 to incorporate payoff maximisation
in addition to basin size:

F ′(i, S, [H]) =
∑

~x∈ε[H]S

u(ei, ~x) · β[H](~x,M) · xi (3)

we can then use the algorithm to find strategies that are
simultaneously payoff-maximising and are also likely
to be adopted by one’s opponents (provided that they
choose from the available strategies using a learning-
process similar to that modelled by the replicator dy-
namics). In future work we will explore this application
of our algorithm to more general games.

X. CONCLUSION

We have introduced a novel method (algorithm 1) for
acquisition of strategies in non-zero-sum n-player games.
Many existing approaches to strategy acquisition focus
on attempting to find strategies that are robust in the
sense that they are good all-round performers against
any other strategy. We have argued that in many eco-
nomic and multi-agent scenarios the robustness criterion
is inappropriate and impossible to assess. Instead, our
method focusses on searching for strategies that are likely
to be adopted: we have formalised a metric (equation 2)
for estimating the likelihood of adoption under a social
learning process modelled by the replicator dynamics,
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input : A set of heuristic strategies
S = {s1, s2, . . . , sn} for some mechanism µ

output: A refined set of heuristic-strategies

[H] ← GetHeuristicPayoffMatrix(S, µ);
repeat

F̂ ← maxi=1...n F (i, S, [H]);
for i ← 1 to n do

[H]′ ← perturb payoffs in [H] in favour of si;
if F (i, S, [H]′) > F̂ then

F̂ ← F (i, S, [H]′);
i* ← i;
ÔS ← si;

end
end
if F̂ < F (i*, S, [H]) then return S;

Π ← create a search space based on
generalisations of ÔS;

S′ ← s*∪ S;
[H]′ ← GetHeuristicPayoffMatrix(S′, µ);
OS ← arg maxs*∈Π F (1, S′, [H]′);

S ← OS ∪ S;
[H] ← GetHeuristicPayoffMatrix(S, µ);
S ← EliminateDominatedStrategies(S, [H]);

until forever ;
Algorithm 2: FiSH+

based on an estimate of basin size (equation 1), and
described how this can be calculated using numerical
methods. We have validated our method empirically by
applying it to a benchmark problem (sections VII–VIII).

Our method makes use of an evolutionary computing
(EC) algorithm to perform heuristic optimisation. How-
ever it differs from existing EC methods for strategy-
acquisition, such as co-evolutionary search in that we
perform a full game-theoretic analysis over a small
working set of heuristic strategies (section III), rather
than a small sample of fitness comparisons over the full
space of strategies.
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