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Abstract We introduce and investigate formal quantitative
measures of inconsistency between the beliefs of agents in
multi-agent systems. We start by recalling a well-known model
of belief in multi-agent systems, and then, using this model,
present two classes of inconsistency metrics. First, we con-
sider metrics that attempt to characterise the overall degree
of inconsistency of a multi-agent system in a single numeric
value, where inconsistency is considered to be individuals
within the system having contradictory beliefs. While this
metric is useful as a high-level indicator of the degree of in-
consistency between the beliefs of members of a multi-agent
system, it is of limited value for understanding the struc-
ture of inconsistency in a system: it gives no indication of
the sources of inconsistency. We therefore introduce metrics
that quantify for a given individual the extent to which that
individual is in conflict with other members of the society.
These metrics are based on power indices, which were de-
veloped within the cooperative game theory community in
order to understand the power that individuals wield in co-
operative settings.
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1 Introduction

In a seminal 1988 paper, Alan Bond and Les Gasser at-
tempted to summarise the key challenges facing the then-
nascent multi-agent systems research area [3]. One of the
five key challenges they identified was the question of “how
to recognise and reconcile disparate viewpoints and conflict-
ing intentions among a collection of agents” [3, p.10]. They
advocated the development of principled techniques for un-
derstanding, managing, and resolving such inconsistencies.
In this paper, we study ways to recognise the source and
nature of inconsistencies in a mullti-agent systems as a nec-
essary prescursor to managing them.

Inconsistency in multi-agent systems can manifest itself
in the form of inconsistent beliefs (I believe taxes are bad;
my spouse believes taxes are good), or in the form of incon-
sistent preferences (I prefer the family to holiday in Cali-
fornia; my spouse prefers the family to holiday in France).
Resolving inconsistencies between beliefs is, in multi-agent
systems research, primarily the domain of argumentation.
Resolving inconsistencies between preferences is primarily
the domain of social choice theory and computational social
choice.

Our specific aim in the present paper is to develop tech-
niques that enable us to understand both the scale and the
structure of inconsistencies between the beliefs of agents in
a multi-agent system. There are several reasons why it may
be important to obtain an understanding of the scale and
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structure of belief inconsistencies in a multi-agent system.
Most obviously, when inconsistency occurs within a team
of agents, there is typically a need to resolve that inconsis-
tency, which may be time-consuming or costly. If we are to
put agents into teams, it therefore makes sense to investigate
beforehand the scale and structure of any inconsistency in
the team, so that potential inconsistencies can be minimised.
Moreover, we might sometimes interpret the fact that one
agent is grossly inconsistent with other agents as an indica-
tor of faults, potentially requiring maintenance, or at least
meriting further attention.

The model of belief we adopt in the present paper is sen-
tential [15]: the belief system of each agent is characterised
by a knowledge base of formulae of some logical belief lan-
guage, together with a set of deduction rules for the belief
language. A multi-agent system is given by a set of such
deduction structures, one for each agent in the system. Us-
ing these multi-agent belief systems as our starting point, we
develop two classes of metrics for measuring and analysing
belief inconsistency in multi-agent systems. First, we define
societal measures of inconsistency. These measures give us
a single numeric value that quantifies the overall degree of
inconsistency in a multi-agent system. We find it necessary
to provide more than one such measure because, in order
to determine whether the beliefs of agents in a multi-agent
system are inconsistent, we must aggregate the beliefs of
the agents in the system in some way, and there are many
possible ways of aggregating beliefs. Second, we define in-
dividual measures of inconsistency. These measures attempt
to characterise the extent to which the beliefs of individual
agents in a system are in conflict with those of other agents
in the system. By using these individual measures of incon-
sistency, we can analyse the structure of inconsistency in a
system, by identifying the sources of inconsistency. The for-
mulation of our inconsistency measures is derived from the
use of power indices in cooperative game theory: in partic-
ular, the Banzhaf index and Shapley value [5], building on
the use of the Shapley value for measuring inconsistency de-
veloped in [12]. Power indices are used in cooperative game
theory to evaluate the contribution a particular agent makes
in a cooperative setting, and in voting theory, they are used to
measure the power that a particular agent has, where power
is understood as the ability to influence a particular outcome.

Throughout the paper, we assume some familiarity with
logic (e.g., the notion of deduction rules and deductive proof)
and computational complexity. We provide a brief summary
of the relevant concepts from cooperative game theory, al-

though space limitations prevent any discussion of these con-
cepts – see [5].

2 Preliminary Definitions

Logic Notation: We assume some prior knowledge of clas-
sical logic (e.g., the notion of a rule of inference), but present
a brief summary of our key notational conventions, etc. Let
B = {>,⊥} be the set of Boolean truth values, with “>”
being truth and “⊥” being falsity. We will abuse notation a
little by using > and ⊥ to denote both the syntactic con-
stants for truth and falsity respectively, as well as their se-
mantic counterparts. Let Φ = {p,q, . . .} be a denumerable
vocabulary of Boolean variables, and let L0 denote the set
of (well-formed) formulae of classical propositional logic
over Φ , constructed using the conventional Boolean oper-
ators (“∧”, “∨”, “→”, “↔”, and “¬”), as well as the truth
constants “>” and “⊥”. Where ϕ ∈L0, we let vars(ϕ) de-
note the (possibly empty) set of Boolean variables occurring
in formula ϕ (e.g., vars(p∧ q) = {p,q}). We write |= ϕ to
mean that ϕ is a tautology.

Agents: We assume a fixed and finite set N = {1, . . . ,n} of
agents. A coalition, C, is simply a subset of N, C ⊆ N. The
grand coalition is the set of all agents N. Notice that in ev-
eryday use, the term “coalition” typically implies some com-
mon purpose, or commitment to common action. We do not
use the term in this sense: a coalition in this paper is nothing
more than a set of agents.

Belief Languages: We model the beliefs of agents using a
sentential approach, and more specifically, using the deduc-
tion model of belief developed by Konolige [15]. With this
model, the belief system of an agent i ∈ N is modelled as a
set of formulae of a logical belief language, LB. For exam-
ple, it could be that LB =L0, i.e., that the language used by
agents to represent their beliefs is in fact classical proposi-
tional logic. In general, we won’t assume much of LB, ex-
cept that it is a logical language, with a well-defined syntax,
semantics, and proof theory, and with notions such as sound
and complete inference defined for it.

Deduction Rules and Deduction Structures: A deduction
rule for LB is a rule of inference that has a fixed and fi-
nite number of premises, and that is an effectively com-
putable function of its premises [15, p.21]. Where ρ is a set
of deduction rules for LB, ϕ ∈ LB is an LB-formula, and
∆ ⊆LB is a set of LB-formulae, we denote by ∆ `ρ ϕ the
fact that ϕ may be derived from ∆ using the deduction rules
ρ . A deduction structure, di, for an agent i ∈ N is a pair:
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di = 〈∆i,ρi〉, where: ∆i ⊆ LB is a fixed, finite set of base
beliefs; and ρi is a fixed, finite set of deduction rules for LB.
Where di = 〈∆i,ρi〉 is a deduction structure, we denote by
bel(di) the closure of ∆i under ρi, i.e.,

bel(〈∆ ,ρ〉) = {ϕ | ∆ `ρ ϕ}.

Measures of Consistency and Inconsistency: There has re-
cently been interest in techniques for analysing (in)consistency
in logical knowledge bases [12,10]. Though our interest is
mainly in inconsistencies that arise across the knowledge
bases of multiple agents, we start with a simple and intu-
itive measure of inconsistency for the knowledge base of a
single agent. To do this we define a two-place function I
so that I (∆ ,ρ) evaluates to 1 if bel(〈∆ ,ρ〉) contains an ex-
plicit contradiction, and 0 otherwise:

I (∆ ,ρ) =

{
1 if ∃ϕ ∈LB : {ϕ,¬ϕ} ⊆ bel(〈∆ ,ρ〉)
0 otherwise.

Thus I (∆ ,ρ) will evaluate to 1 iff bel(〈∆ ,ρ〉) contains an
explicit contradiction, i.e., a formula and the negation of that
formula.

Observe that if LB =L0, and ρ is a sound and complete
set of deduction rules for L0, then I (· · ·) will characterise
logical consistency for L0. If ρ is sound but incomplete,
then I (· · ·) will capture a weaker notion of consistency:
namely, whether explicit contradictions can be detected by
applying the rules ρ .

Multi-agent belief systems: A multi-agent belief system is
a structure B = 〈N,d1, . . . ,dn〉, where N = {1, . . . ,n} is a set
of agents, and di = 〈∆i,ρi〉 is a deduction structure for agent
i, capturing the beliefs of agent i.

Where B= 〈N,d1, . . . ,dn〉 is a multi-agent belief system,
and C ⊆ N (C 6= /0) is a coalition, then we define:

∆∪C =
⋃

i∈C ∆i ∆∩C =
⋂

i∈C ∆i

ρ∪C =
⋃

i∈C ρi ρ∩C =
⋂

i∈C ρi

bel∪C =
⋃

i∈C bel(di) bel∩C =
⋂

i∈C bel(di)

We will say a multi-agent belief system B is monotonic if
for all C ⊆ N and for all Γ1 ⊆LB, if Γ1 `ρ∪C

ϕ then for all
Γ2 ⊆LB we have Γ1∪Γ2 `ρ∪C

ϕ .

Example 1 Consider a multi-agent belief system B1 with
agents N = {1,2} such that: ∆1 = {p,p→ q}; ρ1 = a sound
and complete set of deduction rules for L0; ∆2 = {q→¬p};
and ρ2 = /0. We have:

I (∆1,ρ1) = I (∆2,ρ2) = I (∆∩{1,2},ρ
∩
{1,2}) = 0

I (∆∪{1,2},ρ
∪
{1,2}) = 1.

Cooperative Games and Power Indices: We use some def-
initions from the area of cooperative game theory [5]. A
simple cooperative game is a pair G = 〈N,ν〉, where N =

{1, . . . ,n} is a set of players, and ν : 2N → {0,1} is the
characteristic function of the game, which assigns to ev-
ery set of agents a binary value. If ν(C) = 1 then we say
that C is a winning coalition, while if ν(C) = 0, we say
C is a losing coalition. We require that ν( /0) = 0. We say
that G = 〈N,ν〉 is monotone if ν(C) ≥ ν(D) for every pair
of coalitions C,D ⊆ N such that C ⊇ D. If G1 = 〈N,ν1〉
and G2 = 〈N,ν2〉 are simple cooperative games with the
same player set, we will say they are equivalent, and write
G1 ≡ G2, if ν1(C) = ν2(C) for all C ⊆ N.

Agent i is a swing player for C ⊆ N \ {i} if C is not
winning but C∪{i} is. We find it useful to define a func-
tion swing(C, i) so that this function returns 1 if i is a swing
player for C, and 0 otherwise, i.e.,

swing(C, i) =
{

1 if ν(C) = 0 and ν(C∪{i}) = 1
0 otherwise.

The Banzhaf score for agent i, denoted σi, is the number of
coalitions for which i is a swing player:

σi = ∑
C⊆N\{i}

swing(C, i). (1)

The Banzhaf measure, denoted µi, is the probability that i
would be a swing player for a coalition chosen at random
from 2N\{i}:

µi =
σi

2n−1 (2)

The Banzhaf index for player i ∈ N, denoted by βi, is the
proportion of coalitions for which i is a swing to the total
number of swings in the game – thus the Banzhaf index is
a measure of relative power, since it takes into account the
Banzhaf score of other agents:

βi =
σi

∑j∈N σj
(3)

Finally, we define the Shapley value; here the order in which
agents join a coalition plays a role. Let P(N) denote the
set of all permutations of N, with typical members ϖ ,ϖ ′,
etc. If ϖ ∈ P(N) and i ∈ N, then let prec(i,ϖ) denote the
players that precede i in the ordering ϖ . (For example, if
ϖ = (a3,a1,a2), then prec(a2,ϖ) = {a1,a3}.) Given this,
let ςi denote the Shapley value of i, defined as follows:

ςi =
1
n! ∑

ϖ∈P(A)
swing(prec(i,ϖ), i) (4)
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A key result in cooperative game theory is that the Shap-
ley value is uniquely characterised by a small set of axioms1.
Later, when we consider the Shapley value in the context
of multi-agent belief systems, we will return to these ax-
ioms. To state the axioms, we need some additional termi-
nology. We say player i ∈ N is a dummy if for all coalitions
C ⊆ N, ν(C∪{i}) = ν(C). We say players i, j are symmet-
ric if for all coalitions C⊆ (N \{i, j}) we have swing(C, i) =
swing(C, j). It is then well-known that if i is a dummy then
ςi = 0, while if i and j are symmetric then ςi = ςj. Note that
the Banzhaf index also satisfies these axioms.

3 Societal Measures of Inconsistency

We now move on to the first main concern of this paper:
measuring in a principled way the degree of inconsistency
present in a multi-agent system. In this section, we will ex-
plore societal measures of inconsistency: measures of incon-
sistency that quantify the degree of inconsistency present in
society as a whole, irrespective of the properties of individ-
ual members of the society. In subsequent sections, we will
consider the problem of measuring how inconsistent indi-
viduals are with respect to society.

As a starting point, we consider the probability that a
non-empty coalition C ⊆ N selected uniformly at random
from 2N \ /0 will have inconsistent beliefs, under the assump-
tion that the beliefs and deduction rules of coalition mem-
bers are simply pooled together through set theoretic union.
We denote this value for a multi-agent belief system B by
S ∪(B):

S ∪(B) =
1

2n−1 ∑
C⊆N
C 6= /0

I (∆∪C ,ρ
∪
C )

In other words, S ∪(B) is E[I (∆∪C ,ρ
∪
C )], i.e., the expected

value of I (∆∪C ,ρ
∪
C ) for a coalition C picked uniformly at

random. Notice that the value S ∪(B) captures a “liberal”
notion of inconsistency, in the sense that it treats every agent’s
base beliefs ∆ and deduction rules ρ equally: the base be-
liefs and deduction rules of every agent are pooled together
and conclusions derived. But this is a rather crude way of
pooling the beliefs of agents in a system. For example, sup-
pose one agent i is an intuitionistic reasoner, and does not
include the law of the excluded middle in his rule set, while
other agents are classical reasoners. Then it is possible that
some of the conclusions derived from i’s base beliefs would

1 In the present paper, we will not be concerned with the axiom
known as additivity.

not in fact be supported by i (if for example they were de-
rived using the law of the excluded middle).

There are of course many ways of aggregating beliefs,
which we will not discuss here (see for example [18]). We
present just one alternative – a more conservative measure
of societal inconsistency, S ∩(B):

S ∩(B) =
1

2n−1 ∑
C⊆N
C 6= /0

I (∆∩C ,ρ
∩
C )

Thus, the value S ∩(B) only takes into account base beliefs
and deduction rules that are universally accepted. Notice that
if S ∗(B) = 1 for ∗ ∈ {∪,∩} then every (non-empty) coali-
tion is inconsistent, and in particular, this implies that all the
agents within the system have individually inconsistent be-
lief sets.

Example 2 Referring back to the multi-agent belief system
B1 defined in Example 1, we have S ∩(B1)= 0, and S ∪(B1)=
1
3 .

Let us state some properties of these measures.

Proposition 1

1. For all monotonic multi-agent belief systems B, we have:

S ∪(B)≥S ∩(B).

2. There exist monotonic multi-agent belief systems B such
that:

S ∪(B)> S ∩(B).

Proof For point (1), suppose {ϕ,¬ϕ} ⊆ bel(〈∆∩C ,ρ∩C 〉) for
some ϕ ∈LB. Then {ϕ,¬ϕ}⊆ bel(〈∆∪C ,ρ∪C 〉) from the mono-
tonicity of B. It follows that for all C⊆N, if I (∆∩C ,ρ

∩) = 1
then I (∆∪C ,ρ

∪) = 1, hence

∑
C⊆N:C 6= /0

I (∆∪C ,ρ
∪
C ) ≥ ∑

C⊆N:C 6= /0
I (∆∩C ,ρ

∩
C ),

and so S ∪(B) ≥ S ∩(B). Example 2 serves as a proof of
point (2).

4 Individuals and Social Consistency

The social (in)consistency metrics we introduced above at-
tempt to quantify the inherent overall (in)consistency of a
multi-agent system through a single numeric value. How-
ever, returning to the overall aims of this work, giving a
single inconsistency value for an entire system gives no in-
formation about the sources or structure of inconsistency,
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which will be an important consideration for example if one
is to try to resolve or settle the inconsistency. With this con-
sideration in mind, in this section we present measures that
characterise the extent to which individuals influence the con-
sistency of a system. We start with a motivating example.

Example 3 Assume LB = L0. Suppose we have a multi-
agent belief system B with N = {1,2,3,4} and ∆1 = ∆2 =

∆3 = {p} while ∆4 = {¬p}. All agents i ∈N have deduction
rules ρi that are sound and complete for L0. We have:

I (∆∪C ,ρ
∪
C ) =

{
1 if |C|> 1 and 4 ∈ C
0 otherwise.

It follows that S ∪(B) = 7
15 . However, it is intuitively ob-

vious that there is just one agent in this scenario that is the
source of inconsistency: agent 4, who believes ¬p, while ev-
ery other agent believes p. And yet this agent seems to have
quite a dramatic influence on the overall inconsistency of the
society, according to the measure S ∪(B).

This example clearly demonstrates the need for tech-
niques that give a more fine-grained analysis of inconsis-
tency within a multi-agent system, and in particular, tech-
niques that allow us to clearly isolate the sources of incon-
sistency. The metrics we now present are intended for this
purpose.

Where B = 〈N,d1, . . . ,dn〉 is a multi-agent belief system
and ∗ ∈ {∪,∩} is one of the set theoretic operations of union
or intersection, we define a cooperative game G∗B = 〈N,ν∗B〉
containing the same set of agents, and with characteristic
function ν∗B defined as follows:

ν
∗
B(C) = I (∆ ∗C,ρ

∗
C).

Thus, in the game G∗B, a coalition is “winning” (ν∗B(C) = 1)
if they are inconsistent (taking ∗ as the aggregation operator
for beliefs and rules), and “losing” (ν∗B(C) = 0) if they are
consistent using the aggregation operator ∗. Note that we do
not, of course, mean “winning” in the sense of this being a
good thing – we simply follow the terminology of cooper-
ative game theory, and say a coalition are winning if they
obtain a value of 1.

We have now established a precise formal relationship
between the notion of inconsistency in multi-agent belief
systems, and simple cooperative games. With this relation-
ship in place, we will shortly see how power indices from
cooperative game theory can be used to analyse inconsis-
tency in multi-agent systems. However, before we do that,
let us pause to consider the relationship we have established
in a little more detail. We have defined a mapping from

multi-agent belief systems to simple cooperative games. It
is easy to see that this mapping is many-to-one, in the sense
that multiple multi-agent belief systems can map to the same
cooperative game. Moreover, the mapping is total, in the
sense that every multi-agent belief system induces a simple
cooperative game. However, what about the other direction
of the mapping? Is it the case that every simple coopera-
tive game is induced by some multi-agent belief system? If
we restrict our consideration to monotonic reasoners, the an-
swer is no:

Proposition 2 For every monotonic multi-agent belief sys-
tem B= 〈N,d1, . . . ,dn〉, the corresponding game G∪B = 〈N,ν∪B 〉
is monotone. It follows that there exist simple cooperative
games G = 〈N,ν〉 such that for all monotonic multi-agent
belief systems B = 〈N,d1, . . . ,dn〉, we have G 6≡ G∪B .

Proof We must show that ν∪B (C)≥ ν∪B (D) for every pair of
coalitions C,D ⊆ N such that C ⊇ D. So consider the value
ν∪B (C). There are two possibilities: ν∪B (C)= 0 or ν∪B (C)= 1.
Where ν∪B (C) = 0, suppose for sake of contradiction that
ν∪B (D) = 1. Then ∃{ϕ,¬ϕ} ⊆ bel(〈∆∪D ,ρ∪D〉). Now, since
B is monotonic, bel(〈∆∪C ,ρ∪C 〉) ⊇ bel(〈∆∪D ,ρ∪D〉), which im-
plies {ϕ,¬ϕ} ⊆ bel(〈∆∪C ,ρ∪C 〉) and hence ν∪B (C) = 1; con-
tradiction. Where ν∪B (C) = 1, then ν∪B (C)≥ ν∪B (D) follows
from the fact that ν∪B (D) ∈ {0,1}.

Now, with the games G∗B defined, we can directly apply the
power indices that were defined earlier. These metrics can
be understood as quantifying the extent to which individual
agents affect the consistency of a society. Formally, where
B is a multi-agent belief system and ∗ ∈ {∪,∩}, we use the
following notation:

– σ∗i (B) is the Banzhaf score of player i in the game G∗B,
that is, σ∗i (B) is the total number of coalitions that player
i is in contradiction with;

– µ∗i (B) is the Banzhaf measure of player i in the game
G∗B, that is, µ∗i (B) is the probability that player i would
be in contradiction with a coalition C selected uniformly
at random from the set of all possible non-empty coali-
tions;

– β ∗i (B) is the Banzhaf index of player i in game G∗B, that
is, β ∗i (B) measures the proportion of coalitional incon-
sistencies in B that i is responsible for;

– ς∗i (B) is the Shapley value of player i in the game G∗(B),
that is, ς∗i (B) measures the probability that a player i
would make the grand coalition inconsistent, taking into
account all possible ways in which the grand coalition
could form.
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Agent σ∪i (B2) µ∪i (B2) β∪i (B2) ς∪i (B2)

1 1 1
8

1
10

1
12

2 1 1
8

1
10

1
12

3 1 1
8

1
10

1
12

4 7 7
8

7
10

9
12

Table 1 Values σ∪i (B2), µ∪i (B2), β∪i (B2), and ς∪i (B2) for agents i ∈
{1,2,3,4}. See Example 4.

Example 4 Consider the multi-agent belief system B2 pre-
sented in Example 3. Table 1 summarises the measures σ∪i (B2),
µ∪i (B2), β∪i (B2), and ς∪i (B2) for agents i ∈ {1,2,3,4}. To
better understand these values, consider player 1. This player
will be a swing player for a coalition C (i.e., will make a
coalition C inconsistent) exactly when the coalition C con-
tains agent 4 and no other players. (If other players are in the
coalition with 4, it will already be inconsistent, and player 1
will not affect this status.) So σ∪1 (B2) = 1, and similarly for
players 2 and 3. Turning to player 4, however, this player
will make any non-empty coalition C inconsistent, and so
σ∪1 (B2) = 7.

At this point, let us return to the axioms for the Shapley
value, and try to understand them in terms of our model. To
do this, we will need a little extra terminology.

First, we say an amiable agent is one that can be added
to any consistent set of agents without causing the set to
become inconsistent. Thus an amiable agent is not the cause
of any conflicts that arise in the set of agents. Formally, i is
amiable iff:

∀C ⊆ N : I (∆∪C ,ρ
∪
C )≥I (∆∪C∪{i},ρ

∪
C∪{i}).

Then, we say one agent matches another if adding either to
a set of agents has the same outcome. In other words, two
agents match if they are in conflict with the same sets of
agents as each other. Obviously this is a symmetrical rela-
tionship. Formally, for agents {i, j} ⊆ N, we say i matches j
iff:

∀C ⊆ (N \{i, j}) : I (∆∪C∪{i},ρ
∪
C∪{i}) = I (∆∪C∪{j},ρ

∪
C∪{j}).

Proposition 3 For all B = 〈N,d1, . . . ,dn〉:

1. If i is amiable in B, then i is a dummy player in G∪B .
2. If i matches j in B, then i and j are symmetric in G∪B .

From standard properties of the Shapley value we obtain:

Proposition 4 For all B = 〈N,d1, . . . ,dn〉:

1. If i is amiable in B, then σ∪i (B) = µ∪i (B) = β∪i (B) =
ς∪i (B) = 0.

2. If i matches j in B, then σ∪i (B)=σ∪j (B), µ∪i (B)= µ∪j (B),
β∪i (B) = β∪j (B), and ς∪i (B) = ς∪j (B).

We say that one agent believes more than another agent
when the closure of the beliefs of the first agent with its
proof rules is a superset of the the closure of the beliefs of
the second agent with its proof rules. Formally, for agents
i, j ∈ C, i believes more than j iff bel(dj)⊆ bel(di). Then we
have, for example:

Proposition 5 If i believes more than j, then βi ≥ βj

5 Non-Monotonic Believers

So far in this paper, we have assumed that the reasoning pro-
cesses employed by agents, as characterised in their belief
set ∆ and reasoning rules ρi, are classical, and in particular,
monotonic. In this section, we will explore what happens
if we assume that agents use non-monotonic reasoning [4].
Although non-monotonic reasoning is a well established re-
search area in the knowledge representation field, it is per-
haps less well known in the multi-agent systems area, and
so we provide a brief summary of the main ideas.

In classical logic (of which propositional logic and first-
order logic are the two key systems), deduction is mono-
tonic, in the sense that the theorems of a theory will expand
monotonically with the premises of the theory. More for-
mally, a logical deduction system ` is said to be monotonic
if ∆1 ` ϕ implies ∆1 ∪∆2 ` ϕ for all sets of formulae ∆1
and ∆2; this is true of both classical propositional and first-
order logic. However, some types of common sense reason-
ing do not have this property. To use a well-known example,
if we are told Tweety is a bird, then we might conclude that
Tweety can fly. However, if we are later told that Tweety is
a penguin, then we might retract this conclusion. The com-
mon sense reasoning we are employing here is thus non-
monotonic, since we are retracting a conclusion (Tweety can
fly) after adding more premises (Tweety is a penguin). To
formalise such reasoning, many non-monotonic logics have
been developed, of which default logic, autoepistemic logic
and circumscription are perhaps the best known examples
(see, e.g., [4] for an introduction and key references).

Now, in our setting, if agents use classical, monotonic
forms of reasoning, then this means that adding an agent
i ∈ N to a coalition C⊆ N can only have one of three conse-
quences:

1. the coalition is mutually consistent before i was added,
and continue to be consistent after i is added;
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2. the coalition is mutually consistent before i was added,
but the addition of i makes them inconsistent;

3. the coalition is mutually inconsistent before i was added,
and continue to be inconsistent after i is added.

Thus, adding an agent in a setting of monotonic reasoning
agents can never recover consistency, in the sense that if the
members of C are mutually inconsistent, then adding i can
only result in continuing inconsistency. However, as we will
now see, this need not be true if we allow non-monotonic
reasoning agents.

To make the ideas precise, we use a (simplified) autoepis-
temic logic [16]. Syntactically, the language LAE of autoepis-
temic logic extends classical propositional logic with a unary
modal modality K, where the expression Kϕ should be read
“it is known that ϕ”. Formally, the syntax of LAE is given
by the following grammar:

χ ::= p | ¬χ | χ ∨χ | Kχ

where p is a Boolean variable. The remaining classical oper-
ators are assumed to be defined as abbreviations in the stan-
dard way.

The semantics of LAE are given with respect to pairs
(∆ ,π), where ∆ ⊆LAE is the belief base, and π : Φ → B is
a classical valuation for the Boolean variables Φ :

(∆ ,π) |= p iff π(p) => (for p ∈Φ);
(∆ ,π) |= Kϕ iff ϕ ∈ ∆ ;
(∆ ,π) |= ¬χ iff it is not the case that (∆ ,π) |= χ;
(∆ ,π) |= χ1 ∨ χ2 iff either (∆ ,π) |= χ1 or (∆ ,π) |= χ2
or both.

The remaining classical connectives are defined in terms of
∨ and ¬ in the standard way.

We will say a formula of LAE is strict if all Boolean vari-
ables appear within the scope of an autoepistemic modality.
Thus Kp is strict, while q∧Kp is not, because q does not
appear within the scope of an autoepistemic modality. Strict
formula can be evaluated with respect to belief sets ∆ : we
do not need to refer to the valuation function π when evalu-
ating such formulae. So, for strict formulae χ , we will write
∆ |= χ to mean that χ is true when evaluated against belief
set ∆ .

The notion of logical consequence from an initial set of
premises I through ∆ is naturally defined: we write I |=∆ ϕ .
Now, given an initial belief set ∆ , an expansion is a set T∆

that satisfies the following fixpoint equation:

T∆ = {ϕ | ∆ |=T∆
ϕ}. (5)

It is easy to see that such a set T∆ satisfies the following
properties:

(B1) T∆ is closed under propositional consequence;
(B2) ϕ ∈ T∆ implies Kϕ ∈ T∆ ;
(B3) ϕ 6∈ T∆ implies ¬Kϕ ∈ T∆ .

In general, starting from an initial set of beliefs ∆ , there may
be multiple possible expansions T∆ , or indeed none2. More-
over, determining questions associated with such expansions
is computationally hard – typically at the second level of the
polynomial hierarchy [8]. To keep things simple, we will
therefore consider a restricted autoepistemic reasoning sys-
tem, which is sufficiently powerful to allow us to express
key non-monotonic properties, but which avoids the com-
plexities of “full” autoepistemic logic.

Let us say a simple autoepistemic rule is an implication
of the form χ → ϕ , where χ is a strict autoepistemic for-
mula, and ϕ is a propositional formula. Now, following the
terminology of the present paper, we will consider agents
that are equipped with a deduction structure d = 〈∆ ,ρ〉, where
∆ is a finite set of propositional logic formulae representing
the base beliefs of the agent, and ρ is a finite set of simple
autoepistemic rules.

Given an LAE deduction structure d = 〈∆ ,ρ〉, we denote
the belief set associated with 〈∆ ,ρ〉 by bel(〈∆ ,ρ〉), where
this set is the smallest set of propositional formulae satisfy-
ing the following fixed point equation:

bel(〈∆ ,ρ〉) = ∆ ∪{ϕ | χ→ ϕ ∈ ρ and bel(〈∆ ,ρ〉) |= χ}(6)

It should be clear that this definition represents a signifi-
cant simplification of the notion of an expansion as defined
in equation (5): most importantly, we are only permitting
a highly restricted form of LAE formulae in ρ (i.e., simple
autoepistemic rules), and we are only permitting proposi-
tional base beliefs ∆ . But the key point about this construc-
tion is that, (as we will see shortly), it permits a meaningful
type of non-monotonic reasoning, while having the follow-
ing highly desirable properties:

Proposition 6 For all LAE-deduction structures 〈∆ ,ρ〉, the
set bel(〈∆ ,ρ〉) is well-defined, finite, and unique, and can
be computed in polynomial time.

Let us see an example of an LAE deduction structure, and
how it achieves non-monotonic reasoning.

Example 5 Suppose

∆ = {bird(tweety)}

2 Consider the case where ∆ = {¬Kp→ q,¬Kq→ p}. In this case
there are two expansions of ∆ : one containing p but not q, the other
containing q but not p. The set ∆ = {Kp} has no expansions.
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and

ρ = {K bird(tweety)∧¬K penguin(tweety)→ flies(tweety)}.

Then

bel(〈∆ ,ρ〉) = {bird(tweety),flies(tweety)}.

However, if

∆ = {bird(tweety),penguin(tweety)}

then

bel(〈∆ ,ρ〉) = {bird(tweety),penguin(tweety)}.

Thus, we do not conclude that Tweety can fly if Tweety is
known to be a penguin.

So, let us suppose that we have multi-agent belief systems
B = (N,d1, . . . ,dn) with LAE deduction structures. First, let
us see a small example.

Example 6 Suppose we have a multi-agent belief system B
with N = {1,2,3}, ∆1 = {p}, ∆2 = /0, ∆3 = {q}, ρ1 = /0,
ρ2 = {¬Kq→¬p}, and ρ3 = /0. Now, ∆∪{1,2} = {p}, ρ∪{1,2} =

{¬Kq→¬p}, and so bel(〈∆∪{1,2},ρ
∪
{1,2}〉) = {p,¬p}. and so

ν∪B ({1,2}) = 1: players 1 and 2 are inconsistent. However,
if we add player 3, we have: ∆∪{1,2,3} = {p,q}, ρ∪{1,2,3} =

{¬Kq → ¬p}, hence bel(〈∆∪{1,2,3},ρ
∪
{1,2,3}〉) = {p,q}, and

so ν∪B ({1,2,3}) = 0. Thus, adding player 3 transforms the
coalition from inconsistency to consistency, intuitively by
giving them an additional piece of information that allows
them to avoid applying the single autoepistemic rule ¬Kq→
¬p.

Example 6 serves as a proof of the following (contrast with
Proposition 2):

Proposition 7 There exist LAE multi-agent belief systems
B for which the corresponding game G∪B = 〈N,ν∪B 〉 is not
monotone.

In fact, the autoepistemic reasoning framework we have de-
fined is rich enough to capture all simple cooperative games
(contrast with Proposition 2):

Proposition 8 For every simple cooperative game G= 〈N,ν〉
there exists an LAE multi-agent belief system B such that
G≡ G∪B .

Proof Given G, we construct an LAE multi-agent belief sys-
tem B and show that G≡G∪B . Let WG denote the set of win-
ning coalitions in G:

WG = {C ⊆ N | ν(C) = 1}.

For each player i ∈ N, define a Boolean variable xi, and in
addition define one further variable z. Given a coalition C ⊆
N, define an LAE formula ψC as follows:

ψC =

(∧
i∈C

Kxi

)
∧

 ∧
j∈(N\C)

¬Kxj

 .

Now define an LAE formula ΨWG characterising the set of
all winning coalitions of G:

ΨWG =
∨

C∈WG

ψC.

For each agent i∈N, define ∆i = {xi,z}. Now define a single
autoepistemic rule r as follows:

r =ΨWG →¬z

and set ρi = {r} for all i ∈ N. We now claim that:

∀C ⊆ N : ν(C) = 1 iff ν
∪
B (C) = 1.

To see this, observe that for all C ⊆ N(C 6= /0), we have
〈∆∪C ,ρ∪C 〉 |= ΨWG iff C ∈ WG. Now, since z ∈ ∆∪C , for all
C⊆N(C 6= /0), we have {z,¬z}⊆ bel(〈∆∪C ,ρ∪C 〉) iff C ∈WG.
Thus I (∆∪C ,ρ

∪
C ) = 1 iff C ∈WG.

Recall that in Section 4 we asked whether it is the case that
every simple cooperative game is induced by some multi-
agent belief system composed of monotonic reasoners, and
found that the answer was no. The above result shows that if
we allow agents to be non-montonic reasoners then it is pos-
sible to induce every simple cooperative game from some
mullti-agent belief system.

Next, recall that, when discussing monotonic reasoning
agents, we showed that taking the union of a set of beliefs
would always give rise to at least as much inconsistency as
taking the intersection (Proposition 1). We now show that
this does not hold for non-monotonic believers.

Proposition 9 There exist LAE multi-agent belief systems
B such that S ∩(B)> S ∪(B).

Let us now consider the complexity of computing the vari-
ous inconsistency measures with respect to LAE belief sys-
tems. We have the following result, which can be understood
as saying that computing power indices such as β∪i (B) is
in the same complexity class as computing these indices in
many other cooperative game settings [5]:

Proposition 10 Given an LAE multi-agent belief system B=

〈N,d1, . . . ,dn〉 and an agent i∈N, the problem of computing
σ∪i (B) is #P-complete. It follows that computing µ∪i (B) and
β∪i (B) is #P-complete with respect to Turing reductions.
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Proof For membership, consider a non-deterministic Turing
machine that first guesses a coalition C⊆N and then accepts
iff the following condition is satisfied:

∃{ϕ,¬ϕ} ∈ bel(〈∆∪C ,ρ∪C 〉).

Computing bel(〈∆∪C ,ρ∪C 〉) can be done in polynomial time,
and so the condition can be evaluated in polynomial time.
The number of accepting computations of the Turing ma-
chine is exactly the number of coalitions C ⊆ N such that
I (〈∆∪C ,ρ∪C 〉) = 1, and so computing σi is in #P.

For hardness we reduce #SAT: the problem of comput-
ing the number of satisying assignment for a given propo-
sitional formula ϕ . Without loss of generality, we can as-
sume that the #SAT instance ϕ is in CNF; assume vars(ϕ) =
{x1, . . . ,xk}. Now, denote by ϕ∗ the strict LAE formula ob-
tained from ϕ by systematically replacing each positive lit-
eral xi that occurs in ϕ by Kxi and each negative literal ¬xi
by ¬Kxi. Observe that since ϕ is assumed to be in CNF,
the formula ϕ∗ that we obtain through this transformation is
indeed a strict LAE formula. We now define a multi-agent
belief system Bϕ as follows. For each variable xi ∈ vars(ϕ)
we create an agent ai, and also create one additional agent
ak+1. In addition to the variables {x1, . . . ,xk} we create a
new variable z. For all 1≤ i≤ k we define ∆i = {xi,z}, and
ρi = /0. Finally we define ∆k+1 = /0 and ρk+1 = {ϕ∗→¬z}.
We now claim that σ∪k+1(Bϕ) is exactly the number of sat-
isfying assignments for the #SAT instance ϕ . To see this,
first observe that for all C ⊆ {a1, . . . ,ak}, I (∆∪C ,ρ

∪
C ) = 0

since ∆∪C is a set of positive literals and ρ∪C = /0. Now, for all
C ⊆ {a1, . . . ,ak}, swing(C,ak+1) = 1 iff the propositional
assignment

π : {x1, . . . ,xk}→ {>,⊥}

defined by:

π(xi) =

{
> if ai ∈ C
⊥ otherwise

is such that π |= ϕ . Thus σ∪k+1(Bϕ) is exactly the number of
satisfying assignments for the #SAT instance ϕ .

6 Related Work & Conclusions

In contemporary multi-agent systems research, argumen-
tation is perhaps the key approach to handling inconsistency [2,
19]. Argumentation can be understood as being concerned
with developing techniques for deriving justifiable, rational
conclusions from knowledge bases that contain inconsisten-
cies. Argumentation is not, however, primarily concerned

with understanding the structure or source of inconsistency,
which is the aim of the present paper. In argumentation re-
search, the aim instead is largely to understand what counts
as a rational position in the presence of inconsistency.

Recent work on measuring inconsistency in logical knowl-
edge bases is closely related to the present paper [13,14,9,
12]. However, this work is focused on measuring the incon-
sistency of a logical theory, rather than multi-agent incon-
sistency. Measuring inconsistency has proven to be a useful
tool in analysing various information types [11]. We should
also note recent work by Ågotnes et al. on using power in-
dices from cooperative game theory to analyse how knowl-
edgeable individual agents are with respect to a particular
formula of epistemic logic [1]. They use the setting of pos-
sible worlds semantics to analyse knowledge, but the ideas
are similar to ours. The basic idea is to use cooperative so-
lution concepts to try to quantify the extent to which an
agent “contributes” to knowledge of a particular fact. The
key difference is that we focus on quantifying inconsistency,
essentially by pooling the knowledge of agents in the sys-
tem. While there are several well-known models of mutual
knowledge used in the literature of possible worlds seman-
tics [7], these models do not admit the possibility of incon-
sistency: if an agent is considered to know something, then
that thing must be true. Our approach is somewhat similar in
that we use a model of belief but the relationship is super-
ficial. Our work uses a sentential model of belief, based on
that proposed by [15].

We began this paper by citing Bond and Gasser [3] and
their argument that a key challenge in multi-agent systems is
to be able to recognise and reconcile disparate viewpoints.
The work we have presented so far provides a mechanism
for recognising inconsistency. A natural question to ask at
this point is how this helps us in reconciling different view-
points. In this section we give one answer to this question,
showing how the inconsistency measures can potentially re-
duce the computational effort in reconciling the beliefs of
a set of agents. The approach we consider for reconciling
beliefs is argumentation, in particular, the argumentation-
based persuasion dialogue studied in [17]. This dialogue is
a process by which two agents with inconsistent sets of base
beliefs ∆i can establish a consistent set of beliefs3. Parsons
[17] proves that the number of messages exchanged by the
agents in this process is proportional to the size of the agents’
sets of base beliefs, but looking at the proof in detail reveals

3 Exactly how they achieve this isn’t relevant here, but in essence
they recursively construct a grounded extension [6] so that when the
dialogue terminates both agents agree on the acceptability of a com-
mon set of beliefs.
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that this is a loose upper limit — the number of moves is
bounded by the size of the belief base because in the worst
case the agents will disagree on every formula in the belief
base and have to work through the resolution process for
each one in turn. In fact, the number of messages exchanged
is determined by the number of inconsistencies — the agents
will have to go through one round of persuasion for each pair
of formulae that are inconsistent.

Now, consider that a set of agents is trying to identify a
coalition that will engage in some task. The choice of possi-
ble coalitions will depend on what abilities different agents
can bring to the task. However, if we make the reasonable as-
sumption that the agents will need to reach consensus about
their beliefs in order to complete their task, then since the
amount of effort this will require is dependent on the num-
ber of inconsistencies, using the Banzhaf index βi (which
we recall identifies the proportion of inconsistencies that an
agent is responsible for) can be used to help select coalition
members, and hence can reduce the work that coalitions then
have to do.

Of course, computing βi is not cheap, but it is a com-
putation cost, not a communication cost (unlike the cost of
resolving the inconsistency). In domains in which commu-
nication is expensive, it may well be worth selecting coali-
tions to minimise inconsistencies, rather than attempting to
resolve inconsistencies at run-time.
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