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Paulo André Lima de Castro, Anderson Rodrigo Barreto Teodoro
Autonomous Computational Systems Lab
Aeronautics Institute of Technology (ITA)
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Abstract

Agent-based simulations may be a way to model human society behavior in
decisions under risk. However, it is well known in economics that Expected
Utility Theory (EUT) is flawed as a descriptive model. In fact, there are some
models based on Prospect Theory (PT), that try to provide a better description.
If people behave according to PT in finance environments, it is arguable that
PT based agents may be a better choice for such environments. We investigate
this idea in a specific risky environment, a financial market. We propose an
architecture for PT-based agents. Due to some limitations of the original PT,
we use an extension of PT called Smooth Prospect Theory (SPT). We simulate
artificial markets with PT and traditional (TRA) agents using historical data
of many different assets over a period of twenty years. The results showed that
SPT-based agents provided behavior that is closer to real market data than
TRA agents, and that the improvement when using SPT rather than TRA
agents is statiscally significant. It supports the idea that PT based agents may
be a better pick to model the behaviour of agents in risky environments.
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1. Introduction

The price dynamics, in a financial market, are defined by the sum of the
actions of all agents in such market. Thus, an alternative approach to modeling
prices as an exogenous stochastic process is to model the agents’ behavior and
verify if we can reproduce the market outcome with such agents. This paper
contributes to this artificial economics research program, by comparing how two
different sets of artificial agents resemble the outcome of real markets. The two
sets of agents that we use differ in how they make decisions under risk.

The most traditional and widely used model for decision under risk is Ex-
pected Utility Theory (EUT), in particular the use of the principle of expected
utility maximization. However, there is evidence that people do not make de-
cisions under risk strictly based on expected utility [1]. In fact, some experi-
ments [2] show that financial professionals (who likely are aware of Expected
Utility Theory) also may behave according to Prospect Theory and violate ex-
pected utility maximization. Prospect theory was proposed [1] and later im-
proved by Kahneman and Tversky [3]. It is an alternative model of human
decision making under risk. PT may describe some behaviors that cannot be
explained by Expected Utility Theory. For instance, there is a clear preference
for guaranteed small gains over uncertain large gains, and conversely for uncer-
tain large losses over small certain losses even when EUT would point to the
reverse option. This is usually called the reflection effect [1].

If financial professionals behave according to Prospect Theory in financial
markets, the agent-based modeling of such markets could benefit from prospect
theory based agents. Our idea is to create trading agents based on Prospect
Theory and simulate an artificial market populated with such agents. If in-
vestors’ behavior is consistent with PT, such simulations should provide results
closer to historical data from real markets than those provided by traditional
agents based on EUT.

We modeled traditional trading agents and created a new class of trading
agent based on Prospect Theory. The class of traditional trading agents are
briefly described in Section 2. The proposed Prospect Theory-based agent is
fully described in Section 3. These agents were instantiated to populate an
Artificial Financial Market. This market, and its population with those PT
and traditional agents is explained in Section 4. We performed many simulated
experiments using these markets. These experiments are described and the
results we obtained are presented and discussed in Section 5. Finally, we state
some conclusions and some open questions in Section 6.

2. Trading Agent Modeling and Prospect Theory

We modeled three classes of trading agents: agents based on traditional
techniquies (TRA), which are broadly based on EUT, agents that play the role
of market makers (MM) and agents that use Smooth Prospect Theory SPT.
The first two classes are based on well known strategies from the literature and
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are briefly described in section 2.1 and section 2.2, respectively. The SPT class
is based on Prospect Theory and it is fully described in section 3.

2.1. TRA Agents
Automated trading strategies are not new and a significant number of pa-

pers have been published proposing such strategies. Most of them are based on
analysis of time series (usually called technical strategies), while some others
are based on the analysis of economic and financial fundamentals of companies
and/or economic sectors (usually called fundamentalist strategies). They all try
to maximize some expected value function. Some common functions are finan-
cial return, return variance (as proxy of risk), or a trade-off between risk and
return (see. pp. 212-213, [4]). They can be seen as Expected Utility Theory
(EUT) strategies, because they are not concerned in reproducing human behav-
ior but maximizing some value (or utility). The TRA agents used in this study is
very simple, given that we are not focused on maximizing trader’s performance,
but reproducing price behavior observed in real market using automated traders.

We therefore picked one of the simplest and most well-known technical
strategies: the moving average (MA). The moving average index tries to iden-
tify trends in stock prices. The average is defined by an observation period and
a calculation method that can be simple average (sum of all prices and divide
it by the number of values), front-weighted triangular method or exponential
average to give more relevance to newer prices rather than older prices [5]. We
used MA with simple average and adapted it to provide order price based on
the last market price.

2.2. Market Maker Agents
Any market used to uncover the value of an asset may benefit from an agent

that stands ready to interact with traders, providing liquidity [6]. Such an agent,
usually called a market maker agent, enables other trading agents to trade at
every round. Its presence is very important to guarantee that a price is defined
at each round.

This price is determined by the sum of all business transactions, as explained
in section 4. In case of a sell order, the price of the order is defined by yesterday’s
price plus a a small percentage, the spread. In the case of a buy order, the price
of the order is yesterday’s price or minus the spread. Therefore, the price offered
by the market maker defines a lower and upper limit for the transaction price.
However, the exact treansaction price is really defined by the other agents’
orders (i.e., the orders placed by the TRA and SPT agents). In our study, the
spread was defined as a fixed 0.5%.

3. Our Agent Model based on Prospect Theory

The modeling of agents based on Prospect Theory is not straight-forward
and it has to deal with some strong difficulties. The original Prospect Theory, as
proposed by Kahneman and Tversky [1], establishes one phase of editing and a
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subsequent phase of evaluation and selection. It deals only with prospects that
have at most two non-zero outcomes (simple prospects). However, many real
world problems present prospects with more than two non-zero outcomes and
even prospects with continuous distributions (complex prospects). Furthermore,
the editing phase as originally proposed is not well defined [7]. These issues make
it really hard to use the original version of Prospect Theory in an agent model.

Therefore, we chose an alternative extension of PT, called Smooth Prospect
Theory (SPT) [7]. This extension can be used for complex prospects and even
continuous prospects. We are aware of the criticism about it [8] and the existence
of other proposals to extend PT to complex prospects, such as Cumulative
Prospect Theory [3]. The violation of first-order stochastic dominance is usually
pointed as a major problem. However, as pointed out by Rieger et al [7], it
is not necessarily a weakness for a descriptive model because it is known that
individuals may frequently choose dominated lotteries especially when stochastic
dominance is unclear to them. Therefore, we chose SPT due to the fact it
incorporates the editing phase into the calculation and avoids the unclear part
of the original form of Prospect Theory.

Smooth Prospect Theory is explained in Section 3.1. Our model requires that
for each possible action of the agent, there is one representative prospect. these
prospects are created in the Prospect Construction Phase, which is described in
Section 3.2. We present the SPT Agent model in Section 3.3,

3.1. Smooth Prospect Theory for Agents
The Smooth Prospect Theory as proposed by Rieger and Wang [7] computes

a SPT value for each prospect and selects the highest value prospect. The SPT
value (SPTV) of a discrete prospect with an arbitrary number of outcomes xi
and respective probabilities pi is given by Equation 1.

SPTV =
∑n
i=1 w(pi)v(xi)∑n

i=1 w(pi)
(1)

where the value function v(x) is chosen as:

v(x) =
{
xα x ≥ 0
−λ(−xβ) x < 0

(2)

and λ ≈ 2.25 is a loss-aversion coefficient and α, β are the risk-attitudes pa-
rameters for gains and losses. Furthermore, the weighting function is defined
as:

w(p) := pγ

(pγ + (1− p)γ)1/γ (3)

The parameter γ reflects the amount of over or underweighting in the weighting
function.

SPTV could also be calculated for continuous distributions [7], but we deal
only with discrete prospects in this study.
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3.2. Prospect Construction Phase
The product of the Prospect Construction Phase is a set of prospects (one

for each possible action of the agent). We assume that each trading agent deals
with only one asset and it has an estimate of the fair value for such an asset.
Furthermore, the agent’s decision-making process has to place an order at each
moment of time t. An order is defined by its volume and price. An order’s
volume θt is defined as an integer number ∈ [−M,M ] at a given moment t.
The value M is the maximum number of shares that can be bought or sold by
the agent in one cycle. Positive values of θ mean a buy order, while negative θ
means a sell order and θ = 0 means to keep the current position.

The agent’s order and market price dynamics will define the agent’s outcome.
We assume that trading agents are concerned about their return and orders will
always be executed at the market price Pt+1. Thus, the outcome is the difference
between the value of an agent’s assets at time t and its value at the next time
(t + 1), right after the order θt is executed at price Pt. This outcome (x) may
be calculated as stated in Equation 5, where Pt refers to the asset price, Mt is
the amount of money, Qt is the number of shares at time t:

x = [(Mt − Pt ∗ θt) + (Qt + θt) ∗ Pt+1]
−[Mt + Pt ∗Qt]

x = (Pt+1 − Pt) ∗ (Qt + θt),
(4)

Which may be simplified to:

x = (Pt+1 − Pt) ∗ (Qt + θt). (5)

The Section 4 describes how the market price is calculated. We also assume
all orders will be executed, so each order defines changes in Qt+1 and the market
behavior defines the market price Pt+1. The market price Pt+1 cannot be defined
a priori, but it can be estimated by the trading agents. Let Pt+1 be this estimate.
So, an agent can calculate Pt+1−Pt and then estimate the outcome (x) for any
Pt+1.

Naturally, any order may bring different outcomes according to the real mar-
ket price in the next round Pt+1. In order to establish prospects, given an order
θt, we would need to determine the probabilities for each possible outcome.
The estimate of market price Pt+1 is a continuous value and θt is dependent on
the trading strategy (certainly non-linear) and market state. So, the outcome
is itself a continuous non-linear function. It would require a probability den-
sity function, p(x), to represent the associated probabilities for each possible
outcome (x).

We adopted Markowitz’s assumption that returns present a Gaussian dis-
tribution [9], so the price Pt+1 is a also a random variable with a Gaussian
probability distribution. Thus, the density probability function p(x) of the out-
come x can be given by equation 6, where σ is the standard deviation and µ the
expected value or Pt+1:
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p(x) = exp−(Pt+1−µ)2/2σ2

σ ∗
√

2 ∗ π
(6)

It is easy to see that the outcome, x, (Eq. 5) is a linear function of Pt+1. Let
at = Qt+θt and bt = Pt(Qt+θt). If so, we can rewrite Equation 5 to determine
a new expression for Pt+1 and use it in Equation 6 to find an expression for the
distribution probability function p(x) for the outcome x. Such an expression is
given by Equation 7, where at and bt are known at time t. It can be used for
the calculation of SPT as stated in Equation 1.

p(x) = exp−(x−bt−atµ)2/2a2
tσ

2

σ ∗
√

2 ∗ π
(7)

Each prospect would have infinite possible outcomes and could be calculated
by SPT for continuous distributions. In order to avoid such complexity and since
prices are limited to cents, we decided to limit the possible outcomes to a finite
set. We adopt a step ε in (0,1) for prices. Thus, As each order θt is limited to
[−M,M ] and if we assume that Pt+1 is limited to [0, 2Pt], it is easy to verify using
equation 5 that the outcome x is limited to interval [−Pt(Qt+M), Pt(Qt+M)].
Therefore, the number of possible outcomes is limited to 2Pt(Qt+M)/ε for each
prospect. We limit the orders of agent to three: sell (−M), hold (0) and buy
(M).

3.3. The SPT Agent Model
The SPT agent model is a simple extension of the classic Utility based Agent

Model [10], where the SPTV value (Eq. 1) is used instead of utility to select an
agent’s action from the set of possible actions, shown in Figure 1. There is a one-
to-one relationship between prospects and possible actions. This relationship
is created by the Prospect Construction Phase, which is fully explained in
Section 3.2.

In the prospect evaluation phase, the agent computes SPTV for each
prospect and selects the action related to the highest value SPT prospect. The
selected action is then executed by the agent through its actuators (Figure 1).

It isn’t clear to me from the figure what the acutators are —
are they buy/sell decisions, or something else?

It is a straight forward approach, but it requires that the agent have information
about all possible outcomes and respective probabilities for each possible action.
Such information is used to construct one prospect for each possible action.

4. Artificial Financial Markets populated with SPT and TRA agents

In our Artificial Financial Market, each trading agent gives orders that are
stored in a buy or sell book as in a real stock market. The clearing process
is performed by the Four Heap algorithm described in [11]. The market price
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Figure 1: SPT Agent Model

for a given instant of time Pt is defined as the average of all transaction prices
weighted by the volume of each transaction. A market specification defines
a set of agents. Each agent is described by its class (SPT, TRA or MM) and its
volume order.

My understanding is that the work compares two kinds of mar-
ket, one with MM and TRA agents, and the other with MM
and SPT agents. If this is the case, I would say so explicitly.

That way, an agent that gives a higher volume order is more relevant to the
market price formation than other agent that submits small volume orders [11].
This price, called market price, is compared with actual prices obtained from
actual stock exchange data, called the external price. The difference between
the market price(Pt) and external price(Pt) is the prediction error in a given
instant of time t.

It is relevant to observe that the prediction error of a period of time is much
more relevant than just one moment to state that one set of trading agents is
better adapted than the other one. Therefore, we define the session error (E)
as the sum of squared errors (eq. 8). If a market specification A provides a
smaller session error (E), than market specification B, then we may say that
artificial market A is a better description of the real market than B.

E =
N∑
t=1

(Pt − Pt)2 (8)
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4.1. Parameter Calibration
As pointed out by LeBaron, a common criticism of agent-based markets is

that they usually have too many parameters and the impact of these parameters
is not well understood ([12],pp. 1222). In this study, we are making a direct
comparison between agent-based markets with SPT and TRA agents. Further-
more, we set the parameters using the same algorithm for all markets. So, we
believe that it is a fair comparison.

We used a search algorithm to adjust the volume orders of a market specifica-
tion in order to reduce the Session Prediction Error (Eq. 8). Given the fact that
trading agents with higher volume order have more relevance to market price
formation, we adjusted the market specification (i.e., the volume order of the
trading agents) to fit data previously observed in real markets. For simplicity,
each agent type had just one instance, and it traded one specific share quantity
at each round. The market specification was defined by three parameters:
the share quantities of each one of the three kinds of agents: SPT, TRA, and
market maker agents.

It is very hard to know a priori how a change in one of the specification
parameters may affect the market price Pt or the session error (E). Therefore as
search algorithm, we used the random-start gradient descendent method to find
minimum points of the objective function E, which is a variant of the common
hill climbing methods [10]. The method uses a new random starting point each
time it finds a local minimum for the objective function. It is worth noting that
any change in the market specification does not alter trader strategy, but their
relevance to the market price definition.

5. Simulated Experiments, Results and Discussion

In this section, we describe the simulated experiments perfomed (Section 5.1)
and their results (Section 5.2). Then, we discuss such results and answer some
questions (Section 5.3).

5.1. Simulated Experiment Setup
We performed simulated experiments in many different scenarios. Each sce-

nario was defined by a year from 1994 to 2013 (twenty years) and one company
picked from the twenty biggest companies in the NYSE or Nasdaq during the
period. Table 1 lists these companies. This gave us four hundred scenarios
(20×20). The number of data points in each scenario changed according to the
number of business days in the respective year. Typically, each scenario had
about 247 data points. Each one was defined by the asset’s closing price or ex-
ternal price and the respective business day, providing about 98,000 historical
prices (247× 20× 20). These prices were downloaded from the Yahoo Finance
service.

The simulations were performed considering periods with high price volatility
(crisis) and low price volatility (non-crisis periods). We implemented our trading
agents using an adapted version [13] of an auction simulator, called JASA [14].
JASA runs over an agent modeling toolkit, called JABM [15].
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Table 1: Companies whose stock was used in the simulated experiments
Stock Stock
AMD JPMorgan Chase
Apple JC Penney
AT&T Microsoft
BarrickGold Nike
Citigroup Pfizer
Ford Motor Rite Aid
General Eletric Sprint
HP Verizon
IBM Wells
Intel Xerox

5.2. Results
We compared SPT agents (that is the market with SPT and MM agents)

against TRA agents (the market using TRA and MM agents) in 400 scenarios.
A smaller Session Error in a scenario was considered better performance. We
observed which agent type (SPT or TRA) presented better performance
in each scenario. The simulation results are presented in Table 2. The SPT
agents achieved better performance in 288 scenarios against only 112 in which
TRA agents achieved higher performance. We also analyzed the performance
by segregating the scenarios into two categories: crisis (high volatility) and non-
crisis (low volatility). We arbitrarily drew the boundary between crisis scenarios
and non-crisis scenarios as being where the level of volatility was 80. Crisis
scenarios (CRs) were defined as those scenarios where the level of volatility was
greater than or equal to 80 and non-crisis scenarios (NCRs) were defined as
those scenarios in which volatility was smaller than 80. Table 2 presents the
number of scenarios where SPT agents achieved better performance (smaller
session error) in the first row. The second row shows the number of scenarios
where TRA agents performed better. For each element in the table we show
the absolute number of scnearios and the respective percentages of the total
number of scenarios. It is arguable that SPT agents performed slightly better
in CR scenarios than in NCR scenarios.

Table 2: Number of scenarios where SPT or TRA achieved better performance in crisis (CR),
non-crisis (NCR) and all scenarios. Results are given both as the total number of scenarios
and the percentage of scenarios.

CR NCR All
SPT 60 (75%) 228 (71%) 288 (72%)
TRA 20 (25%) 92 (29%) 112 (28%)
Total 80 (100%) 320 (100%) 400 (100%)
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5.3. Discussion
Based on the results, we may state that SPT performed better in crisis (CR)

or non-crisis (NCR) situations. We tested the hypothesis that the performance
is the same for TRA agents and SPT agents. The data presented in Table 2
allows us to reject such hypothesis with 99.9% confidence using the χ2 test for
all situations: CR (20.0), NCR (57.8) and general (77.4), since χ2

0.999 is 10.8
for one degree of freedom. Therefore, we may state that the data supports the
hyphothesis that SPT agents are a better description than TRA agents.

We also analyzed the results with several different levels of volatility as crisis
limit in Section 5.3.1. In Section 5.3.2, we verify how far the TRA’s and SPT’s
performances are from each other.

5.3.1. What happens if the crisis definition changes?
We used the volatility (variance) of the prices as proxy of risk. If a scenario

presented volatility equal or higher than the specified limit, it was classified as
crisis and it was classified as non-crisis in the negative case. We used limit levels
from 0 to 1600. We considered a tie when the difference between performances
were equal or below 0.1%. In limit level 0, all 400 scenarios were classified as
crisis. In limit level 1600, only six were so classified. SPT performed better in
all six. The results achieved by SPT and TRA are presented in Figure 2.

I think that the figure would be easier to understand if different
line styles (dotted, dashed, etc) were used for the lines rather
than different colours. Also, it is confusing to label the TRA
agent performance as EUT. Why do some values exceed 100%?

SPT presented better performance in about 70% of the scenarios for limits from
0 to 400. It seems that SPT performed even better when the limit went from 800
to 1600 (very high volatility or very bad crises). However, the small numbers
of crisis scenarios in such conditions (16 to 6) are not statiscally significant to
reject the hypothesis that SPT performance would have the same performance
in such cases.

5.3.2. How far apart are the agents’ performances?
We also analyzed the results with several levels of tie for agent’s performance.

The tie scale went from 0% to 30%. The results are presented in Figure 3.

The same comment about line type applies to this figure. It
would be good if the y-axes and the measurement of scenario
number on the x-axis were the same in both figures — you want
people to be able to compare between the two.

For instance, when the difference between SPT and TRA performance was equal
or less then 1%, there were 119 ties, SPT was superior to TRA in 214 scenarios
and TRA was superior to SPT in only 67 scenarios. All performance differences
were equal or smaller than 30%. Therefore, all scenarios were classified as tie
in the last column of Figure 3. It is relevant to note than in all circumstances
with different performances, SPT out performed TRA.
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Figure 2: SPT vs TRA performances for multiple crisis definitions. Different volatilities are
plotted on the x-axis (recall that 80 is the value used above), and for each value we plot
the percentage of scenarios in which SPT agents have better performance, the percentage of
scenarios in which TRA agents have better performance, and the percentage of scenarios in
which the two types of agent tie.
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Figure 3: SPT vs TRA performances for multiple tie definitions. Different values of the tie
parameter (the percentage difference in performance under which different results for SPT
and TRA are considered the same) are plotted on the x-axis, and for each value we plot the
number of scenarios in which SPT agents have better performance, the number of scenarios
in which TRA agents have better performance, and the number of scenarios in which the two
types of agent tie.
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5.3.3. Result Analysis
The predictions made by SPT agents presented better performance (smaller

errors) than TRA agents in most cases. In fact, we can reject the hypothesis
that SPT and TRA agents present the same performance with 99.9% confidence
for all scenarios. Furthermore, we can state that SPT was better in 70% of the
scenarios with 75% confidence. We expected SPT would perform better in crisis,
but it would present poor performance in low volatility scenarios. We expected
that because we believe that psychological biases can present higher influence
on investment decisions in crisis periods. Surprisingly, the results support the
idea that SPT agents are better fit to real data than TRA agents regardless
of volatility. Nevertheless, we still believe that SPT superiority would be more
evident in high volatility scenarios and the results seem to point in such direction
(see Figure 2). However, the current data does not allow us to conclude that the
hypothesis is true with a suitable degree of statiscal significance. Furthermore,
the fact that SPT agents presented smaller errors than TRA agents, supports
the idea that the strategies of real traders may be influenced by psychological
biases as described in PT [1].

6. Conclusions and Future Work

Agent based modeling (ABM) may become a better way to help guide finan-
cial policies than traditional models according to some researchers [16]. How-
ever, several problems may be identified in this approach. For instance, hu-
man beings do not make risky decisions strictly based on expected utility the-
ory (EUT) as usually assumed in ABM and perhaps an alternative descriptive
models as Prospect Theory (PT) may be a better model for agent’s decision
process. In fact, a recent study that uses prospect theory based agents and fits
the model to experimental data in the context of Behavioral Mechanism Design,
have shown different equilibria when agents are based on expected utility theory
than those observed when they are based on prospect theory [17].

We addressed the modeling and simulation of PT-based agents. We used
an extension of PT called Smooth Prospect theory (SPT) to develop an agent
model. Such a model uses a prospect construction phase that creates a one-
to-one relationship between a prospect and an agent’s action. This model was
used to build a trading agent. We populated simulated artificial markets with
this kind of agent (SPT) and with traditional (TRA) agents. Those agents were
used in a significant number of simulated experiments.

The results showed that the artificial market populated with SPT agents
performed significantly better than EUT agents. In fact, we were able to reject
the hypothesis that SPT and TRA agents present the same performance with
99.9% confidence for all scenarios. Furthermore, we can state that SPT is better
in 70% of the scenarios with 75% confidence. These results support the idea
that real human trading agents are influenced by psychological biases, such as
described in PT [1]. It may be pointed out that the agents are relatively simple
and do not fully represent human behavior in financial market. For instance, the
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prospect construction phase could deal with continuous distributions rather than
discrete ones. In future work, we intend to address these issues. Furthermore,
we believe that two other open questions that are really worth to study: (1)
the use of an alternative version of Prospect Theory that does not violate the
first-order sthocastic dominance (such as CPT) and (2) try PT based agents on
different risk environments, such as games, to observe if they are still a better
choice over expected utility theory based agents as descriptive model.
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