
Firewall configuration: An application of multiagent
metalevel argumentation

Andy Applebaum1, Zimi Li2, Karl Levitt3, Simon Parsons4, Jeff Rowe3, and Elizabeth I.
Sklar4

1The MITRE Corporation, McLean, VA 22102 USA
2Department of Computer Science, The Graduate Center, City University of New York,

New York, NY 10016 USA
3Department of Computer Science, University of California, Davis, CA 95616 USA

4Department of Informatics, King’s College London, Strand, London WC2R 2LS UK

November 7, 2016

Abstract

Firewalls are an important tool in the assurance of network security. Packet filtering firewalls are con-
figured by providing a set of rules that identify how to handle individual data packets that arrive at the
firewall. In large firewall configurations, conflicts may arise between these rules. Argumentation provides
a way of handling conflicts such that their origin is illuminated, and hence can help a system administrator
understand the effects of a given configuration. To show how argumentation might help in this domain we
examine the use of a system of metalevel argumentation for firewall configuration, showing how it makes
conflicts and their origins clear, and showing how different instantiations of a metalevel argumentation
system provide alternative ways to resolve conflicts.

1 Introduction

Assuring network security is a major problem today. It is a problem that is considered both in academic
computer science, which aims to come up with new techniques for securing networks, and in the practical
world of information technology, where system administrators struggle to prevent unauthorised users from
breaking into the networks that they manage. Firewalls, first introduced in 1987 [25], are one of the core
components of a network security implementation. A firewall is a combination of hardware and software
that isolates an organization’s internal network from the Internet at large, allowing some packets to pass
through and blocking others [27]. The decision about which packets to pass and which to block is made
according to some policy, and the configuration of a firewall is the business of implementing this policy.

As we will discuss below, firewall policies are set by specifying a set of rules, and there are a number
of well-recognised problems in doing this. These problems relate to rules conflicting, having domains that
overlap, and include redundancy (where the effect of a policy differs from that intended because some
rules can never have any effect). Such anomalies arise from the complexity of setting up firewall policies in
complex environments such as large organisations, especially when different parts of the overall firewall
policy are set by different individuals.

In this paper, we discuss how an argumentation-based framework can be used to analyse a firewall
policy. In particular, we examine the use of the metalevel argumentation framework of [32], choosing
this system as the basis of our investigation because we believe that the metalevel reasoning about the

1

R2

internal

hosts

R1

external
hosts

router

R

policy

all packets allowed packets

all packetsallowed packets

blocked packets

department 1

department 2P

Figure 1: A packet-filtering firewall.

acceptability of arguments helps to make the reasons for conflict between policies especially clear, and
makes it easy to understand how different strategies for resolving such conflicts work.

The remainder of this paper is organised as follows. Section 2 provides a brief introduction to firewalls
and issues in their configuration. Section 3 introduces the specific metalevel argumentation system that we
employ. Section 4 describes several ways in which this metalevel system can be used to represent firewall
configurations and potentially resolve conflicts in the firewall rules. Section 5 discusses related work. Then
Section 6 concludes.

2 Problems in firewall configuration

There are different types of firewall which function in different ways — packet-filtering firewalls, appli-
cation/proxy firewalls, and network address translation. Packet-filtering firewalls operate at the network
layer, not allowing packets to pass through the firewall unless they match the established policy rule set.
Routers can provide a very common form of packet-filtering firewall. Packet-filtering usually makes deci-
sions based on the following characteristics:

• Source and/or destination IP1 addresses

• Source and/or destination port numbers

• Protocol types

• Other parameters within the IP header

A network administrator configures the firewall based on the policy, for example blocking and allow-
ing packets based on what protocol they match and which IP address they have as their destination. A
schematic of a packet-filtering firewall is given in Figure 1. Here the firewall is implemented by router R,
which implements policy P. This inspects and filters incoming packets, aiming to remove any that attempt
to attack internal hosts, and outgoing packets, both preventing users from accessing unauthorised resources
outside the firewall and preventing attacks on external hosts from within the firewall.

Application firewalls, as indicated by the name, work at the application layer. These devices act as
proxy machines for requested services. Requests are sent to a proxy machine, which then makes those
requests to the Internet on behalf of the local client. A proxy machine acts as a buffer between “bad”
remote users and the internal network client machines. Network address translation (NAT) also operates
at the network layer, providing the capability to change the source and/or destination IP address. This is
common when a private address space is used internally. The simplest type of NAT provides a one-to-one

1Internet Protocol

2

relationship between inside and outside IP addresses. In this type of NAT, only the IP header related to
the IP address needs to be changed. The rest of the packet can be left unchanged. In the remainder of this
paper, we concentrate on packet-filtering firewalls, but we believe that the techniques developed here could
be applied to the other types we have listed above.

Table 1 lists some possible polices for a packet-filtering firewall and how they could be implemented. In
particular, each row of Table 1 presents a rule for a single packet. A set of such rules makes up a firewall
configuration. The first column in Table 1 numbers the rule for reference. The second column states the
policy that the rule is intended to implement. The third, fourth, fifth and sixth columns break the policy
implemented by a rule into the action that the firewall can perform (block or allow the packet) and the data
that is available about each packet (the protocol it relates to, the source IP address, and the port the packet
arrives at). The final column shows how a given rule would be implemented in the Linux iptables utility.

If a firewall were to be implemented with this set of rules, when a packet comes in it would be checked
against rule 1. If rule 1 applied to that packet, then the action specified by rule 1 would be taken. Otherwise,
the packet would be compared to rule 2. This process is repeated until one of the rules correctly specifies
the packet; the first rule that does is the one that’s applied, ignoring all rules after it. If no rule matches
an incoming packet, some default rule (which might, for instance, be to let the packet pass since there
is no specific rule to block it), would be applied. Imagine a packet arriving that uses TCP, coming from
55.55.55.55 on port 80. Rule 1 specifies blocking it, while rule 2 says to allow it. Since rule 1 is positioned
before rule 2, the ultimate action is to block, but it is clear that there is some kind of a conflict occuring.
As another example, a packet using UDP from 55.55.55.55 on port 53 would be blocked; while three of the
rules say to block it, only the first one is actually “enforced”.

The situations highlighted in both of these examples could be considered problematic, and both are
what [2] calls an anomaly in a firewall policy. [2] defines four anomalies in terms of relations between rules:

Shadowing Rule a is said to shadow rule b if a has higher-priority than b, a and b specify different actions,
and every packet that satisfies b also satisfies a.

In shadowing, the two rules are in conflict on every packet that the rules apply to.

Correlation Rule a and b are correlated if a and b specify different actions and some packets that satisfy a
also satisfy b and vice versa.

In correlation, the rules conflict on some packets that the rules apply to.

Redundancy Redundancy occurs in two cases. In the first case, redundancy occurs if two rules a and b are
such that all packets that satisfy a satisfy b, a and b specify the same action, and b is higher priority
than a.

In the second case, redundancy occurs if all packets that satisfy a also satisfy b, a and b specify the
same action, a is higher priority than b, and a is not involved in any correlation anomalies.

In both cases of redundancy, the lower priority rule will never be applied.

Generalization Rule a is said to generalize rule b if b has higher priority than a, a and b specify different
actions, and every packet that satisfies b also satisfies a.

In generalization there is shadowing but the conflict is resolved by the priority.

In the example in Table 1, rule 4 shadows rule 5, since every instance of rule 5 is also an instance of rule 4,
and they specify different actions. Rule 1 and rule 2 are correlated, since a TCP packet from 55.55.55.55 on
port 80 is an instance of both rule 1 and rule 2, and they specify different actions. Rule 4 generalizes rule
2, since every instance of rule 2 is also an instance of rule 4, and they specify different actions. Rule 3 is
redundant because every instance of rule 3 is also an instance of rule 4, and they specify the same action.

Now, in a small set of firewall rules such as these, it is easy enough to detect and fix anomalies. However,
firewalls, especially in large organizations with many machines on a network, can include many hundreds
of rules. In such a case, detection and correction of anomalies is much harder. The problem is even more
complex when firewalls are composed of different components, each requiring some part of a policy that

3

Ta
bl

e
1:

Ex
am

pl
es

of
fir

ew
al

lp
ol

ic
es

an
d

co
rr

es
po

nd
in

g
fil

te
ri

ng
ru

le
s.

Ea
ch

ro
w

lis
ts

an
ex

am
pl

e
of

w
ha

tm
ig

ht
be

re
qu

ir
ed

of
a

fir
ew

al
l,

th
e

co
rr

es
po

nd
in

g
fir

ew
al

ls
et

ti
ng

s,
an

d
th

e
im

pl
em

en
ta

ti
on

of
th

es
e

se
tt

in
gs

us
in

g
th

e
Li

nu
x
i
p
t
a
b
l
e

ut
ili

ty
.T

he
˚

sy
m

bo
li

nd
ic

at
es

a
w

ild
ca

rd
,

in
di

ca
ti

ng
an

y
va

lu
e

is
ac

ce
pt

ab
le

.

R
ul

e
Po

lic
y

Fi
re

w
al

lS
et

ti
ng

Li
nu

x
im

pl
em

en
ta

ti
on

A
ct

io
n

Pr
ot

oc
ol

So
ur

ce
IP

So
ur

ce
po

rt
1

Bl
oc

k
a

m
al

ic
io

us
se

nd
er

bl
oc

k
˚

5
5
.5
5
.5
5
.5
5

˚
ip

ta
bl

es
-A

IN
PU

T
-p

0
-s

55
.5

5.
55

.5
5

-j
D

R
O

P
2

A
llo

w
W

eb
se

rv
ic

es
al

lo
w

TC
P

˚
8
0

ip
ta

bl
es

-A
IN

PU
T

-p
tc

p
-d

po
rt

80
-j

A
C

C
EP

T
3

Bl
oc

k
D

N
S

se
rv

ic
es

bl
oc

k
U

D
P

˚
5
3

ip
ta

bl
es

-A
IN

PU
T

-p
ud

p
-d

po
rt

53
-j

D
R

O
P

4
Bl

oc
k

al
l

bl
oc

k
˚

˚
˚

ip
ta

bl
es

-A
IN

PU
T

-p
0

-j
D

R
O

P
5

A
llo

w
FT

P
se

rv
ic

es
al

lo
w

TC
P

˚
2
1

ip
ta

bl
es

-A
IN

PU
T

-p
tc

p
-d

po
rt

21
-j

A
C

C
EP

T

4

is applied to a whole organisation, and as we shall discuss below, one can easily imagine scenarios in
which decisions about whether to accept or reject specific packets requires complex reasons that need to
combine information from a group of autonomous individuals. See [13] for a similar scenario in the domain
of B2B applications. It is the need to deal with these complicated cases that is the reason we are using
argumentation. In the remainder of the paper, we will describe how this can be done. In particular, we will
use the metalevel approach presented in [32] since it provides a general approach to handling anomalies.

3 Metalevel argumentation

The metalevel argumentation framework of [32] is constructed on top of the standard Dung framework [20].
The idea is to make the conditions under which arguments are classified — for example as justified, rejected
and defeated — and the definition of extensions — such as grounded, preferred and stable — expressible
in a logical language. The advantage of doing this is that it becomes possible not just to have arguments
about objects in some domain, but arguments (meta-arguments) about the status of those arguments. In
this section, we introduce enough of this material to apply it to our firewall scenario. The description is an
abbreviation of the presentation [32] with some minor modifications and additions (though naturally any
faults in the interpretation of the original are ours).

3.1 Argumentation

The formal structure, taken from [32] is as follows. As [32] points out, the formalization is based not on
Dung’s classic presentation, but on the more recent labelling approach [15, 16, 45, 48] (nicely summarised
in [10]). The basic notion is that of a Dung argumentation framework, a tuple xA,Ry where A is a set of
arguments and R Ď A ˆ A is a binary relation on A that identifies which arguments attack which other
arguments.

In Dung’s approach, as in [32], arguments are taken to be completely abstract entities with no internal
structure, and the attack relation R is given. However, as a number of authors have pointed out — for
example [5, 26, 39] — it is possible to construct structured arguments from some logic, and use the relation-
ship between arguments to determine what attacks what. For example, given some logical language L and
an inference relation $, we might follow [5] by defining an argument as a pair pS, pq where S is a minimal
set of formulae in L such that S $ p. p is the conclusion of such an argument and S is its support. In such
a formulation, it is typical to say that one argument S $ p attacks another S 1 $ p 1 if either p ” p 1 or
 p P S 1. That is pS, pq attacks another pS 1, p 1q if either the conclusions of the two arguments disagree, or the
conclusion of the attacking argument disagrees with a member of the support of the attacked argument2.
A is then the set of all arguments that can be constructed from some set of data ∆, and R is the set of all
attacks between these arguments.

Given a set of arguments and attacks between them, the core of Dung’s idea is that not all arguments
are equal. It is possible to identify some arguments that we should consider acceptable — their conclusions
are valid given what we know — and some that are not. The labelling approach gives us a simple way to
determine whether an argument is acceptable or not. The approach can be described in terms of a labelling
function L which maps from arguments to a set of labels tIN,OUT,UNDECu. We then write inpLq to indicate
all arguments that are labelled IN by L, outpLq to indicate all arguments that are labelled OUT, and undecpLq
to indicate all arguments that are labelled UNDEC.

Defined in this way, there is no relationship between a labelling and the attack relation over a set of argu-
ments. The two are combined through the idea of legality. For a labelling L, an argumentation framework
xA,Rq, and an argument x P A:

1. x is legally IN iff x is labelled IN and every y P A that attacks x is labelled OUT.

2. x is legally OUT iff x is labelled OUT and there is at least one y P A that attacks x and is labelled OUT.

2We discuss a specific L and $ later in the paper.

5

Stable Labelling

Preferred Labelling

Complete Labelling

Admissible Labelling

Grounded Labelling

is a

is a

is a

is a

Figure 2: The relationship between labellings

3. x is legally UNDEC iff there is no y P A that attacks x such that y is labelled IN, and there is at least one
y P A that attacks x such that y is labelled UNDEC.

Note that the UNDEC state occurs when x cannot be labelled IN (because it has at least one attacker that is not
OUT), and cannot be labelled OUT (because it has no IN attacker). If an argument is not legally labelled, it is
said to be illegally labelled. More precisely, an argument is illegally labelled l, where l P tIN,OUT,UNDECu
if it is not legally labelled l.

With the notion of legality tying labellings to attack relations, it is possible to recover Dung’s idea that
extensions, sets of arguments that are somehow coherent, can be identified within an argumentation frame-
work. We do this through the notions of admissibility and completeness. An admissible labelling has no
arguments that are illegally IN, and no arguments that are illegally OUT. A complete labelling is an admissi-
ble labelling that, in addition, has no arguments that are illegally UNDEC. Then, given a complete labelling
L, we have that:

1. L is a grounded labelling iff there is no complete labelling with a smaller set of IN arguments.

2. L is a preferred labelling iff there is no complete labelling with a larger set of IN arguments.

3. L is a stable labelling if it contains no UNDEC arguments.

If L is a grounded labelling, then every argument x which is labelled IN in L is in Dung’s grounded exten-
sion, if L is a preferred labelling then every x which is labelled IN in L is in the preferred extension, and
if L is a stable labelling then every x which is labelled IN in L is in the stable extension. The relationship
between labellings (and hence extensions) is shown in Figure 2, and note that other notions of acceptability,
such as semi-stable [18], can also be captured using the same labelling approach.

Based on extension membership, we can then define the status of arguments. If x is in at least one
extension, then x is credulously justified; if x is in all extensions, then it is sceptically justified; and if x is in no
extensions, then it is rejected.

3.2 Metalevel argumentation

In [32], a metalevel argumentation framework is defined3 as a tuple:

xA,R,AM,RM, C,LC ,Dy

where A is a set of arguments and R is an attack relation on object level arguments as in the previous
section, and AM and RM are sets of arguments and attacks at the metalevel. C is a set of claims about the

3This is a less general subset of the system presented in [32], but sufficient for our purposes.

6

arguments inAM, that is a mapping fromA to statements, LC is the language in which the claims are made,
and D is a set of constraints on the attack relation AM that are determined by the claims. As an example,
[32] gives a metalevel argumentation framework that captures Dung’s original argumentation system. In
this system, LC includes a set of constants and a set of predicates. The set of constants C includes xxy for
every x P A (it is common practice to quote object level symbols in this way to make them constants at the
metalevel). The set of predicates is:

tjustified, defeat, rejectedu

and LC has a set of well-formed formulae W defined by the following rules:

1. If xxy P C, then xxy P W

2. If xxy, xyy P W, then pxxy, xyyq P WR, WR Ă W

3. If xxy P W and xxy R WR, then justifiedpxxyq P W

4. If xxy P W and xxy R WR, then rejectedpxxyq P W

5. If xxy, xyy P W and xxy, xyy R WR, then defeatpxxy, xyyq P W

In other words, the language LC allows us to talk about any of the constants (which will represent argu-
ments in A), attacks between the arguments, whether arguments are justified or rejected, and whether one
argument defeats another. The notion of defeat is necessary because exactly the kind of thing we want to
capture is when there is an attack between two arguments, but there is something at the metalevel which
overrides the attack. The labelling of arguments thus depends on defeats not on attacks.

We next need to define AM, which is the union of AM1, AM2 and AM3 where:

α P AM1, Cpαq “ justifiedpxxyq iff x P A
β P AM2, Cpβq “ rejectedpxxyq iff x P A
γ P AM3, Cpγq “ defeatpxxy, xyyq iff px, yq P R

so that arguments in AM are statements about arguments in A being justified, rejected and defeating one
another. Then the set of constraints on claims, D contains:

D1 if Cpαq “ defeatpX,Yq and Cpβq “ justifiedpYq then pα,βq P RM.

D2 if Cpαq “ defeatpX,Yq and Cpβq “ rejectedpXq then pβ,αq P RM.

D3 if Cpαq “ justifiedpXq and Cpβq “ rejectedpXq then pα,βq P RM.

which together define the contents of RM. For example, the first of these says that a claim that X defeats
Y is an attack on the claim that Y is justified. As [32] shows, computing the justified arguments in AM will
identify the justified arguments in A consistently across the different definitions of extensions.

As presented so far, and as described in [32], this metalevel argumentation system, just like Dung’s sys-
tem [20], has an asbtract notion of an argument. The members of AM have no internal structure. However,
one can (and we will below) construct the members of AM from a set of statements ∆M in some language
LM using an inference mechanism $M. When this is done, LM, like LC , will contain constants xxy for every
x P A since LM will be statements about these arguments. For example, a sentence in LM might describe
how one argument is preferred to another, and an argument inAM that is constructed from such statements
might describe how an attack from R is not a defeat because of this preference. The attacks between these
arguments then populateRM.

4 Arguing about firewall policies

Having introduced some of the issues in firewall configuration, and the metalevel argumentation approach
of [32], in this section we discuss how the latter can be used to model some aspects of firewall configura-
tion in order to illuminate anomalies and potentially provide a means to support system administrators in
solving them.

7

4.1 Scenario

We consider a simple scenario in which an organization operates a hierarchical network of routers (see
Figure 1 again). The root node, R, is the master router which ultimately implements the firewall policy for
the organization. The child nodes, R1 and R2, are gateways to different departments within the organization
which have different requirements. R1 and R2 are stakeholders in the implemented policy and send their
preferred policies to R. R then combines these policies to create the overall policy P for the organization.
If the policies put forward by R1 and R2 conflict, R must resolve the conflict in order to create this overall
policy.

Currently this merging of policies would be done by hand. In the simplest case, this is done by just
concatenating the firewall rules. It is not hard, though, to imagine the process being automated with the
routers being under the control of software agents. AR is the agent controlling R and AR1

and AR2
are

the agents controlling R1 and R2 respectively. Indeed, a process that implements a software-based packet
filtering firewall would meet the description of a basic reactive agent [50], receiving a sequence of percepts
in the form of data about incoming packets, and making a sequence of “accept”/”block” decisions. The
policies for R1 and R2 are set by system administrators in the relevant departments, AR1

and AR2
, and these

advocate for their policies with AR. This agent (AR) merges the policies and the combined policy is set
by the system administrator with overall responsibility for the whole organization, based on information
provided by the agent controlling R.

The model of structured argumentation that we use in the following examples is that of [28], which is a
defeasible subset of ASPIC+ [33]. In terms of the element introduced above, L contains a set of propositions
pi, their negations pi, and a set of defeasible rules p1, . . . , pn ñ pn`1. Inference in this system is achieved
by the application of:

p1, . . . , pn p1, . . . , pn ñ pn`1

pn`1

If p follows from a set of formulae S using this inference rule alone, we denote this by S $ p, and, if S is
minimal, pS, pq is an argument. Note that all we are doing here is to make it possible to use the metalevel
argumentation model from [32] with structured arguments. Our intention is not to propose a new model
of argumentation; we are just using an existing model of metalevel argumentation with a subset of the
well-known ASPIC+ system.

4.2 A simple metalevel model of a firewall

Now suppose that R1 has a policy to deny all DNS traffic in order to enhance system security, while R2 has
a policy to allow HTTP traffic in order to support web services. We can model R1’s policy as:

secure system
secure system ñ allow DNS
 allow DNS ñ allow UDP

In addition to the justification of R1’s policy, this captures the fact that one approach to disallowing DNS
traffic is to block all UDP traffic since DNS runs over UDP. (Such an approach would obviously block other
protocols and applications that use UDP, and so this might be considered rather heavy-handed.) From this
set of policy information, it is possible for AR1

to construct the argument:

ptsecure system, secure system ñ allow DNS, allow DNS ñ allow UDPu, allow UDPq (1)

which has the conclusion to block UDP traffic. We will call this argument n since it concerns name resolu-
tion. Similarly, R2’s policy can be modelled as:

allow WS
allow WS ñ allow TCP

8

giving AR2
the argument:

ptallow WS, allow WS ñ allow TCPu, allow TCPq

with the conclusion that TCP traffic should be allowed. We will call this argument t.
We can imagine that AR engages both AR1

and AR2
in an inquiry dialogue [49] to discover their require-

ments (for example following the protocol in [38]), a process that results in both n and t (including all the
information on which they are based) being passed to AR. In addition, AR knows that:

allow WS ñ allow DNS
allow DNS ñ allow UDP

since web services require name resolution and hence require UDP. In addition to n and t, AR can thus
construct an argument w (an argument about the requirements of web services):

ptallow WS, allow WS ñ allow DNS, allow DNS ñ allow UDPu, allow UDPq

Clearly w and n attack one another4. In the formulation given above, we then have:

A “ tw,n, tu,
R “ tpw,nq, pn,wqu

which has a single grounded extension ttuwhich does not specify what to do about UDP traffic. Before we
consider how we can use argumentation to represent different solutions to this scenario, let’s work through
the full metalevel formulation. The previous section gave a metalevel formulation of a standard Dung
framework. In this, the set of metalevel arguments includes statements about the justification and defeat of
every argument in A, and statements about defeat for every attack inR. Thus we have:

AM “ tdefeatpxwy, xnyq, defeatpxny, xwyq,

justifiedpxwyq, justifiedpxnyq, justifiedpxtyq,
rejectedpxwyq, rejectedpxnyq, rejectedpxtyqu

The constraints on claims then result in the following set of attacks:

RM “ tpdefeatpxny, xwyq, justifiedpxwyqq, pjustifiedpxwyq, rejectedpxwyqq,

prejectedpxwyq, defeatpxwy, xnyqq, pdefeatpxwy, xnyq, justifiedpxnyqq,

pjustifiedpxnyq, rejectedpxnyqq, prejectedpxnyq, defeatpxny, xwyqq,

pjustifiedpxtyq, rejectedpxtyqqu

The first six of these attack relations form a cycle in the argument graph5 shown in Figure 3, which has no
consistent labelling. The last pair of arguments listed inRM can be labelled consistently so that t is justified.
The result, then, is the single stable extension:

E “ tjustifiedpxtyqu

and the corresponding single stable extension of the object level (as we already identified just considering
the object level system) is ttu.

An understandable question to ask at this point is what the metalevel framework brings over a formula-
tion of the problem using a standard Dung framework, or a structured argumentation system like ASPIC+,
which builds a Dung framework from a knowledge base. In terms of what can be represented, and what

4The form of attack here is a rebut, an attack between the conclusions of arguments. While rebuts can be problematic in some
argumentation systems [17], they do not cause problems when arguments are, as here, chains of defeasible rules [28].

5This is the weather example from [32, page 19] without the preference argument.

9

just(w)

just(n)

reject(t)just(t)

reject(w)

def(w, n)

def(n, w)

reject (n)

Figure 3: The metalevel argument graph for the basic firewall example. Each argument corresponds to an
argument or an attack at the object level. A box is drawn around arguments that can legally be labelled IN.

can be formally concluded, the metalevel approach brings nothing. As [32] clearly shows, the metalevel
approach it suggests, the one we have used here, captures precisely what a Dung framework can capture,
and draws exactly the same conclusions. We are, of course, using a structured argumentation framework
to generate the arguments, but these could be generated by ASPIC+. Indeed, given that we are using a
structured argumentation system which is a subset of ASPIC+, one might argue that we are using ASPIC+.
However, to focus on what can be represented and what conclusions are drawn is to miss the point. The
point of using the metalevel approach lies in what is computed along the way.

In a standard Dung framework, the output is a set of labellings, telling us which arguments are justified
(IN) and which are not. Frequently, in implementations, this is presented to the user in the form of an ar-
gument graph, colour-coded to indicate which arguments are IN, OUT, and UNDEC. Such an output is clear
about what the conclusions are, but not why. Even in systems such as ArgTrust [37], which present views
of structured arguments, a user who wants to understand why has to reconstruct the inference process for
themselves. The metalevel approach, both in the way it is presented in [32] and the way we are using it
here, is one way to address the explanation of why. In the same way that a Dung argument graph makes
clear the relationship between arguments, the metalevel argument graph exposes the relationship between
the status of arguments and thus the reasoning process that leads to the labelling attached to each argu-
ment. We believe that this means that the metalevel approach can be of service in situations, like network
security, where the users of argumentation technology are unlikely to also be experts in argumentation. In
this particular case, we see that the advantage of AR using a metalevel framework, rather than a standard
Dung framework (which would enable it to reach the same conclusion), is that AR can use the metalevel
framework to explain the resulting policy to the adminstrator with overall responsibility for the organiza-
tion. For example, the argument graph that results in this case is given in Figure 3. This makes it clear that
the fact there is no justified argument for w or n is the symmetry between them. Each attacks the other, and
there is no reason to privilege one attack over the other.

4.3 A metalevel model using preferences

While the resolution of the conflicting policies achieved above is correct from the perspective of argumen-
tation theory, it is not very satisfying from an application point of view — the resulting policy is unhelpful
since it provides no decision on UDP traffic. A natural way to improve the situation is to express some
kind of preference between web services and security (in our case) to resolve the conflict between w and n
one way or the other. This is not a new idea, having been introduced at the object level in argumentation
systems such as [4, 40].

As discussed in [32], preferences can easily be introduced into a metalevel argumentation framework. If
we follow the approach described in [32], we consider that stating a preference w ąP n — that the argument
in favor of allowing UDP to support web services is strictly preferred to the argument in favor of blocking
UDP to enhance security — is equivalent to stating a metalevel argument that n does not defeat w.

The formal description of the metalevel system is that of the previous section, with the same set of

10

just(w)

just(n)

reject(t)just(t)

reject(w)

def(w, n)

def(n, w)

reject (n)

pref(w, n)

Figure 4: The metalevel argument graph for the firewall example with preferences. Each argument corre-
sponds to an argument or an attack at the object level. A box is drawn around arguments that can legally
be labelled IN.

arguments and attacks at the object level:

A “ tw,n, tu,
R “ tpw,nq, pn,wqu

but with an additional argument — the argument that w is preferred to n at the metalevel (we assume that
the claim language LC contains an additional predicate preferredp¨, ¨q to express this preference):

AM “ tdefeatpxwy, xnyq, defeatpxny, xwyq,

justifiedpxwyq, justifiedpxnyq, justifiedpxtyq,
rejectedpxwyq, rejectedpxnyq, rejectedpxtyq,
preferredpxwy, xnyqu,

The set of metalevel attacks also has an additional member, the attack of preferredpxwy, xnyq on defeatpxny, xwyq:

RM “ tpdefeatpxny, xwyq, justifiedpxwyqq, pjustifiedpxwyq, rejectedpxwyqq,

prejectedpxwyq, defeatpxwy, xnyqq, pdefeatpxwy, xnyq, justifiedpxnyqq,

pjustifiedpxnyq, rejectedpxnyqq, prejectedpxnyq, pdefeatpxny, xwyqq,

ppreferredpxwy, xnyq, defeatpxny, xwyqq,

pjustifiedpxtyq, rejectedpxtyqqu

As Figure 4 shows, this additional attack now breaks the cycle6 and we have a single stable extension at
the metalevel:

E “ tjustifiedpxwyq, defeatpxwy, xnyq, rejectedpxnyq, ppreferredpxwy, xnyq, justifiedpxtyqu

with the corresponding object level extension tw, tu, with a policy that allows TCP and UDP.
Again, we believe that this metalevel structure provides a means to explain the outcome to the admin-

strator. Comparing Figure 4 and Figure 3, it is clear that the preference for w over n “fixes” the cycle of
arguments so that defeatpxny, xwyq does not hold, resulting in w being justified.

4.4 A metalevel model using values

Metalevel argumentation can capture more than just the application of preferences. In this section, we
briefly consider how we can use the same metalevel argumentation framework to apply ideas from value-
based argumentation [12] to capture a situation in which different parties have different views about which
policy to adopt.

6This section of the argument graph is now exactly the weather example from [32, page 19].

11

In a Value-based Argumentation Framework (VAF), we are concerned with values promoted by each attack
and their relative strengths. This is necessarily subjective and audience dependent [12, 32] and provides
a way for R to reason about implementing policies specific to R1 and R2. To see how this might work,
consider a variation on the example discussed above, where the network is that of a research university7.
R1 belongs to a research computing facility (IT) which uses BitTorrent (BT) to provide updates to the host
machines. This is deemed to be mission-critical by IT. R2 belongs to the Chancellor’s office (CO), which has
deemed BitTorrent to be a legal liability and thus seeks to deny any BT traffic.

Let c denote the policy “Deny BitTorrent” and a denote the policy “Allow BitTorrent”. As in the ex-
amples in Section 4, we have a situation in which there are mutual attacks between the arguments. In a
value-based framework, we can annotate the policies to introduce values associated with the arguments
by different parties. For example, “Deny BitTorrent” may be associated with the “Preventing Piracy” (p)
value, while “Allow BitTorrent” may be associated with the “Allowing Mission Critical Services” (m) value.
R may use reasoning specific to audiences pertinent to R1 and R2. If R1 serves research-related computing
facilities, the relevant audience is the advocate for the corresponding policy, IT (r1). And if R2 is controlling
access to student dormitories, then the relevant audience is the advocate for the corresponding policy, CO
(r2). Further, each audience indicates which values are more important: r1 prefers p to m, while r2 prefers
m to p.

We can formulate this as a value-based argumentation framework in the language of metalevel argu-
mentation as (following [32]):

pA “ tc, au,R “ tpc, aq, pa, cqu,V “ tp,mu, tvalpcq “ p, valpaq “ mu,P “ tr1 “ tpm, pqu, r2 “ tpp,mquuq

which leads to two audience-specific VAFs for r1 and r2. Our set of claims then includes the values,
valpcq “ p and valpaq “ m, and the preferences over values, preferredr1pm, pq and preferredr2pp,mq. We can
then formulate the audience-specific metalevel argumentation framework for r1 as follows.

A “ t c, au,
R “ t pc, aq, pc, aqu,
AM “ t defeatpxcy, xayq, defeatpxcy, xayq, justifiedpxcyq,

justifiedpxayq, rejectedpxcyq, rejectedpxayq,
preferredr1pxmy, xpyq

RM “ t ppreferredr1pxmy, xpyq, defeatpxcy, xayqq,
pdefeatpxcy, xayq, justifiedpxayqq,
pjustifiedpxayq, rejectedpxayqq,
prejectedpxayq, defeatpxay, xcyqq,
pdefeatpxay, xcyq, justifiedpxcyqq,
pjustifiedpxcyq, rejectedpxcyqq,
prejectedpxcyq, pdefeatpxcy, xayqqu.

A corresponding metalevel argumentation framework can be formulated for r2. This leads to two audience
specific frameworks for r1 and r2. The preferred extensions, for each audience, are:

Er1 “ tpreferredr1pm, pq, justifiedpaq, defeatpa, cq, rejectedpcqu

and
Er2 “ tpreferredr2pp,mq, justifiedpcq, defeatpc, aq, rejectedpaqu.

With the audience-specific extensions, the system administrator may reason that the CO prefers values
promoted by preventing piracy over allowing mission critical services, while the IT prefers values promoted
by allowing mission critical services over preventing piracy.

7This is, of course, a fictional university and bears no ressemblance to any institution at which any of the authors work or may
have worked.

12

4.5 Structured reasoning at the metalevel

As noted above, the idea of using preferences to resolve conflicting arguments is not new, and the same
is true of values. The new aspect that the metalevel approach brings is the ability to clearly see what
the the preferences and values are doing, that is how they resolve the conflict. Examining the metalevel
arguments and attacks in the example of Section 4.3, it is clear that the preferences are behind the resolution
of the conflict by defeating defeatpn,wq, and in turn preventing that argument from making w unjustified.
Similarly, looking at the metalevel arguments and attacks in the example of Section 4.4, it is clear how the
different preferred extensions relate to the two audiences R1 and R2. In applications such as ours, where
the justification for using argumentation is to be able to explain to users the structure of the problem and
how to reason about it, this ability to use the metalevel system to explain how arguments are resolved at
the object level is a powerful feature.

However, the models that we have discussed so far do not fully exploit the power of the metalevel
framework. The astute reader will have spotted that though we have described how structured arguments
can be used at the object level to connect firewall rules to arguments — as in the argument labelled (1) for
example — we have yet to explore the construction of arguments at the metalevel. Allowing reasoning at
this level allows us to construct arbitrary arguments at the metalevel that can resolve conflicts at the object
level.

Consider, as an example, this variation on the use of preferences, where AR has the following informa-
tion in its ∆M:

preferppromote WS, be secureq
achievespxwy, promote WSq

achievespxny, be secureq
preferpX,Yq, achievespZ,Xq, achievespW,Yq ñ preferredpZ,Wq

preferredpZ,Wq, pW,Zq P R ñ ppreferredpZ,Wq, defeatpW,Zqq

where X, Y, Z and W are variables and achieves is a predicate that captures the relationship between an object
level argument and a metalevel proposition. This is metalevel information about a preference for arguments
about firewall policies that promote web services over security, about the specific policies supported by the
object level arguments w and n, about how to combine preferences and information about arguments in
general (if you prefer one policy to another, then you prefer the argument that supports it), and about how
preference relates to defeat.

From this information, it is clear that AR can construct an argument for

ppreferredpxwy, xnyq, defeatpxny, xwyqq

which of course is the crucial piece in the use of preferences to resolve the circle of attacks in the metalevel
representation of the conflict between w and n (see Figure 4 again). Abstracting from this, we have a general
mechanism by which we can program AR to figure out how to resolve conflicts in object level arguments
— we provide it with knowledge in ∆M from which it can construct metalevel arguments about which
attacks are themselves defeated. The same mechanism could be used in our values example, to side with a
particular audience and therefore rule out one of the preferred extensions.

One kind of reasoning that one might perform at this level that is of particular interest to us is reasoning
about trust. AR might wish to resolve the conflict between w and n based on what it knows about the
trustworthiness of AR1

and AR2
. In [36], we described an argumentation system that could be used to infer

the degree of trust between agents, and how this derived information could be combined with beliefs from
those agents. Such reasoning could be employed in the metalevel argumentation framework to identify
attacks on defeatpxny, xwyq or defeatpxwy, xnyq. To give a very simple example:

trustpself ,AR1
q

 trustpself ,AR2
q

13

trustpself ,Xq, trustpself ,Yq ñ more trustworthypX,Yq
sourcepxny,AR1

q

sourcepxwy,AR2
q

sourcepX,Yq, sourcepW,Zq,more trustworthypY,Zq ñ preferredpX,Wq

from which AR could, using elements from the previous example, construct an argument for:

ppreferredpxny, xwyq, defeatpxwy, xnyqq

which would provide an alternative way to resolve the object level conflict between w and n — the fact that
n is provided by a more trustworthy source than w is an argument against w defeating n.

4.6 Discussion

The examples in the previous section have demonstrated how metalevel argumentation can be used to
represent firewall policies in such a way that a conflict in the rules is exposed at the metalevel. They
have further shown how metalevel argumentation can capture the way that existing approaches, such as
preference-based and value-based reasoning, can be used to resolve such conflicts. The key advantage
that we see to using metalevel argumentation is that conflicts and their resolution are exposed at the met-
alevel, rather than being buried in the computation of justified arguments. The metalevel approach does
not provide any reasoning that is not provided by existing approaches, but by handling arguments at the
metalevel as objects that can be themselves the subject of arguments, reasoning about those arguments,
and the conflicts between them, becomes explicit. In firewall configuration, the final decision about how to
set the firewall up is going to be taken by a human system administrator — someone who is probably not
an expert in argumentation — and our hypothesis is that any additional clarity will make their job much
easier. We already have some evidence that providing arguments for and against decision options helps
users to become more confident in their decisions [43], albeit in the domain of intelligence analysis rather
than firewall configuration. More recent work [1], provides some support for the use of argumentation in
maintaining secure services. In particular, this latter work showed that using argumentation to support the
definition of firewall policies provided more complete and correct policies at the cost of some additional
effort. However, we do not yet have any empirical evidence concerning the use of metalevel argumentation
in handling firewall policies.

We also note that we started by discussing four kinds of anomaly in firewall rules — shadowing, corre-
lation, redundancy and generalization. Our examples are all instances of shadowing. Before we can claim
that metalevel argumentation can, in general, help with detecting and resolving firewall anomalies we must
first also demonstrate that the approach can deal with the other forms of anomaly.

Finally, we point out a further extension of the approach we have been detailing in this paper. In [35], we
identified a number of argumentation schemes for reasoning about trust. In particular, we identified two
broad classes of scheme: schemes for deriving trust and schemes for propagating trust. The schemes for
deriving trust are exemplified by the scheme for direct experience: if A has previous successful interactions
with B, then that is the basis of an argument that A should trust B in future interations. The schemes for
propagating trust are exemplified by transitivity: if A trusts B and B trusts C, then that forms the basis for
an argument that A should trust C. Of course, both these schemes can be flawed, and [35] captures these
flaws as critical questions. These identify situations in which the argument generated by the scheme is not
sound. For example, direct experience can be questioned if B is not known to be the same individual with
whom A has interacted in the past. Similarly, transitivity can be questioned if the context in which A trusts
B is not the same as the context in which B trusts C.

These trust schemes and the relevant critical questions could be implemented in the same metalevel
argumentation framework that we have been discussing. At the object level we encode the schemes as
defeasible rules that allow the relevant arguments to be constructed, for example capturing transitivity
with the rule:

trustpX,Yq, trustpY,Zq ñ trustpX,Zq

14

Then we capture the critical questions at the metalevel. For example, the critical question about context can
be captured in a very similar way to that in which we captured trustworthiness in the previous section. In
this case, we need metalevel knowledge about the context in which trust exists between agents, and a rule
to identify if transitivity was used in the construction of an argument at the object level, and to ensure that
the object-level argument is defeated if contexts do not match:

trust contextpself , teacher, childcareq
trust contextpteacher,mechanic, car repairq

xtrustpX,Yq, trustpY,Zq ñ trustpX,Zqy P Supportpxayq,

trust contextpX,Y,Cq, trust contextpY,Z,Dq,C ­“ D ñ defeatpCQcontext, xayq

where the symbol CQcontext identifies the critical question about context. This is close to the approach
adopted by [34], though the latter paper captures critical questions though the use of undercutting [39]
rules, which (in our example) would deny the applicability of the transitivity rule rather than (as we do)
ensuring that the argument generated using the rule is defeated. Of course, undercutting attacks are im-
plicitly a metalevel notion.

Now, one important difference between the example above, and that in Section 4.5, is that in the latter
example, reasoning about trust was at the metalevel, and in our example here it is at the object level. There
need be no conflict between the two approaches. As [51] points out, it is possible to have many levels of
metalevel reasoning. We can easily construct a system in which arguments about policy happen at level
0, then level 1 contains rules, facts and arguments making inferences about trust, just as in Section 4.5.
These level 1 arguments treat arguments at level 0 as object level arguments. Level 2 then contains fact
rules and arguments about the applicability of arguments about trust (capturing critical questions about
the schemes that generated level 1 arguments), and treating level 1 arguments as object level elements to be
manipulated.

5 Related Work

Given the importance of security, the central role that firewalls play in ensuring security, and the complexity
of configuring firewalls, there has been considerable work on approaches to support firewall configuration.
[2] implemented a set of algorithms in “Firewall Policy Advisor”, a user-friendly tool. These algorithms
use a firewall policy tree to deal with centralized and distributed firewalls [3]. [52] introduced FIREMAN, a
static analysis toolkit to check anomalies in individual firewalls as well as among distributed firewalls.

Similar work has been carried out based on the use of formal logic. [22] proposed a formal logic for
reasoning about the meaning of the firewall rules. Logic may be used to prove properties of a rule set and
to detect a number of anomalies within a rule set. [23, 24] used ordered binary decision diagrams (BDD’s)
to represent rule sets as a boolean expressions, again proving a means to analyze the rule sets. However, the
system does not allow the definition of rules using a logic programming syntax. In contrast, [21] presented a
tool based on constraint logic programming (CLP) for analyzing firewall rules. This tool was implemented
using Eclipse CLP, which makes it easy to express and extend the knowledge base of the system. [11] used
a related approach, modelling firewall policies using a spatio-temporal logic that makes it possible to use
model checking to find anomalies.

Argumentation-based firewall configuration has been studied by several authors. [8] described a tech-
nique based on Argumentation for Logic Programming with Priorities, allowing administrators to use high-
level abstractions in specifying their network security requirements. In [9], this work was extended to
automatically generate firewall policies from higher-level requirements; and in previous work, we [6, 42]
have discussed how to use argumentation to handle firewall anomalies and, more generally, to address
cyber-security. [41] applied Defeasible Logic Programming (DeLP) for validation and reconfiguration of a
firewall, while [14] used and argument-based logic programming engine to enforce security requirements
dynamically. Similarly, [29] showed how to analyze security systems using abstract argumentation frame-
work.

15

More work associated with firewall configuration has been published that goes beyind the use of logic.
[19] developed models for policy conflict analysis, taking into account semantic information about policy
specifications. [53] proposed a policy algebra framework for security policy enforcement in hybrid fire-
walls, making use of the basic algebra used in rule sets, such as addition, conjunction, subtraction and
summation. [30] presented a firewall analysis engine named Fang, based on a combination of a graph
algorithms and a rule-base simulator.

Our use of metalevel argumentation sets our work apart from all of the work cited. All approaches to
reasoning about firewall rules yet published have concentrated on object level reasoning. Our work is the
first we are aware of to look at reasoning about firewall rules at the metalevel. Indeed, there is very little
that has been written on metalevel argumentation. As already mentioned, metalevel argumentation was
formally introduced in [32], and the idea of metalevel argumentation has been used [31] to provide an ab-
stract integration of accrual and dialectical argumentation and to integrate argumentation-based reasoning
about preferences with the object level arguments. [44] presented an argumentation-based model of social
interaction integrating both object-level and metalevel argumentation, and, as already mentioned, [34] in-
tegrated structured argumentation and metalevel argumentation to express argumentation schemes. Both
these latter papers are a close fit with what we discuss here, though neither addresses our firewall domain.

Finally, where our work touches on the idea of bringing in reasoning about trust at the metalevel, we
are clearly beginning to overlap with the work of Villata et al. [46, 47] who have written quite extensively
about how to represent and resolve arguments that attack arguments about the trustworthiness of agents.
If this kind of reasoning were to be incorporated into our framework, it would require a second level
of metareasoning — the first metalevel would be used to make statements about the trustworthiness of
arguments and the effect of such statements on object-level defeats, and the second metalevel would make
statements attacking these statements of trustworthiness. Resolving arguments at the second level would
then inform which statements hold at the first level, and hence what arguments were preferred at the object
level.

6 Conclusions

This paper has discussed the application of metalevel argumentation to the problem of modelling firewall
configurations. In particular, we have shown how to use the metalevel argumentation system of [32] such
that object level arguments are concerned with which packets to accept and block in a firewall, and the
metalevel arguments identify — and potentially resolve — conflicts between these object level arguments
due to shadowing anomalies in the firewall rules. We have argued that since a human system administrator
will ultimately have to set the firewall policy, the use of a metalevel formalism — which makes explicit
the (metalevel) arguments that explain why conflicts in rules arise and how they may be resolved — is
appropriate. Since the initial version of this paper was published [7], we have conducted human subject
experiments [1, 43] which show that using argumentation can be advantageous in complex tasks, giving
some initial support for this contention. However, further experiments will be required to confirm this
advantage in the firewall configuration domain.

Acknowledgements

Research was partially funded by the National Science Foundation, under grant CNS 1117761 and Army
Research Laboratory and Cooperative Agreement Number W911NF-09-2-0053. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Laboratory, the National Science Foundation,
or the U.S. Government.

Thanks to Sanjay Modgil and the anonymous reviewers for their helpful comments on the paper.

16

References

[1] N. Ajmeri, C.-W. Hang, S. Parsons, and M. Singh. Aragorn: Eliciting and maintaining secure service
policies. (in submission), 2016.

[2] E. Al-Shaer and H. Hamed. Firewall policy advisor for anomaly discovery and rule editing. In In-
tegrated Network Management, 2003. IFIP/IEEE Eighth International Symposium on, pages 17–30. IEEE,
2003.

[3] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed firewalls. In INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, volume 4, pages
2605–2616. IEEE, 2004.

[4] L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based argumentation
framework. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 1–7, 1998.

[5] L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable arguments.
Annals of Mathematics and Artifical Intelligence, 34(3):197–215, 2002.

[6] A. Applebaum, K. N. Levitt, J. Rowe, and S. Parsons. Arguing about firewall policy. In Proceedings
of the 4th International Conference on Computational Models of Argument, pages 91–102, Vienna, Austria,
2012. IOS Press.

[7] A. Applebaum, Z. Li, A. R. Syed, K. Levitt, S. Parsons, J. Rowe, and E. I. Sklar. Firewall configuration:
An application of multiagent metalevel argumentation. In Proceedings of the Workshop on Argumentation
in Multiagent Systems (ArgMAS) at Autonomous Agents and MultiAgent Systems (AAMAS), Valencia,
Spain, June 2012.

[8] A. Bandara, A. Kakas, E. Lupu, and A. Russo. Using argumentation logic for firewall policy specifica-
tion and analysis. Large Scale Management of Distributed Systems, pages 185–196, 2006.

[9] A. Bandara, A. Kakas, E. Lupu, and A. Russo. Using argumentation logic for firewall configuration
management. In Integrated Network Management, 2009. IM’09. IFIP/IEEE International Symposium on,
pages 180–187. IEEE, 2009.

[10] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The Knowledge
Engineering Review, 2011.

[11] N. Basumatary and S. M. Hazarika. Model checking a firewall for anomalies. In Emerging Trends and
Applications in Computer Science (ICETACS), 2013 1st International Conference on, pages 92–96. IEEE, 2013.

[12] T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation frameworks.
Journal of Logic and Computation, 13(3):429–428, 2003.

[13] J. Bentahar, R. Alam, Z. Maamar, and N. C. Narendra. Using argumentation to model and deploy
agent-based B2B applications. Knowledge-Based Systems, 23(7):677–692, 2010.

[14] T. Bouyahia, M. S. Idrees, N. Cuppens-Boulahia, F. Cuppens, and F. Autrel. Metric for security activities
assisted by argumentative logic. In Data Privacy Management, Autonomous Spontaneous Security, and
Security Assurance, pages 183–197. Springer, 2015.

[15] M. W. A. Caminada. On the issue of reinstatement in argumentation. In Proceedings of the 10th European
Conference on Logic in Artificial Intelligence, pages 111–123, Liverpool, UK, 2006.

[16] M. W. A. Caminada. An algorithm for computing semi-stable semantics. In Proceedings of the 9th
European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 222–
234, Verona, Italy, 2007.

17

[17] M. W. A. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial Intel-
ligence, 171(5–6):286–310, 2007.

[18] M. W. A. Caminada, W. A. Carnielli, and P. E. Dunne. Semi-stable semantics. Journal of Logic and
Computation, 22:1207–1254, 2012.

[19] S. Davy and B. Jennings. Harnessing models for policy conflict analysis. Inter-Domain Management,
pages 176–179, 2007.

[20] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,
logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[21] P. Eronen and J. Zitting. An expert system for analyzing firewall rules. In Proceedings of the 6th Nordic
Workshop on Secure IT Systems (NordSec 2001), pages 100–107, 2001.

[22] J. Govaerts, A. Bandara, and K. Curran. A formal logic approach to firewall packet filtering analysis
and generation. Artificial Intelligence Review, 29(3):223–248, 2008.

[23] S. Hazelhurst. Algorithms for analysing firewall and router access lists. Technical report, Department
of Computer Science, University of the Witwatersrand, 2000.

[24] S. Hazelhurst, A. Fatti, and A. Henwood. Binary decision diagram representations of firewall and
router access lists. Technical report, Department of Computer Science, University of the Witwater-
srand, 1998.

[25] K. Ingham and S. Forrest. Network firewalls. Enhancing computer security with smart technology, pages
9–40, 2006.

[26] P. Krause, S. Ambler, M. Elvang-Gørannson, and J. Fox. A logic of argumentation for reasoning under
uncertainty. Computational Intelligence, 11 (1):113–131, 1995.

[27] J. Kurose and K. Ross. Computer networking: a top-down approach. Addison-Wesley, 2010.

[28] Z. Li and S. Parsons. On argumentation with purely defeasible rules. In 9th International Conference on
Scaleable Uncertainty Management, Quebec City, 2015.

[29] F. Martinelli, F. Santini, and A. Yautsiukhin. Network security supported by arguments. In Privacy,
Security and Trust (PST), 2015 13th Annual Conference on, pages 165–172. IEEE, 2015.

[30] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Security and Privacy, 2000. S&P
2000. Proceedings. 2000 IEEE Symposium on, pages 177–187. IEEE, 2000.

[31] S. Modgil and T. J. Bench-Capon. Integrating dialectical and accrual modes of argumentation.
COMMA, 216:335–346, 2010.

[32] S. Modgil and T. J. M. Bench-Capon. Metalevel argumentation. Journal of Logic and Computation,
6(21):959–1003, 2011.

[33] S. Modgil and H. Prakken. A general account of argumentation with preferences. Artificial Intelligence,
195:361–397, 2013.

[34] J. Müller, A. Hunter, and P. Taylor. Meta-level argumentation with argument schemes. In Scalable
Uncertainty Management, pages 92–105. Springer, 2013.

[35] S. Parsons, K. Atkinson, Z. Li, P. McBurney, E. I. Sklar, M. Singh, K. Haigh, K. Levitt, and J. Rowe.
Argument schemes for reasoning about trust. Argumentation & Computation, 5(2–3):160–190, 2014.

18

[36] S. Parsons, E. I. Sklar, and P. McBurney. Using argumentation to reason with and about trust. In
Proceedings of the 8th International Workshop on Argumentation in Multiagent Systems, Taipei, Taiwan,
2011.

[37] S. Parsons, E. I. Sklar, J. Salvit, H. Wall, and Z. Li. ArgTrust: Decision making with information from
sources of varying trustworthiness (Demonstration). In Proceedings of the 12th International Conference
on Autonomous Agents and Multiagent Systems, St Paul, MN, 2013.

[38] S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of formal inter-agent dia-
logues. Journal of Logic and Computation, 13(3):347–376, 2003.

[39] H. Prakken. An abstract framework for argumentation with structured arguments. Argument and
Computation, 1:93–124, 2010.

[40] H. Prakken and G. Sartor. Argument-based logic programming with defeasible priorities. Journal of
Applied Non-classical Logics, 1997.

[41] P. Rajkhowa, S. M. Hazarika, and G. R. Simari. An application of defeasible logic programming for
firewall verification and reconfiguration. In Quality, Reliability, Security and Robustness in Heterogeneous
Networks, pages 527–542. Springer, 2013.

[42] J. Rowe, K. Levitt, S. Parsons, E. I. Sklar, A. Applebaum, and S. Jalal. Argumentation logic to assist
in security administration. In Proceedings of the 2012 Workshop on New Security Paradigms, pages 43–52.
ACM, 2012.

[43] E. I. Sklar, S. Parsons, Z. Li, J. Salvit, S. Perumal, H. Wall, and J. Mangels. Evaluation of a trust-
modulated argumentation-based interactive decision-making tool. Journal of Autonomous Agents and
Multi-Agent Systems, 30(1):136–173, 2016.

[44] E. I. Sklar, S. Parsons, and M. P. Singh. Towards an argumentation-based model of social interaction.
In Proceedings of the Workshop on Argumentation in Multiagent Systems (ArgMAS) at the 12th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). St. Paul, MN, 2013.

[45] B. Verheij. A labeling approach to the computation of credulous acceptance in argumentation. In
Proceedings of the 20th International Joint Conference on Aritificial Intelligence, pages 623–628, Hyderabad,
India, 2007.

[46] S. Villata, G. Boella, D. M. Gabbay, and L. van der Torre. Arguing about trust in multiagent systems. In
Proceedings of the 11th Symposium on Artificial Intelligence of the Italian Association for Artificial Intelligence,
Brescia, Italy, 2010.

[47] S. Villata, G. Boella, D. M. Gabbay, and L. van der Torre. Arguing about the trustworthiness of the
information sources. In Proceedings of the European Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, Belfast, UK, 2011.

[48] G. Vreeswijk. An algorithm to compute minimally grounded and admissible defence sets in argument
systems. In Proceedings of the First International Conference on Computational Models of Argument, pages
109–120, Liverpool, UK, 2006.

[49] D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning.
State University of New York Press, Albany, NY, USA, 1995.

[50] M. Wooldridge. An Introduction to Multiagent Systems. Wiley, 2nd edition, 2009.

[51] M. J. Wooldridge, S. Parsons, and P. McBurney. The meta-logic of arguments. In Proceedings of the 4th
International Conference on Autonomous Agents and Multi-Agent Systems, Utrecht, The Netherlands, July
2005.

19

[52] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and P. Mohapatra. Fireman: A toolkit for firewall modeling
and analysis. In Security and Privacy, 2006 IEEE Symposium on, pages 15–pp. IEEE, 2006.

[53] H. Zhao and S. Bellovin. Policy algebras for hybrid firewalls. In Annual Conference of ITA (ACITA),
volume 2007, 2007.

20

