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ON PROOFS IN SYSTEM PSIMON PARSONSy and RACHEL A. BOURNEDepartment of Eletroni Engineering,Queen Mary and West�eld College, University of London,London, E1 4NS, United Kingdom.fS.D.Parsons, R.A.Bourneg�ele.qmw.a.ukReeived (September 1999)Revised (January 2000)This paper investigates how the rules of System P might be used in order to onstrutproofs for default onsequenes whih take into aount the bounds on the probabilitiesof the onsequents of the defaults. Using a knowledge base of default rules whih areonsidered to be onstraints on a probability distribution, the result of applying therules of P gives us new onstraints that were impliit in the knowledge base and theirassoiated lower bounds. The paper de�nes a proof system for suh onstraints, showsthat it is sound, and then disusses at length the ompleteness of the system and thekind of proofs that it an generate.Keywords: System P; Qualitative probability; Proof theory.1. IntrodutionDefault reasoning has been widely studied in arti�ial intelligene, and a numberof formalisms have been proposed as a means of apturing suh reasoning1, mostprominent among whih are default logi2 and irumsription3. Many of these sys-tems, inluding default logi and irumsription, have proposed partiular meh-anisms for default reasoning, and might therefore be onsidered quite speialised.However, there has also been work on more general approahes whih attempt toanalyse in broader terms what default reasoning involves. An early attempt to dothis was Shoham's4 proposal that all non-monotoni systems ould be haraterisedin terms of the preferene order over their models. A more proof-theoreti strandof this researh has investigated the formalisation of the underlying requirementsfor any non-monotoni onsequene relation. Perhaps the most inuential piee ofwork within this area is that of Kraus et al.5.Kraus et al. investigated the properties of di�erent sets of Gentzen-style proofrules for non-monotoni onsequene relations, and related these sets of rules to themodel-theoreti properties of the assoiated logis. Their major result was that ayCurrent address: Department of Computer Siene, University of Liverpool, Chadwik Building,Peah Street, Liverpool L69 7ZF, United Kingdom, S.D.Parsons�s.liv.a.uk.1



On proofs in System P 2partiular set of proof rules had the same model-theoreti properties that Shohamhad identi�ed for logis in whih there is a preferene order over models. Thissystem of proof rules was termed System P by Kraus et al., the P standing for\preferential". System P has been the subjet of muh researh, and is now widelyaepted as the weakest interesting non-monotoni system; it santions the smallestaeptable set of onlusions from a set of default statements.The reason that we are interested in the rules of System P is that, in addition toa semantis in terms of a preferene order over models, they also have a probabilistisemantis. In partiular, Pearl6, following work by Adams7, showed that a semantisbased on in�nitesimal probabilities satis�es the rules of System P. While the use ofin�nitesimal probabilities is theoretially interesting, it laks something in pratialterms. If we are to use System P to reason about the real world we will haveto write defaults whih summarise our knowledge about it, and we may well beunhappy making statements whose validity depends upon in�nitesimal values. Tooverome this diÆulty, we suggest using real probabilities along with the rules ofSystem P, giving eah default statement a lower bounded probability, and showingthat proofs in the System P an be used to propagate these bounds to �nd outsomething onrete about the probability of the derived results.This paper is organised as follows. Setion 2 sets the bakground to the paperby disussing the notion of entailment in System P. Then, Setion 3 brings up theproblem of using real �-values, and shows how they a�et the onlusions drawn bySystem P. At this point, in Setion 4, we introdue our system SP , whih apturesone possible proof theory for System P, we show that it is sound and omplete, andin Setion 5 detail the kinds of onlusions whih an be drawn by SP . Setion 6then gives some examples of the use of SP , Setion 7 disusses related work, andSetion 8 onludes.2. Entailment in System PThe rules of inferene for the System P (see Figure 1) may be applied to aknowledge base made up of onditional assertions of the form � j��. In this ontext� and � are well-formed formulae of lassial propositional logi, and j� is a binaryrelation between pairs of formulae. The onnetives ^, _, ! and $ have theirusual meanings. The inferene rules are written in the usual Gentzen style, withanteedents above the line and onsequents below it. Thus the rule And says thatif it is possible to derive � j�� and it is possible to derive � j� , then it is possibleto derive � j��^. The inferene rules an thus be viewed as a means of obtainingnew onlusions from urrent knowledge; from an initial set of onditional assertions,further onditional assertions may be obtained by applying the rules.Two things should be noted about the set of rules in Figure 1. Firstly, they onlytell us how to derive new onditional assertions. If we wish to know whether weare justi�ed in inferring a new fat, say , given that we urrently know some otherfat, say �, and this is all we know, it is neessary to determine whether � j�  isderivable from our knowledge base of onditional assertions. Seondly, the proof



On proofs in System P 3� j�� Reexivityj= �$ �; � j� � j�  Left Logial Equivalenej= � ! ; � j��� j�  Right Weakening� j��; � j� � j�� ^  And� j��; � j� � ^ � j�  Cautious Monotoniity� j� ; � j� � _ � j�  OrFig. 1. Rules of System Prules in Figure 1 form a minimal set suÆient to haraterise System P. Other rulesmay be derived from them in muh the same way that new onditional assertions arederived. Two suh rules are given in Figure 2|Cut whih allows the eliminationof a onjunt from the anteedent side, and S whih allows the derivation of amaterial impliation. Both of these (as we shall see later in the paper) may bederived diretly by the appliation of the basi rules.The semantis for System P introdued by Adams makes the assumption that thepropositional variables are the basis of an unspei�ed joint probability distributionwhih is onstrained by the onditional assertions. These onditionals are takento represent onditional probabilities of the onsequent given the anteedent beinggreater than or equal to 1� � for any � > 0, that is:De�nition 1 The onditional assertion � j� � denotes the fat that Pr(�j�) � 1��for all � > 0.Given this interpretation, we an de�ne the notion of the probabilisti onsistenyof a set of these onditional assertions7:De�nition 2 A set of onditional assertions � is p-onsistent if there is at leastone probability distribution whih satis�es the onstraints imposed by the onditionalassertions in �.Probabilisti entailment of a further onditional is then de�ned as probabilistiinonsisteny of its ounterpart, that is:De�nition 3 � j� � is p-entailed by � i� � [ f� j� :�g is not p-onsistent.



On proofs in System P 4� ^ � j� ; � j��� j�  Cut� ^ � j� � j�� !  SFig. 2. Two derived rules of System PThis implies that all probability distributions that satisfy � also satisfy � j��.However this result may only be ahieved by using in�nitesimal analysis so that thederived onditional will be onstrained to be greater than 1 � Æ for any Æ > 0 ifthe � of the original onditionals is made small enough. This an be paraphrasedas saying that System P allows us to make our onlusions as lose to ertaintyas we like, provided the onditional probabilities assoiated with the onditionalassertions are suÆiently lose to ertainty. In the literature this is used to justifythe onlusions drawn using System P; if we are sure of the onditional assertions,and so are willing to give them high onditional probabilities, then the onditionalassertions derived from them will also have high probabilities.However, using this interpretation of the rules means assuming that we are ableto give the onditional assertions arbitrarily high onditional probabilities. This is�ne in the ase that the assertions are piees of default knowledge whih are feltto hold almost all of the time. However, with less reliable information, for whih� is not in�nitesimal, it seems less justi�able to aept the in�nitesimal analysis.In partiular, if a set of onditional assertions are used to derive new assertionsand these new assertions are themselves used as the basis for new dedutions, thenit seems likely that some � values will be far from in�nitesimal. Beause of thisonern, the next setion investigates the impat of non-in�nitesimal � values byonsidering what happens to values of � and Æ when the rules of P are applied.The result is twofold. First it is possible to trak the e�et of non-in�nitesimalvalues, and seond it beomes possible to identify bounds on the atual onditionalprobability of derived assertions.3. Using real �-valuesWe assoiate with eah onditional assertion an �-value whih represents, for� j��, an upper bound on the onditional probability Pr(:�j�). We demonstratehow using these values for eah original onditional, we an generate Æ values for theoutput onlusions. This enables us to alulate the lower bound on the probabilityof a onlusion based on the proof steps used to derive it. We onsider �rst the sixbasi rules of System P, and then use the results obtained for those rules to obtainresults for S and Cut.Reexivity: A reexive onditional assertion may be introdued at any stage ina proof, and, sine Pr(�j�) = 1 for all formulae �, any suh onditional will have



On proofs in System P 5an �-value of zero.Left Logial Equivalene: This rule means that we may take any onditionalassertion and replae its anteedent with a logially equivalent expression. Clearly,the derived onditional will have the same �-value as the original one.Right Weakening: Right Weakening involves replaing the onsequent of aonditional with any expression lassially derivable from it. Now, � !  meansthe models of � are a subset of the models of  and hene:Pr(; �) � Pr(�; �)Now, sine: Pr(j�) = Pr(; �)Pr(�)Pr(�j�) = Pr(�; �)Pr(�)it follows that: Pr(j�) � Pr(�j�) (1)and therefore the �-value of a rule obtained by Right Weakening will not be largerthan the �-value of the rule from whih it was obtained. Sine we are dealing withlower bounds, we may use the same value for the derived rule.We now turn to the three basi rules of P whih generate new onditionals from twoknown ones. Given we know the �-values for the two known rules we obtain simpleexpressions whih are funtions of these for the derived onditional.Cautious Monotoniity: The rule is as follows:� j��; � j� � ^ � j� hene we are interested in the value of Pr(j�; �). Now:Pr(j�) = Pr(j�; �) Pr(�j�) + Pr(j�;:�) Pr(:�j�) (2)Substituting 1� Pr(�j�) for Pr(:�j�) and rearranging, we obtain:Pr(j�; �) = Pr(j�)� (1� Pr(�j�)) Pr(j�;:�)Pr(�j�) (3)We are required to minimize this expression subjet to the onstraints:1� �1 � Pr(�j�) � 11� �2 � Pr(j�) � 10 � Pr(j�;:�) � 1



On proofs in System P 6Equation (3) is linear in Pr(j�) and Pr(j�;:�) and will therefore attain its min-imum when Pr(j�) is minimum and Pr(j�;:�) is maximum. This gives us:Pr(j�; �) � (1� �1)� (1� Pr(�j�))Pr(�j�)� 1� �1Pr(�j�)whih will be minimum when Pr(�j�) is minimum. This gives us an �-value for thederived rule � ^ � j�  of: �21� �1And: This time the rule is: � j��; � j� � j�� ^ So we are interested in Pr(�; j�). Consider:Pr(�; j�) = Pr(�; �; )Pr(�)= Pr(�; �; ) Pr(�; �)Pr(�; �) Pr(�)= Pr(j�; �) Pr(�j�) (4)We are required to minimize this expression subjet to the onstraints:1� �1 � Pr(�j�) � 11� �2 � Pr(j�) � 1and in the previous ase we saw that these onstraints imply that:1� �21� �1 � Pr(j�; �) � 1Equation (4) will be minimum when both fators in the produt on the right-handside are, so that Pr(�; j�) � �1� �21� �1� (1� �1)= 1� (�1 + �2) (5)whih, as we would expet, is symmetrial in �1 and �2. This gives us an �-value forthe derived rule � j�� ^  of �1 + �2.Or: Here the rule is: � j� ; � j� � _ � j� 



On proofs in System P 70 � Pr(�) � 10 � Pr(�) � 1Pr(�)(1 � �1) � Pr(� ^ ) � Pr(�)Pr(�)(1� �2) � Pr(� ^ ) � Pr(�)maxf0;Pr(�) + Pr(�)� 1g � Pr(� ^ �)minfPr(�);Pr(�)g � Pr(� ^ �)maxf0;Pr(� ^ ) + Pr(� ^ )� Pr(� ^ �)g � Pr(� ^ � ^ )minfPr(� ^ );Pr(� ^ );Pr(� ^ �)g � Pr(� ^ � ^ )Fig. 3. The onstraints for Or.and we are interested in the value of Pr(j�_�). Let Pr(:j�) = �1 and Pr(:j�) =�2 and onsider the following:Pr(:j� _ �) = Pr(� ^ :) + Pr(� ^ :)� Pr(� ^ � ^ :)Pr(�) + Pr(�)� Pr(� ^ �)= Pr(�) Pr(:j�) + Pr(�) Pr(:j�)� Pr(� ^ � ^ :)Pr(�) + Pr(�) � Pr(� ^ �)= �1 Pr(�) + �2Pr(�) � Pr(� ^ � ^ :)Pr(�) + Pr(�) � Pr(� ^ �) (6)To �nd the maximum value of this expression, we note that Pr(�);Pr(�) � Pr(�_�)and we ignore the last term of the numerator sine it is negative and ould be zero.Maximizing this subjet to the onstraints in Figure 3 gives usPr(:j� _ �) � �1 + �2as an upper bound. This gives us an �-value for the derived assertion of �1 + �2.For ompleteness sake, we examine the derived rules Cut and S sine they are themost useful rules when proving things. To make the presentation learer, we writea onditional with �-value of �1 as j��1.S: For S we need to derive � j��new � !  and the value of �new from � ^ � j��1 just using the basi rules. This an be done as follows. First apply Right Weakeningto � ^ � j��1  to get: � ^ � j��1 ; j=  ! (� ! )� ^ � j��1 � !  (7)We then apply Reexivity followed by Right Weakening (twie) to � ^ :� to get:� ^ :� j�0 � ^ :�; j= :� ! (� ! )� ^ :� j�0 � !  (8)Then we ombine (7) and (8) using Or and apply Left Logial Equivalene to get:� ^ � j��1 � ! ; � ^ :� j�0 � ! � j��1 � ! 



On proofs in System P 8� j�0 � Reexivityj= �$ �; � j��1 � j��1  Left Logial Equivalenej= � ! ; � j��1 �� j��1  Right Weakening� j��1 �; � j��2 � j��1+�2 � ^  And� j��1 �; � j��2 � ^ � j� �21��1  Cautious Monotoniity� j��1 ; � j��2 � _ � j��1+�2  Or� ^ � j��1 ; � j��2 �� j��1+�2  Cut� ^ � j��1 � j��1 � !  SFig. 4. The extended rules of System P.The onsequent of this last derivation is the onsequent of S, and omparing thiswith the anteedent, we an see that applying S has no e�et on the �-value; thevalue for the derived onditional assertion is the same as for the original assertion.Cut: For Cut, we need to disover how � j��new  may be derived from �^� j��1 and � j��2 �. This turns out to be easy given the result for S. S tells us that the�-value of � j�� !  is the same as that of �^� j� , so we have � j��1 � !  andapplying And to � j��1 � !  and � j��2 �, followed by Right Weakening gives:� j��1 � ! ; � j��2 �� j��1+�2 Cut is thus proved, and the �-value for its onsequent established. We will referto this set of rules, the basi rules of System P plus Cut and S, augmented withdetails of how the �-values of the onditional assertions are propagated, as theextended rules of System P. The extended rules are summarised in Figure 4. Fromthe previous disussion we an state the following theorem:Theorem 1 The extended rules of System P are sound with respet to probabilitytheory.In obtaining these results, we have shown that using eah of the rules of P, and hene



On proofs in System P 9any derived rules, we an obtain lower bounds on the onditional probability of theonlusion given those of the anteedents. Figure 4 shows the basi rules plus Sand Cut annotated with lower probability bounds on anteedents and onsequents.It is lear that these lower bounds never improve. Using rules And and Or, orrules derived from these, means adding the �-values so that after only a few proofsteps our onlusions may attain high �-values. A high �-value means that the lowerbound on the assoiated onditional probability is low and if this beomes too lowthen we don't have muh information about the probability sine the upper boundis always 1. Clearly, therefore, our input values must either be extremely small,or our proofs short, in order to obtain useful results. However, as our example inSetion 7 shows, these onditions an be met without too muh imagination.Another point worth noting at this junture is the fat that the following tworules are not inluded, although they might be expeted to follow for systems witha probabilisti semantis: � j�� �� j��0 :�and � j�� �:� j��00 :�The anteedent �rst of these implies:Pr(� j �) � 1� �whih is only suÆient to set an upper bound on the onditional probability of theonsequent: Pr(:� j �) � �so no useful value for �0 an be determined|the value we an determine annot beused in further inferenes beause it is a upper, not an lower, bound. A similarthing ours with the seond rule. To �nd �00 it is neessary to �nd the value of:Pr(:� j :�) = 1� Pr(� j :�)= Pr(:� j �) Pr(�)Pr(:�)whih, while it an be related to Pr(� j �), and hene to �, does not have a usefullower bound.While the work desribed so far has solved the problem of determining theimpat of the non-in�nitesimal values, it falls short of providing a pratial reasoningsystem. The problem is that although in System P we an tell whether or not � j��follows from the initial set of defaults, the proedures for determining this do notpermit the propagation of the �-values. Thus we an tell if � j�� follows, and so wean �nd out if a proof exists, but we an't determine the assoiated �-value. Whatwe need is a proof theory whih allows the �-values to be propagated through theproof so that every inferred default has its �-value determined, and providing suha proof theory is the subjet of the remainder of this paper.



On proofs in System P 104. A proof theory for System PNormally in generating a proof theory for some logial system the proedure8is to establish two rules for eah onnetive in the underlying language. One rulerelates to introduing the onnetive into a formula, and one relates to eliminatingthe onnetive from a formula. The set of rules then de�ne all the legal transforma-tions between formulae, and thus de�ne what may be proved from some initial set offormulae. The proess of de�ning a proof theory thus proeeds from the underlyinglanguage to the proof rules.The situation here is a little di�erent. System P already has a set of proofrules de�ned. However, these rules do not inlude introdution and eliminationrules for all the onnetives in the underlying language, and so do not support aonventional proof theory. However, it is possible to use the existing rules to de�nea proof theory for a signi�ant part of the underlying language of System P, andthis is the approah we adopt.We start with a set of propositions S, a set of onnetives, f:;^;_;!;$;)g,and the following rules for building well-formed formulae in this language:1. If � 2 S, then � is a basi well-formed formula (bw� ).2. If � and � are bw� s then :�, � ^ �, � _ �, �! �, �$ � are bw� s.3. If  and Æ are bw� s, then  )� Æ is a default well-formed formula (dw� ).4. Nothing else is a bw� or a dw�.Together all these formulae onstitute a language LS . The denotation of basiwell-formed formulae is as in propositional logi, while the meaning of dw� s is thefollowing:De�nition 4 The default  )� Æ denotes the fat that Pr(Æ j ) � 1� �.Comparing De�nitions 1 and 4 it is lear that the defaults of LS are exatly theonditional assertions of System P for a partiular �nite �. Two things follow fromthis. The �rst is that this hange from the general to the partiular both allows us tohave some notion of strength of the defaults in terms of the onditional probabilityassoiated with them and fores us to propagate the values every time we apply oneof the rules of inferene. The seond thing whih follows is that there is a dualitybetween assertions and defaults. We formalise this as follows:De�nition 5 The default � )�i � is the default dual of the onditional assertion� j� � and the onditional assertion � j� � is the assertion dual of �)�i �.Similarly, by extension of this notion of duality, any set of onditional assertions� = Sif�i j��ig will have a orresponding set of dw� s �0 = Sif�i )�i �ig. Moreformally:



On proofs in System P 11�)� � 2 ��; � j�P (�; �) Ax�; � j�P (�; 0) Ref�; � j�P (�; �1) �; � j�P (; �2)�; � j�P (� ^ ; �1 + �2) And�; � j�P (�; �1) �; � j�P (; �2)�; � ^ � j�P (; �21��1 ) CM�; � j�P (�; �1) � ` �; � j�P (; �1) RW�; � j�P (; �1) ` �$ ��; � j�P (; �1) LLE�; � j�P (; �1) �; � j�P (; �2)�; � _ � j�P (; �1 + �2) Or�; � ^ � j�P (; �1)�; � j�P (� ! ; �1) S�; � ^ � j�P (; �1) �; � j�P (�; �2)�; � j�P (; �1 + �2) CutFig. 5. The onsequene relation j�P.De�nition 6 Given a set of defaults � and a set of onditional assertions �0, �is the default dual of �0 if the default dual of every assertion in �0 is in � andthere are no additional defaults in �.De�nition 7 Given a set of defaults � and a set of onditional assertions �0, �0is the assertion dual of � if � is the default dual of �0.The reason for writing the defaults in this way is to distinguish between the ondi-tional assertions themselves, and the onsequene relation whih de�nes what maybe inferred from them|a distintion whih is not always lear in work on SystemP. Assuming that we have a knowledge base � whih onsists of a set of dw� s, wean then de�ne the valid set of onlusions whih may be drawn from � as thosesantioned by the onsequene relation j�P de�ned in Figure 5. Note that this in-ludes the two rules Cut and S whih an be derived from the basi set of rules5.These rules are inluded as useful \maros" whih are equivalent to appliations ofseveral other rules and help to shorten proofs as a result. We ould equally wellformulate SP in terms of the basi rules of System P, and exatly the same resultswould follow, though less onisely.



On proofs in System P 12The proof rules that de�ne j�Pmay need a little explanation. The rule Ax is aform of \bootstrap" rule whih says that if some default �)� � is in �, then were� added to �, it would be possible to infer � with probability not less than 1� �.The rule And says that if adding � to � makes it possible to infer � with probabilityno less than 1� �1 and  with probability no less than 1� �2, then adding � to �makes it possible to infer � ^  with probability no less than 1� (�1+ �2). Thus thedenotation of the onsequene: �; � j�P (�; �)is that on the basis of what is given in �, we an infer Pr(� j �) � 1� �. Anotherway of viewing this is that if we add � to �, then we an infer � with a probabilitygreater than 1� �.The rules RW and LLE are a little unusual in that both have anteedents whihinvolve `, whih stands for the onsequene relation of standard propositional al-ulus. Thus RW says that you an replae any inferene made by j�P with anylogial onsequene, and LLE says that you an replae anything on the left-handside of j�Pwith something that is logially equivalent to it.This proof system we will all SP . As with any proof system we are interestedin the soundness and ompleteness of the onlusions whih may be drawn usingSP . We de�ne:De�nition 8 A default base is a set of default well-formed formulae.De�nition 9 A basi well-formed formula � is a p-onsequene of a default base�, onditional on �, i�: �; � j�P (�; �)By analogy with the strength of a default, the value � assoiated with a p-on-sequene is known as the strength of the onsequene. With these de�nitions, suit-able soundness results are easy to obtain. The �rst relates what an be inferredusing j�P to System P:Theorem 2 For every p-onsequene �, onditional on �, of a default base �,� j� � is p-entailed by the set of assertions �0 whih is the assertion dual of �.Proof: SP has a set of proof rules whih mirror those of System P, and anythingthat may be proved using these rules is a p-onsequene. Sine Kraus et al. 5have shown that anything proved using the rules of System P from a given set ofonditional assertions �0 is p-entailed by that set, it follows that any p-onsequeneof �, the default dual of �0, is p-entailed by �0. 2Thus SP allows us to infer exatly the same things as System P. We also need toshow the soundness of the mehanism for propagating the strength of the onse-quenes. This is given by the following:



On proofs in System P 13Theorem 3 The strengths of the p-onsequenes of a default base are those justi�edby probability theory.Proof: The soundness of the propagation of �-values with respet to probabilitytheory follows from Theorem 1. 2Together these two results guarantee that SP is sound|it will generate onlusionssantioned by System P with probabilistially orret strengths. Sine Kraus etal. show that the rules of System P are suÆient to infer all the onsequenes ofSystem P, the following ompleteness result is immediate:Theorem 4 For every � j� � whih is p-entailed by a set of onditional assertions�, � is a p-onsequene of the default dual of � onditional on �.What this theorem guarantees is any onditional assertion whih is p-entailed by agiven set of defaults will, when those defaults are translated into the language ofSP , be a onsequene of the orresponding set of dw� s. However, this result givesno lue as to the kinds of onlusions we an draw from a given set of dw� s. Itdoes not tell us if a partiular p-onsequene will be found, it just says that it willbe found if its assertion dual is p-entailed.What we would also like are results whih say exatly what kind of onlusionswe an infer from some initial set of defaults, and that is what we onsider in theremainder of the paper.5. De�ning the sope of SPOur approah is to start by analysing what an be inferred from a set of thesimplest kind of defaults, and then extend our sope to look at more omplexdefaults.5.1. Simple defaultsWe start by onsidering that we have a set of simple defaults of the form �)�i iwhih all have the same anteedent. These form a simple default base:De�nition 10 A simple default base for a language LS is a default base:� = [i=1;:::;nf�)�i igwhere � and the i are bw�s in LS .We an think of the onsequents of this set of defaults forming a set G. In general,we have:De�nition 11 The onsequent set of a simple default base � is the set G suhthat: G = fijf�)�i ig 2 �g



On proofs in System P 14As we shall see, we need a way of referring to the onjuntion of all the propositionsin the onsequent set, and we do this by means of the assoiated onjuntion:De�nition 12 The assoiated onjuntion � of a set of propositions G is de�nedby � = î i for all i 2 GThe set G is alled the assoiated set of �.Now, applying Ax and CM to �)�1 1 and �)�2 2, we obtain:�; � ^ 1 j�P �2; �21� �1� (9)Using the same rules on �)�1 1 and �)�3 3 gives:�; � ^ 1 j�P �3; �31� �1�and ombining the latter with (9) using CM will give:�; � ^ 1 ^ 2 j�P �3; �31� �1 � �2�If we imagine repeating this proess it is lear that given � we an reursively applyCM to obtain: �; � ^ B0 j�P (i; �)for any i 2 G, and for any B0 whih is the assoiated onjuntion of a set B0 suhthat B0 � G where � is a funtion of the �-values of the defaults to whih CM hasbeen applied. In fat we have:Lemma 1 Given a simple default base � with anteedent � and onsequent set Gthe onsequene relation j�P will generate all onsequenes:�; � ^ B0 j�P  i; �i1�Pj �j!where i 2 G, B0 has an assoiated set B0, for every j in B0 there is a default�)�j j with strength �j in �, and B0 �G.Proof: This follows more or less diretly from the previous disussion. Sine it ispossible to use CM to get �; � ^ B0 j�P (i; �) for any i in the onsequent set andany B0 whih is a onjuntion of propositions from the onsequent set, then it ispossible to use it to obtain all suh p-onsequenes. The relevant value of � followsby simple arithmeti on the strengths of the relevant defaults. 2In other words, CM allows us to obtain as a p-onsequene any proposition in theonsequent set of � onditional on � onjoined with any other propositions in the



On proofs in System P 15onsequent set. The �-value that results is that of the p-onsequene onditional on� alone, divided by 1 minus the sum of the �-values of eah of the propositions inthe onjuntion onditional on � alone.Sine the rule And makes it possible to build up onjuntions on the onsequentside, similar reasoning makes it obvious that reursively applying the rule to thesame initial set of defaults will give:�; � j�P (�0; �)for some �, where �0 is the assoiated onjuntion of a set G0 and G0 � G. Thistime, we have:Lemma 2 Given a simple default base � with anteedent � and onsequent set Gthe onsequene relation j�P will generate all onsequenes:�; � j�P  �0;Xk �k!where �0 has an assoiated set G0, for every k in G0 there is a default � )�k kwith strength �k in �, and G0 � G.Proof: As with the disussion of CM, onsider applying the rules Ax and And to�)�1 1 and �)�2 2. This gives:�; � j�P (1 ^ 2; �1 + �2) (10)Using the same rules on �)�3 3 and �)�4 4 gives:�; � j�P (3 ^ 4; �3 + �4)and ombining the latter with (10) using the rule And will give:�; � j�P 0� ^i=1;:::;4 i; Xi=1;:::;4 �i1ANow, it is learly possible to use And in this way to get �; � j�P (�i; �) for anyonjuntion �i whose onstituent propositions i are in the onsequent set. Thusit is possible to use it to obtain all suh p-onsequenes and the result follows. 2Thus the And rule makes it possible to obtain as a p-onsequene any onjuntionof propositions from the onsequene set of �, onditional on �. The �-value whihresults is the sum of the �-values of those propositions alone onditional on �.Clearly, then, if we use both rules together, we an derive onlusions of the form:�; � ^ B0 j�P (�0; �)where B0 and �0 have assoiated sets B0 and G0 suh that B0 � G and G0 � G.Note it is possible that B0 \G0 6= ;. To prove this formally, we �rst need to extend



On proofs in System P 16the notion of duality between di�erent representations of defaults introdued above.There we had the notion of the assertion � j�� being the dual of a default �)�i �.We extend this by noting that any suh default, after the appliation of the proofrule Ax generates a p-onsequene �; � j�P (�; �i). We thus de�ne:De�nition 13 The default � )�i � whih is part of �, is the default dual of thep-onsequene �; � j�P (�; �i) and the p-onsequene �; � j�P (�; �i) is the onse-quene dual of �)�i �.This overloads the term \default dual", but its meaning will always be lear from theontext. As before we extend this de�nition to sets of defaults and p-onsequenes:De�nition 14 Given a set of defaults � and a set of p-onsequenes �0, � is thedefault dual of �0 if the default dual of every p-onsequene in �0 is in � and thereare no additional defaults in �.De�nition 15 Given a set of defaults � and a set of p-onsequenes �0, �0 is theonsequene dual of � if � is the default dual of �0.With these de�nitions we an ombine Lemmas 1 and 2 to obtain the following:Theorem 5 Given a simple default base with anteedent � and onsequent set G,the onsequene relation j�P will generate all onsequenes:�; � ^ B0 j�P  �0; Pk �k1�Pj �j!where B0 and �0 have assoiated sets B0 and G0, for every j in B0 there is a default�)�j j with strength �j in �, for every k in G0 there is a default �)�k k withstrength �k in �, and B0;G0 � G.Proof: First apply Lemma 1 to obtain a series of p-onsequenes:�; � ^ B0 j�P  k; �k1�Pj �j!for eah k whih is one of the onjunts in �0. Then apply Lemma 2 to the defaultdual of this set. The result follows. 2We refer to the set of onsequenes de�ned by Theorem 5 as the simple onsequenesof �.5.2. More omplex defaultsThe results in the previous setion haraterise the kind of onsequenes we anprove using the rules And and CM on a set of simple defaults. It is possible togeneralise these results to wider sets of defaults. Consider that instead of a set ofsimple defaults, we have, instead, a general set of onjuntive onsequent defaults of



On proofs in System P 17the form �)�i �i where �, as before, is a single proposition and �i is onjuntionof propositions, known as the onjuntive onsequent. This set of defaults is aonjuntive onsequent default base:De�nition 16 A onjuntive onsequent default base for a language LS is a defaultbase: � = [i=1;:::;nf�)�i �igwhere � is a bw� in LS , and �i is a onjuntion of suh bw�s.For suh defaults we expand the notion of the onsequent set to inlude all propo-sitions whih our in a onjuntive onsequent:De�nition 17 The onsequent set of a onjuntive onsequent default base � isthe set G suh that:G = fijf�)�i 1 ^ : : : ^ i ^ : : : ^ ng 2 �gSine a onjuntive onsequent default base � an ontain simple defaults, it ishelpful to distinguish the simple subset, whih is the set of all simple default rules in�. We denote this by �s. Now, applying the rule Ax to any onjuntive onsequentdefault in � will give: �; � j�P (�i; �i)RW allows us to replae any p-onsequene with any of its logial onsequenes.This makes it possible to obtain: �; � j�P (j ; �i)for any j whih is one of the onjunts in �i. This immediately gives us:Lemma 3 Given a onjuntive onsequent default base �, with onsequent set G,then j�P will generate all onsequenes:�; � j�P (0; �)where � ontains a default �)�i �i, Gi is the assoiated set of �i and 0 2 GiSine this set of p-onsequenes is the onsequene dual of the set of simple defaults� )�i 0, Lemma 3 suggests that any onjuntive onsequent default base has aorresponding simple default base suh that both default bases have a ommon setof p-onsequenes|the onsequene dual of the simple default basez. We all thiszIt should be noted that while the p-onsequenes of these two default bases are the same, the�-values of these p-onsequenes will, in general, di�er, with the �-values of the p-onsequenesderived from the simple default base being higher. As an example, onsider the default basef� )� � ^ g, whih has simple equivalent f� )� �; � )� g. The formula � ^  is a p-onsequene of both default bases, but has strength � when derived from the �rst and 2� whenderived from the seond.



On proofs in System P 18simple default base the simple equivalent of the onjuntive onsequene defaultbase.De�nition 18 Given a onjuntive onsequent default base �, with onsequent setG, then its simple equivalent is the set of defaults:f�)�i j j f�)�i 1 ^ : : : ^ j ^ : : : ^ ng 2 �gThus to transform a onjuntive onsequent default base into its simple equivalentwe replae every onjuntive onsequent default with a set of simple defaults, eahwith the same strength as the original default and a onsequent whih is one of theonjunts in the onsequent of the original default. Given De�nition 18 we have:Theorem 6 Given a onjuntive onsequent default base �, the onsequene re-lation j�P will generate all the simple onsequenes of the simple equivalent of �.Proof: Call the onsequene dual of the simple subset �s of � by the name P1.Take the set ���s, and apply Lemma 3 to it to obtain a set of p-onsequenes ofthe form: �; � j�P (k; �j)whih inludes one suh p-onsequene for eah k whih appears in the onsequentset of � ��s. Call this set of p-onsequenes P2. The set P1 [ P2 is then exatlythe onsequene dual of the simple equivalent of �. Thus anything whih an bederived from the simple equivalent of � an also be derived from � itself. 2The reason that this result is important is that it allows us to apply Theorem 5to onjuntive onsequent default bases, by �rst turning the default base into itssimple equivalent. This in turn means that we an immediately write down asubset of the p-onsequenes of any onjuntive onsequent default base �|thesimple onsequenes of its simple equivalent. We all these the simple equivalentonsequenes of �.Now let's onsider generalising the set of defaults � to what we will all a set ofgeneral onjuntive defaults of the form �^Bi )�i �i where �, as before, is a singleproposition and Bi and �i are onjuntions of propositions. This set of defaults isa general onjuntive default base:De�nition 19 A general onjuntive default base for a language LS is a defaultbase: � = [i=1;:::;nf� ^ Bi )�i �igwhere � is a bw� in LS , and the Bi and �i are onjuntions of suh bw�s.Thus a general onjuntive default base is just a set of onjuntive onsequenedefaults whih have a onjuntive anteedent Bi onjoined to their base anteedent �.Suh a default base has a simple subset �s as before, and a onjuntive onsequent



On proofs in System P 19subset � whih inludes defaults of the form �)�i �i. From suh a default base wean learly generate all p-onsequenes whih are simple equivalent onsequenesof �s [ �. These are all the p-onsequenes of � whih an be obtained byapplying CM, And, and RW alone. However, there are further p-onsequenes ofa set of general onjuntive defaults. Applying the rules Ax and S to a default� ^ Bi )�i �i in �� (�s [�) will give:�; � j�P (Bi ! �i; �i)Now, if we an obtain: �; � j�P (Bi; �j)Applying And will give us�; � j�P (Bi ^ (Bi ! �i); �i + �j)and then RW will allow us to obtain:�; � j�P (Bi ^ �i; �i + �j)and hene: �; � j�P ('ij ; �i + �j)for any 'ij 2 Bi [Gi where Bi and Gi are the assoiated sets of Bi and �i. Oneway that: �; � j�P (Bi; �j)an be obtained at the ruial point is if this is a simple equivalent onsequent of�s [�. This gives us:Lemma 4 Given a general onjuntive default base � with base anteedent �,whose simple subset is �s and whose onjuntive onsequent subset is �, thenj�P will generate all the onsequenes of the form:�; � j�P (0; �i + �j)where � ontains a default � ^ Bi )�i �i, Gi is the assoiated set of �i, 0 2 Gi,and �; � j�P (Bi; �j)is one of the simple equivalent onsequenes of �s [�.Proof: This follows immediately from the previous disussion. 2As with Lemma 3, this is a \redution" result, whih allows us to use a omplexset of defaults to obtain a set of p-onsequenes whih we ould obtain from amuh simpler set of defaults. Following this analogy, in the same way as we de�nedthe simple equivalent of a set of onjuntive anteedent defaults, we an de�ne aset of simple defaults whih, when we apply Ax to them, give us the same set ofonsequenes as applying Lemma 4 to a general onjuntive default base. This setis de�ned as follows:



On proofs in System P 20De�nition 20 Given a general onjuntive default base � with simple subset �sand onjuntive onsequent subset �, its redued equivalent is the union of �s,the simple equivalent of �, and the set of defaults:f�)�i j j f� ^ �1 ^ : : : ^ �m )�i 1 ^ : : : ^ j ^ : : : ^ ng 2 �; �1; : : : ; �m 2 Ggwhere G is the onsequent set of �s [�.With this notion of a redued equivalent set, it is easy to identify one set of onse-quenes of a general onjuntive default base.Theorem 7 Given a general onjuntive default base �, j�Pwill generate all simpleonsequenes of the redued equivalent of �.Proof: Immediate by applying Lemma 4. 2We all these the onservative onsequenes of �, so named beause they are onlya subset of the full set of onsequenes. However, in establishing this set of onse-quenes, we have haraterised a signi�ant portion of the onsequenes of generalonjuntive default bases in a way whih makes it easy to determine if a partiularonsequene is one of the number. For a given formula  and general onjuntivedefault base �, we an answer the question \is  a onservative onsequene of �?"by inspetion.We an view the results we have obtained as forming a sequene of onsonantsets of onsequenes. Consider a general onjuntive default base �. Theorem 5identi�es all the onsequenes of the simple subset of � whih an be obtainedusing the rules And and CM, the two rules whih allow arbitrary onjuntions tobe established on either side of the turnstile. These are the simple onsequenesof �. Theorem 6 makes it possible to draw onlusions from a larger subset of�, namely the union of the simple subset and the set of onjuntive onsequentdefaults, again using the rules And and CM, along with RW. This set of onse-quenes, the simple equivalent onsequenes, inludes all the simple onsequenes.Finally, Theorem 7 makes it possible to use every default in �, obtaining the set ofonservative onsequenes, whih inludes all the simple equivalent onsequenes.Theorems 5, 6 and 7 omplement Theorem 4. The latter says that anythingprovable will eventually be proved. It therefore de�nes what is provable from above,plaing a limit on the set of onsequenes whih an be proved without giving anindiation of what they are. The former are a �rst step towards de�ning what isprovable from below. Given a default base these results tell us what an be proved.However, they do not identify every possible onsequene, sine other onsequenesan be determined by the appliation of other proof rules. For example we have:Theorem 8 Given a general onjuntive default base � = Sif� ^ Bi )�i �ig withbase anteedent �, the onsequene relation j�P will generate all p-onsequenes:�; � j�P (�; �)



On proofs in System P 21where � = Vj 'j , î (:Bi _ �i) ` 'jand � =Xi �iProof: For every �^Bi )�i �i we an apply Ax, S and RW to get �; � j�P (:Bi_�i; �i). Applying And to all of these gives�; � j�P ( î (:Bi _ �i);Xi �i)and sine applying RW to this latter does not hange the value of �, the resultfollows. 2The value of � here is learly an upper bound, giving a lower bound on the valueof the onditional probability of the resulting p-onsequenes. A tighter boundould be obtained by \And"ing only those defaults whih are atually used in thederivation of the 'j . This raises the issue of what we should onlude if we obtainseveral p-onsequenes of the form:�; � j�P (�; �i)with di�erent strengths �i. What these mean, of ourse is that:Pr(� j �) � 1� �ifor various �i. These results are entirely onsistent, and we are justi�ed in pikingwhihever �i we wish. Typially we will hoose the smallest, sine this gives us thehighest value of Pr(� j �).It should also be noted that Theorem 8 identi�es a muh larger set of potentialonsequenes than the onservative onsequenes. However, to establish these it isneessary to invoke a standard propositional theorem prover.5.3. More than one default baseAll the results presented so far hold for sets of defaults with a single proposition� on the anteedent side. Clearly we an replae � with an arbitrary onjuntion ofpropositions, reovering analogous results after the neessary hanges in de�nitionof terms suh as \simple default"|in the interests of spae we will not onsiderthis extension in detail. Instead, taking the idea of having a onjuntion as ananteedent somewhat further, one might imagine that there are more onsequenesthat might be inferred from defaults with anteedents with several propositions inommon, for instane: � ^ � )�1 0



On proofs in System P 22and � ^ Æ )�2 00However, if � is a single proposition, we have already analysed the situation sinethese two defaults are part of a general onjuntive default base with base anteedent�. If � is a onjuntion, then this ase is part of the simple extension alreadydisussed. Thus there are no partiularly interesting results that may be obtainedhere.Another ase that seems worth investigating is when we have more than onedefault base. Suh a situation arises when we an partition a set of defaults intotwo or more subsets where every default in eah subset has at least one anteedentproposition in ommon (the base anteedent of that subset), but there are no om-mon anteedent propositions between defaults in di�erent subsets. An example ofsuh a situation is when we have:� = [i=1;:::;nf� ^ Bi )�i �igand �0 = [j=1;:::;nf� ^ Bj )�j �jgwhere Bi and Bj are the assoiated sets of Bi and Bj respetively, and[i Bi \[j Bj = ;However, this is a situation when the very onservative nature of System P worksagainst us. The only rule of SP whih makes it possible to ombine two p-onsequenes with suh anteedents is Or. Or only applies to two defaults whihhave the same formula on the right of the turnstile. In other words, it only appliesdiretly if �i and �j are idential. However, thanks to RW, we an onvert any-thing on the right hand side to any of its logial onsequenes, so we an apply Orindiretly provided that either �i ! �j or �j ! �i. Thus, given:�)�1 � )�2 Æprovided that: � ` Æwe an apply Ax to both defaults and then RW to the �rst to obtain:�; � j�P (Æ; �1)�;  j�P (Æ; �2)and then use Or to infer: �; � _  j�P (Æ; �1 + �2)



On proofs in System P 23However, Or on its own does not modify the right hand side of the turnstile, andso does not make it possible to establish any new p-onsequenes|in this examplewe ould already obtain: �; � j�P (Æ; �1)using just the �rst default. What Or does is to make it possible to alter the statesthat existing p-onsequenes are onditional on, and sine this is somewhat outsideour interest we will say no more about it here.In fat, the only way to draw substantial onlusions from several default basesis to turn them into a single default base. This is possible using a ombination ofthe rules S and LLE. Given any default�)�1 we an use Ax and LLE to obtain:�; � ^ > j�P (; �1)whih is not muh use on its own, but allows us to apply S to get:�;> j�P (�! ; �1)Applying this transformation to several defaults from di�erent default bases givesus a new default base with base anteedent >. Clearly we an then establish similarresults to those obtained above for defaults with base anteedent �, but writing >in plae of � on the left of the turnstile, and � ^Bi in plae of Bi on the right. Wean summarise everything whih an be inferred using this partiular ombinationof proof rules in the same way as is possible in Theorem 8:Theorem 9 Given a general onjuntive default base � = Sif� ^ Bi )�i �ig withbase anteedent �, the onsequene relation j�P will generate all p-onsequenes:�;> j�P (�; �)where � = Vj 'j , î (:� _ :Bi _ �i) ` 'jand � =Xi �iProof: For every � ^ Bi )�i �i we an apply Ax, LLE, S and RW to get�;> j�P (:(� ^ Bi) _ �i; �i). Applying And to all of these gives�; � j�P ( î (:(� ^ Bi) _ �i);Xi �i)



On proofs in System P 24(i) �party ; linda j�P (steve; 0 :1 ) Ax; 4(ii) �party ; linda j�P (great ; 0 :01 ) Ax; 2(iii) �party ; linda ^ steve j�P (great ; 0 :011 ) CM; (i); (ii)(iv) �party ; linda ^ steve j�P (:noisy ; 0 :05 ) Ax; 5(v) �party ; linda ^ steve j�P (great ^ :noisy ; 0 :061 ) And; (iii); (v)Fig. 6. The proof of a onservative onsequene about Lindaand sine applying RW to this latter does not hange the �-value, the result follows.2 All of the results obtained in this setion an be onsidered to be ompletenessresults for SP in the sense that they identify all the possible onsequenes whihfall into the partiular lasses given. In ombination with the soundness result ofTheorem 2 and 3 they give the usual guarantees for a partiular set of onsequenes.5.4. Future workOne way of looking at the results presented in this setion is as a set of partiallassi�ations of the kinds of onsequenes whih an be derived from a set ofdefaults. Another way of onsidering them is as a set of results for transforming aset of defaults in a way whih does not hange their p-onsequenes. In this sense, wean onsider De�nition 18 as a way of transforming a onjuntive onsequent defaultbase into its simple equivalent without hanging the set of simple onsequeneswhih an be derived from it (though, as mentioned above, the �-values will ingeneral be di�erent).The fat that this kind of transformation is possible suggests that it may be pos-sible to identify additional transformations whih are distinguished in some way (thetransformation to a simple equivalent being distinguished by the fat that it is madeup entirely of simple defaults). Two suh distinguished transformations spring tomind. One is that whih guarantees the lowest �-values for all the p-onsequenes|this would learly be useful sine it would guarantee the strongest onsequenes(equally learly it won't be the transformation whih gives the simple equivalent).The seond is that whih gives the shortest proofs (in the sense of requiring thefewest appliations of the proof rules of SP) for the set of p-onsequenes. Oneinteresting diretion for future work in this area is the identi�ation of suh distin-guished transformations.6. An exampleWe now illustrate the use of SP on the following, inspired by examples given byKraus et al.5.Brian and Linda are two happy-go-luky people who are normally thelife and soul of any party (so if either go to a party it will normally begreat). Until reently Brian and Linda were married, but then Linda



On proofs in System P 25ran o� with a mime artist, Steve. As a result, if both Brian and Lindago to the same party they will probably have a sreaming row and ruinit (so it will not be great and it will be noisy).If Linda goes to a party she will probably take her new boyfriend Steveand get him to entertain the guests with his marvellous miming. Thusif Linda goes to a party, Steve will probably go to the same party andif Linda and Steve go to a party together it will normally not be noisybeause everyone will be wathing his miming. Normally parties thatare great are noisy, and those that are not noisy are not great.We represent this by the following default base �party . It should be understoodthat we are trying to asertain the likelihood of any given party having variousattributes (brian is present, it is noisy, and so on).1. brian)0:01 great2. linda)0:01 great3. brian ^ linda)0:15 :great ^ noisy4. linda)0:1 steve5. linda ^ steve)0:05 :noisy6. great)0:1 noisy7. :noisy )0:1 :greatAs an example of the generation of a onservative onsequene, onsider the proofof Figure 6. As this proof demonstrates, we an onlude that if both Linda andSteve go to the party, then the probability that it will be both great and not noisyis greater than 0.939 (1 minus the strength of the p-onsequene linda ^ steve).If we ombine defaults from the di�erent onjuntive default bases in �, we anobtain additional onlusions. For example, onsider Figure 7 whih gives a prooffor the p-onsequene linda onditional on >. This tells us that the probabilityof Linda going to any partiular party is at most 0.26. This last example neatlyillustrates two points.The �rst is a property of System P. We have shown that the probability of Lindagoing to any partiular party is quite low. It ertainly isn't likely enough to be adefault onlusion. However, if we know that Linda does go to a party|a fat whihmakes the party somewhat abnormal|then we an draw onlusions whih are verylikely for suh abnormal parties (they are very likely to be great, for instane). Theseond point is to do with the form of the proof. As stated above, the proof ofthe p-onsequene :linda involves the use of defaults from di�erent onjuntivedefault bases (in partiular that with base anteedent linda and the single defaultwith base anteedent :noisy). This is possible through the use of LLE and S toobtain p-onsequenes onditional on > whih may then be ombined using And.As mentioned above, this is an important mehanism for ombining defaults fromdi�erent default bases.



On proofs in System P 26(i) �party ; linda ^ steve j�P (:noisy ; 0 :05 ) Ax; 4(ii) �party ; linda j�P (steve; 0 :1 ) Ax; 5(iii) �party ; linda j�P (:noisy ; 0 :15 ) Cut; (i); (ii)(iv) �party ; linda j�P (great ; 0 :01 ) Ax; 2(v) �party ; linda j�P (great ^ :noisy ; 0 :16 ) And; (iii); (iv)(vi) �party ;> ^ linda j�P (great ^ :noisy ; 0 :16 ) LLE; (v)(vii) �party ;> j�P (:linda _ (great ^ :noisy); 0 :16 ) S; (vi)(viii) �party ;:noisy j�P (:great ; 0 :1 ) Ax; 7(ix) �party ;> ^ :noisy j�P (:great ; 0 :1 ) LLE(viii)(x) �party ;> j�P (:great _ noisy ; 0 :1 ) S; (ix)(xi) �party ;> j�P ((:great _ noisy) And; (vii); (x)^ (:linda _ (great ^ :noisy)); 0 :26 )(xii) �party ;> j�P (:linda ; 0 :26 ) RW; (xi)Fig. 7. The proof of a non-onservative onsequene onerning LindaThe above treatment of the example is an illustration of applying the proof rulesof SP diretly. We an also onsider the example from the perspetive of the setsof simple, simple equivalent, and redued equivalent onsequenes of �party . Todo this, we �rst identify the fat that the database ontains four separate simpledefault bases. These are:�partys1 : linda)0:01 greatlinda)0:1 steve �partys2 : brian)0:01 great�partys3 : great)0:1 noisy �partys4 : :noisy )0:1 :greatOf these only �partys1 has any interesting p-onsequenes beyond its onsequent dual.Building the simple onsequenes of this set of defaults, and ignoring the onse-quene duals of the original defaults, and those p-onsequenes whih have thesame proposition on both sides of the turnstile, we get, by Theorem 5:�party ; linda j�P (steve ^ great; 0:11)�party ; linda ^ steve j�P (great; 0:011)�party ; linda ^ great j�P (steve; 0:101)We an also explore the onsequenes of more omplex defaults in �party . Thereare no onjuntive onsequene defaults, so we will look at the general onjuntivedefault bases in �party . Of these, again the most interesting is that with baseanteedent linda. This is:linda)0:01 greatlinda)0:1 stevelinda ^ steve)0:05 :noisywhih has the redued equivalent:



On proofs in System P 27linda)0:01 greatlinda)0:1 stevelinda)0:05 :noisyOne again we an easily generate a set of simple onsequenes from this, part of theset of onservative onsequenes of �party . Ignoring, one again, onsequene dualsand p-onsequenes in whih the same proposition appears on both sides of theturnstile, along with the simple onsequenes of �partys1 , we an obtain the followingonservative onsequenes:�party ; linda j�P (steve ^ great ^ :noisy; 0:16)�party ; linda j�P (steve ^ :noisy; 0:15)�party ; linda j�P (great ^ :noisy; 0:16)�party ; linda ^ steve j�P (great ^ :noisy; 0:06)�party ; linda ^ great j�P (steve ^ :noisy; 0:152)As with the simple onsequenes of �partys1 we an simply write these down withoutthe need to use SP diretly.7. Related workThere are four main areas of losely related work. The �rst is the large bodyof work on System P as a mehanism for default reasoning. Most of this workhas involved extending System P in various ways. The problem that all this workaddresses is the fat that System P is too weak. The onsequenes it santions areorret, and are widely aepted as the minimum that any interesting nonmono-toni reasoning system should generate, but they are too onservative sine theyare guaranteed not to be false in the light of any subsequent information. ThusSystem P doesn't really provide nonmonotoni reasoning|it doesn't draw onlu-sions whih are later withdrawn. In probability terms, what System P does is tolook at all the onstraints, embodied in the default assertions, on the probabilitiesof all the propositions in the database it is invoked on, and then identify the familyof probability distributions whih satisfy the onstraints. It then santions any in-ferene whih represents an additional onstraint that holds in every distribution.The various approahes to extending System P have looked for ways to hoose apreferred distribution|they then santion any assertion whih satis�es that dis-tribution. System Z9, and equivalently rational losure10, do this in a way whihorresponds to adding the following proof rule, the rule of rational monotoniity, toSystem P: a j� ; a 6j� :ba ^ b j� Another approah to hoosing the preferred distribution is to use the priniple ofmaximum entropy, as initially suggested by Goldszmidt11 and later extended by



On proofs in System P 28Bourne12. More disussion of this line of work may be found elsewhere13, butit should be lear from the above that this work has a rather di�erent emphasisfrom that of this paper, being onerned with extending System P rather thanworking within in, and not being greatly onerned with either the strength of theonlusions or their proof.The seond main piee of related work is Bahus'14 inheritane reasoner. Ba-hus' system allows two kinds of relation between formulae, ) and ! whih dis-tinguish between strit and statistial set inlusion. Thus � ) � denotes the fatthat all �s are �s while � !  denotes the fat that \most" �s are s. The latteris true provided that more than half of all �s are also s, in other words if the setof all individuals with both property � and property  is at least half as large asthe set with property �. These two relations, along with negation, are suÆient toapture a range of attrative properties for reasoning about inheritane.Comparing Bahus' system to SP , there are two obvious remarks. The �rstis that SP is more expressive sine Bahus' system does not inlude onjuntionor disjuntion. The seond is that SP is diretly onerned with the bounds onthe assertions whih are derived, while Bahus is only onerned with derivingwhether \most" of a lass of individuals have some property. The aim of his workis thus loser to System P where the value of the bounds is not an issue (though itis arguably more realisti not to depend on in�nitesimal values as System P does).It is also possible to ompare the systems in more detail|though a full explo-ration of the di�erenes and similarities would probably require a further paper|looking at the various properties of Bahus' system and identifying whether theyhold in SP . The main properties of interest are those relating to dedution (ap-tured in Bahus' Theorem 4.1), those relating to resolving lashes between onlu-sions (aptured in \subset preferene" and \ertainty preferene") and the fat thatinheritane is only santioned over one ! link. The dedutive properties hold inSP , as does the failure to hain over \most" links (assuming a translation betweenBahus' �! � and � j��)x. The natural way to resolve lashes in SP is to look atthe �-values, allowing: �; � j�P (; �1) to be preferred to: �; � j�P (:; �2) providedthat �1 < �2 (sine the relevant probability is one minus the �-value). Doing thisensures that ertainty preferene holds, but subset preferene does not|that is wean resolve lashes between properties whih are inherited from a lass and thoseinherited from a superlass, but not neessarily in a way that respets spei�ity.This, of ourse, is a well-known limitation of System P13. Overall, then, while thetwo systems have some properties in ommon, neither aptures the other.The third piee of losely related work is that of Gilio15, who has followed theapproah adopted in the �rst part of this paper but using de Finetti's approah16;17to ompute the bounds on the derived assertions. This approah makes it possibleto derive the probably tightest bounds on the �-values, and doing this allows GilioxThis haining property is investigated by Kraus et al.5 and found not to hold for System P formuh the same reason as it fails to hold for Bahus' system.



On proofs in System P 29to improve on our results for Cut and Or. The resulting rules are, respetively:� ^ � j��1 ; � j��2 �� j��1+�2��1�2 and � j��1 ; � j��2 � _ � j� �1+�2�2�1�21��1�2 It should be noted that the di�erene between the �-values obtained using theimproved bounds and those obtained using our bounds are small. For example,Gilio obtains an �-value of 0.145 for the assertion Linda j�:noisy as opposed tothe 0.15 we obtain.Finally, Snow 18;19 and Benferhat et al. 20 have investigated probabilisti se-mantis for System P whih do not rely upon in�nitesimal values. This work islearly related to both our approah and Gilio's. However, it is more in line withthe work on extensions to System P disussed above beause it is not onernedwith the atual probabilities of the assertions or their onsequenes. All Snow andBenferhat et al. are interested in is the fat that it is possible to onstrut suit-able non-in�nitesimal probability distributions whih satisfy System P, they aren'tpartiularly interested in the atual probabilities.8. ConlusionThis paper has three main results. The �rst of these is to have shown that giventhe assumption that onditional assertions may be treated as onditional probabil-ities with lower bounds, we an obtain lower bounds for the derived onsequenes.The seond main result is to have given a proof mehanism for obtaining these on-sequenes, and to have explored its properties. Thus if we know the lower boundson the onditional probabilities of a set of input assertions, we an identify whihonsequenes may be derived, and establish the lower bounds on the onditionalprobabilities of these onsequenes. Moreover the lower bounds are given by simplefuntions of the initial bounds alulated for eah proof step in System P. The thirdmain result is to have identi�ed three sets of onsequenes of a set of defaults|the simple onsequenes, the simple equivalent onsequenes, and the onservativeonsequenes|in a way whih enables them to be easily enumerated. Further setsof onsequenes an be obtained at the ost of some onventional theorem proving.The advantages of these results are as follows. First they allow us to use realrather than in�nitesimal probabilities sine by keeping trak of the bounds we antell whih onsequenes are justi�ed|learly any onsequene with a low lowerbound might be onsidered suspet. The seond advantage is that only a lowerbound onditional probability is required for eah default rule rather than a pointprobability, and this may mean that the numerial values neessary for this approahare easier to assess than those neessary for approahes whih use point values.Clearly we still require these values to be high or the results obtained will be uselesssine derived onditionals will only be known to have an assoiated onditional



On proofs in System P 30probability that is greater than some small value. The third advantage is thata subset of the full set of onsequenes of a given set of onditional assertions isimmediately identi�able, without the need for any theorem proving. This makesit possible to both enumerate all suh onsequenes, and to quikly establish if apartiular onsequene is a member of this subset{.Of ourse there are disadvantages to the use of our approah, and perhaps theworst of these stems from System P itself and our use of its proof rules. As men-tioned above, System P is aepted as being a septial reasoning mehanism, thatis, only onservative (and ompletely sound) onlusions an be obtained. This isinsuÆient for most purposes sine we will often want to draw more tenuous onlu-sions. The fat that we use the rules of System P diretly prevent us extending ourapproah to over some of the speialisations of System P that have been suggestedsine these speialisations do not have expliit proof rules.Finally, it is worth noting that beause the initial set of lower bounded ondi-tional probabilities are propagated through the proof, the output is a set of proba-bility statements similar to: Pr(� ^ :� j  ^ Æ) � 1� �If the propositions  and Æ are piees of evidene (in other words things whihare known to have ourred), this output information is suÆient to establish theprobability of the state � ^ :�. Thus the output of SP an be used, along withinformation on the utility of � ^ :� as the basis of some deision making proess,and this is the diretion that our researh on the topi of this paper is taking usnow. This onnetion to deision theory also explains our fous on onjuntions andthe fat that we have not made muh use of the proof rule Or|in deision makingwe are not usually interested in probability statements like:Pr(� ^ :� j  _ Æ) � 1� �AknowledgmentsThis work was partly funded by the EPSRC under grant GR/L84117. Theseond author was supported by an EPSRC PhD studentship. We are grateful toan anonymous reviewer for many useful suggestions on how to improve the paper.Referenes1. M. L. Ginsberg, editor. Readings in Nonmonotoni Reasoning. Morgan Kauf-mann, San Mateo, CA, 1987.2. R. Reiter. A logi for default reasoning. Arti�ial Intelligene, 13:81{132, 1980.3. J. MCarthy. Cirumsription|a form of non-monotoni reasoning. Arti�ialIntelligene, 13:27{39, 1980.{Of ourse, beause these results only over a subset of the full set of onsequenes of a givenset of assertions, the fat that a given formula is not in this subset doesn't mean that it isn't aonsequene of the set of assertions.
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