
Hybrid models of un
ertaintyinprotein topology predi
tionSimon ParsonsAdvan
ed Computation LaboratoryImperial Can
er Resear
h FundP.O. Box 123Lin
oln's Inn FieldsLondon WC2A 3PXAbstra
tPredi
ting protein stru
ture is an important problem in mole
ular biology, and one that has attra
ted alot of attention. It is also a diÆ
ult problem sin
e the available data is in
omplete and pervaded withun
ertainty. This paper des
ribes models for the predi
tion of an intermediate level of protein stru
tureknown as the topology of the protein. The models handle un
ertainty expli
itly, making use of probability,possibility and eviden
e theories singly and in 
ombination to handle di�erent aspe
ts of the problem.Keywords: Mole
ular biology, protein stru
ture predi
tion, un
ertain data, hybrid models.
1 Introdu
tionProteins are large biologi
al ma
romole
ules that form the main 
omponents of living organisms. Inaddition, proteins, in the form of enzymes, hormones and antibodies, 
ontrol most of the 
ru
ial pro
essesin 
ells. The fun
tion of a parti
ular protein is determined by the 
hemi
al intera
tions at its surfa
e, andthese are related to its three dimensional stru
ture. Thus knowledge of protein stru
ture is important.The stru
ture of proteins 
an be des
ribed at various levels of detail. The primary stru
ture 
onsists ofa list of the amino a
ids that make up the protein. Ea
h amino a
id is one of twenty naturally o

urringmole
ules from whi
h all proteins are made. The se
ondary stru
ture is a des
ription of the way thatthe amino a
ids are grouped together into substru
tures within the three dimensional stru
ture. Twoimportant forms of se
ondary stru
ture are �-sheets, whi
h 
onsist of a number of �-strands, and �-heli
es. The tertiary stru
ture of a protein is the set of three dimensional 
o-ordinates of every atomin the protein. Protein topology is an intermediate level somewhere between se
ondary and tertiarystru
ture whi
h spe
i�es the relations between se
ondary stru
tural units, in terms of how su
h units areordered along the protein.Now, knowledge of three dimensional protein stru
ture is sparse. While the determination of theprimary stru
ture of proteins has be
ome routine, determination of se
ondary and tertiary stru
ture ismore diÆ
ult. Thus the primary stru
tures for many tens of thousands of proteins are known, but onlysome hundreds of distin
t proteins have had their three dimensional stru
ture determined. This �gureis tiny in 
omparison with the vast number of proteins that exist, and the dis
repan
y motivates mu
hresear
h into determining protein stru
ture. The major problem is that experimental methods are time-
onsuming and expensive and may even be impossible to use sin
e some proteins 
hange stru
ture whenisolated. In 
onsequen
e, mole
ular biologists are turning to 
omputational te
hniques for predi
tingprotein stru
ture from amino a
id sequen
es.
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2 Protein Topology Predi
tionOf parti
ular interest is the predi
tion of protein topology be
ause the topology 
an be used to guide the
hoi
e of experiments to 
on�rm parti
ular ideas about the stru
ture and to sear
h for similar knownstru
tures. A major diÆ
ulty in this predi
tion is that a vast number of possible topologies 
an behypothesised from a single se
ondary stru
ture predi
tion. In general, for a mixed �=�-sheet of n strands,where n > 1, there are n!(4n�1)2 possible ways of arranging the strands (Clark et al. 1992) (Table 1).To redu
e this spa
e, s
ientists identify and apply 
onstraints based upon experimental data (Clark etNo. of strands 2 3 4 5 6No. topologies 4 48 768 15,360 68,640Table 1: The number of possible topologiesal. 1992, 1994), (Cohen and Kuntz 1987). As an example, Taylor and Green (1989) investigated thetopology of nu
leotide binding proteins using rules based on previous analyses of �=� sheets:� C1. For parallel pairs of �-strands, �-�-� and �-
oil�-� 
onne
tions are right handed (Ri
hardson1976), (Sternberg and Thornton 1977).� C2. The initial �-strand in the amino a
id sequen
e is not an edge strand in the sheet (Brandon1980).� C3. Only one 
hange in winding dire
tion o

urs (Ri
hardson 1981).� C4. The �-strands asso
iated with the 
onservedy patterns lie adja
ent in the sheet (Walker et al.1982).� C5. All strands lie parallel in the �-sheet.� C6. Un
onserved strands are at the edge of the sheet.To evaluate the plausibility of topologies that were 
onsistent with the 
onstraints Taylor and Greenemployed �ve folding prin
iples:� F1. Strands are ordered in the sheet by hydrophobi
ity, with the most hydrophobi
z strands 
entral.� F2. Parallel �-
oil-� 
onne
tions 
ontain at least 10 amino a
ids.� F3. Insertions and deletionsx o

ur on the edge of domains.� F4. Most 
onserved loops should lie adja
ent.� F5. Long se
ondary stru
tures should pa
k approximately parallel or anti-parallel, with sequentialunits anti-parallel.After some adjustment of the se
ondary stru
ture predi
tion they were able to produ
e a topologi
alhypothesis that satis�ed C1 to C6, was 
onsistent with F1 to F4, and was indeterminate with respe
tto F5. The stru
ture was also similar to the known stru
ture of a nu
leotide binding protein.To avoid the problems inherent in both manual sear
h and exhaustive generate and test algorithms,Clark et al. (1992) developed a 
onstraint satisfa
tion algorithm for protein topology predi
tion namedCBS1. CBS1 is implemented in Prolog, based on tree sear
h and a
hieves eÆ
ien
y through high level
onstraint evaluation and forward pruning of the sear
h tree. The implementation runs on Sun worksta-tions under Quintus Prolog and has was used to reprodu
e Taylor and Green's results as well as to identifya new topologi
al hypothesis 
onsistent with the 
onstraints, indi
ating that the original sear
h was not�A protein has 
oil stru
ture where it is neither a �-strand nor an �-helix.yWhen the amino a
id sequen
es of proteins that perform similar fun
tions, but are found in di�erent spe
ies, are
ompared, parts of the sequen
es are often found to be the same in all proteins. These are said to be 
onserved.zLa
king an aÆnity for water.xWhen amino a
id sequen
es are aligned to determine 
onserved regions, some regions do not mat
h. Thus, to align the
onserved regions it is ne
essary to split up sequen
es, `adding' spa
es between 
ertain amino a
ids. Similarly, it may bene
essary to `delete' a
ids in order to mat
h regions. 2



Protein ID. Constraints Violated Protein ID. Constraints Violatedp4adh F1 p1pfk C5 F1p5adh F1 p2pfk C5 F1p6adh F1 p3pfk C5p7adh F1 p4pfk C5p1ldx p1gpd C3 C5 F1 F2p3ldh F1 p1gd1 C3 C5 F1 F2p4ldh F1 p2gpd C3 C5 F1 F2p3dfr C3 C5 F1 p3pgk F1p4dfr C3 C5 F1 F2p3adk p3grs C2 F1Table 2: The results of 
he
king 
onstraints against eight nu
leotide-binding domain proteinsexhaustive. Clark et al. (1992) also assessed the validity of the 
onstraints by 
he
king them against theknown stru
tures of eight nu
leotide binding domains with similar fun
tion. The results are reprodu
edin Table 2. The protein ID is a unique number whi
h identi�es the full three dimensional protein stru
-ture in a publi
 database. The stru
tures that are grouped together in Table 2 are those relating to thesame protein. For instan
e p1gpd, p1gd1 and p2gpd are di�erent experimentally determined stru
turesfor D-gly
eraldehyde-3-phosphate dehydrogenase. Ea
h of the variations should be 
onsidered equallyvalid, so when a rule holds for one form of a protein and not for another, it is ambiguous whether or notthe 
onstraint holds for that protein. A further set of data 
on
erning the validity of the 
onstraints ispresented in an earlier paper (Shirazi et al. 1990). Here C1, C2, C3, C5 and F2 were tested against aset of 33 �=� sheet proteins, giving Table 3.Protein ID. Constraints Violated Protein ID. Constraints Violatedp1aat C2 C5 p1ts1 C2 C5p1bp2 C2 C5 p1ubq C3 C5p1
a
 C2 C3 C5 p2b5
 C2 C3 C5p1
pb C2 C3 C5 p2
ab C2 C3 C5p1
rn C2 C5 p2
dv C2 C5p1
ts C2 C5 p2
ts C2 C5p1
tx C5 p2lzm C5p1hip C2 C5 p2ssi C5p1nxb C3 C5 p3bp2 C2 C5p1ovo C5 p3
ts C2 C5p1p2p C2 C5 p3dfr C3 C5p1ppd C2 C5 p3pgm C5p1rn3 C2 C5 p4
ts C2 C5p1sbt C1 p4dfr C3 C5 F2p1sn3 C2 C5 p4fxnp1srx C2 C3 C5 p4pti C2 C5p5
pa C2 C3 C5Table 3: The results of 
he
king 
onstraints against 33 �=� sheet proteins.3 Representing the un
ertaintyTogether these results show that while the folding rules are useful heuristi
s most are only true some ofthe time. This suggests that a good model of the problem would handle the un
ertainty in the 
onstraintsexpli
itly. The best way of doing this is not 
lear, and so in the tradition of experimental investigationsof the best way of modelling un
ertainty in a given problem (He
kerman 1990), (He
kerman and Shwe1993), (SaÆotti et al. 1994) we dis
uss a number of di�erent ways in whi
h the data from Tables 2 and3 may be represented. There are, of 
ourse, other possibilities whi
h are not dis
ussed here| we just3



Constraint Number of 
ases in whi
h p(XA)the 
onstraint is violatedC1 1 0.967C2 22 0.333C3 10 0.606C5 31 0.065F1 - -F2 1 0.967Table 4: Probabilities of 
onstraints holding in nature, based upon the results of the �=� proteinsConstraint Number of 
ases in whi
h p(XA)the 
onstraint is violatedC1 0 1.0C2 1 0.947C3 5 0.737C5 9 0.526F1 15 0.211F2 4 0.789Table 5: Probabilities of 
onstraints holding in nature based upon the \disambiguated" results of thenu
leotide binding proteins
over the most obvious. We also just deal with modelling 
onstraints C1,C2,C3,C5,F1 and F2 for whi
hClark et al. (1992) and Shirazi et al. (1990) give data.3.1 Using probability theorySin
e the data is drawn from a reasonably random population of proteins the following argument 
anbe made. Table 3 holds a list of 33 proteins. Of these, 24 
onform to 
onstraint C3, and 9 do not, soa stru
ture that 
onforms to C3, has a probability of P (C3A) = 2333 = 0:606 of existing in nature. Thisargument gives the probabilities of Table 4. Sin
e the sample size is just 33 proteins, the probabilitieswill not be very a

urate, but they are the best values that 
an be obtained in this ill-known domain.Table 2 may be used to get a se
ond set of probabilities, but in this 
ase the data is ambiguous. Of theeight proteins analysed, several have alternative stru
tures and some 
onstraints hold for some alternativestru
tures and not for others. Thus it is not 
lear whether or not su
h a 
onstraint is valid for the protein.One solution is to \disambiguate", 
onsidering ea
h of the nineteen possible stru
tures as a separate entity.Doing this gives the probabilities of Table 5. However, it 
ould be argued that disambiguation distortsthe data, and the un
ertainty should be modelled in a \purer" way a
knowledging the ambiguity. This
an be done using interval probabilities with the lower value 
al
ulated by 
ounting proteins for whi
hthe rule is ambiguous as proteins for whi
h it fails to hold, and the upper value by 
ounting proteins forwhi
h the rule is ambiguous as proteins for whi
h it does hold. This gives Table 6. Alternatively theambiguity 
ould be modelled using eviden
e theory.3.2 Using eviden
e theoryEviden
e theory provides good support for modelling ambiguity, providing a me
hanism for allo
ating adegree of belief to the disjun
tion of two 
ompeting hypotheses. Considering Table 2 with respe
t to F2there are three sets of proteins. We have fp3pgk; p1ldx; p3ldh; p4ldh; p1pfk; p2pfk; p3pfk; p4pfk; p3grs;p3adk; p4adh; p5adh; p6adh; p7adhg where every one of the 14 possible stru
tures of the six proteins
onforms to F2, fp1gpd; p2gpd; p1gd1g where every possible stru
ture of the protein violates F2, andfp3dfr; p4dfrg where of the two stru
tures for the protein, one 
onforms to F2 and one does not. Thisambiguity may be modelled as follows. There are six proteins that 
onform to F2 so the basi
 massassignment is m(fF2Ag) = 6=8. There is one protein for whi
h the 
onstraint fails to hold. Thusm(f:F2Ag) = 1=8. The remaining mass, 1 � (m(fF2Ag) + m(f:F2Ag)) is the probability that the
onstraint either applies or doesn't apply, m(fF2;:F2Ag). This latter is a measure of ignoran
e aboutthe appli
ability of the 
onstraint. For Table 2 the masses of Table 7 are appropriate.4



Constraint Number of 
ases in whi
h p(XA)the 
onstraint is violatedC1 0 1.0C2 1 0.875C3 2 0.75C5 3 0.625F1 5-7 [0.125, 0.375℄F2 1-2 [0.750, 0.875℄Table 6: Probabilities of 
onstraints holding in nature based upon the \pure" results from the nu
leotidebinding proteins Constraint m(fFxAg) m(f:FxAg) m(fFxA;:FxAg)F1 0.125 0.625 0.25F2 0.75 0.125 0.125Table 7: The basi
 mass assignments for modelling the 
onstraints using eviden
e theory a

ording tothe results from the nu
leotide binding proteins3.3 Using possibility theoryIt is also possible to model the 
onstraints using possibility theory. It is possible to use a number ofdi�erent sets of numeri
al information, but the basi
 prin
iple behind the modelling is the same. If astru
ture 
onforms to a 
onstraint, it is entirely possible that the stru
ture is that of a naturally o

urringprotein. However, if a stru
ture fails to 
onform to a 
onstraint then it be
omes less possible that thestru
ture is a naturally o

urring protein. Indeed the possibility of the stru
ture being a natural proteinfalls to a �gure that re
e
ts the proportion of naturally o

urring proteins that do not 
onform to the
onstraint. Thus, for ea
h 
onstraint Cx, the possibility that the protein o

urs in nature given thatCx holds, �(CxA) = 1, while the possibility that the protein o

urs in nature given that Cx does nothold, �(:CxA), depends upon data in Tables 2 and 3. This may be disambiguated or used to de�nean interval in the same way as is done in Tables 4 to 6 for probability theory. For instan
e, taking thedisambiguated values of Table 5, the possibility of C5 not holding, �(:C5) = 0:474.3.4 Handling ignoran
eWe have also to en
ode the la
k of information about the appli
ability of F1 in Table 3. The usualprobabilisti
 method would be to de
lare that p(F1A) = p(:F1A) = 0:5. However, other methods 
ouldbe used. In eviden
e theory, sin
e nothing 
an be said about the basi
 probability assignment to F1Aand :F1A, m(fF1Ag) = m(f:F1Ag) = 0, and all the basi
 probability is assigned to the disjun
tion,giving the va
uous belief fun
tion m(fF1A;:F1Ag) = 1. The meaning of this assignment is that it isnot possible to assign any belief to one hypothesis rather than another. Another alternative is to usepossibility theory. Sin
e there is no knowledge about the 
han
e of F1 holding, it is entirely possiblethat F1 holds and �(F1A) = 1. If :F1A is 
onsidered, a similar argument may be made to obtain�(:F1A) = 1. From the viewpoint of the information that is available all of these three approa
hes areperfe
tly 
orre
t, and there is no obvious way of 
hoosing between them.4 Cal
ulating the validity of stru
turesHaving 
onsidered the di�erent ways in whi
h the un
ertain nature of the 
onstraints 
an be modelled,we turn to 
onsidering how to employ use these models in topology predi
tion. CBS1 generates as itsoutput sets of possible topologies of nu
leotide binding domain proteins and the 
onstraints to whi
hthey 
onform. The kind of output that would be useful to mole
ular biologists would be some kind ofmeasure of the validity of the sets of topologies based upon the 
onstraints to whi
h they 
onform.To do this we employed Mummu (Parsons 1993) an adaptation of Pul
inella (SaÆotti and Umkehrer1991) whi
h handles interval valued probabilities, possibilities and beliefs, and in whi
h the intervalsare propagated using interval arithmeti
. This system uses a valuation network representation (Shenoy5
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Figure 1: A network relating the e�e
ts of 
onstraints to the validity of a stru
ture.1991), and the valuation network of Figure 1 was adopted, based upon the work of Smets and Hsia(1990). This network expresses the fa
t that the validity of the stru
ture is a 
ombination of the e�e
t ofall 
onstraints. Thus, for C1 there is a node C1 whi
h is true if C1 holds for the stru
ture in question,and false otherwise. The e�e
t of this is 
ombined on the node C1&C1A ! V with pC1A whi
h is themeasure of how likely it is that a stru
ture that 
onforms to C1 exists in nature. This is then 
ombinedwith similar results for other 
onstraints to get an overall measure of validity V .4.1 Single formalism approa
hesFirstly we 
onsider the ways that the models of un
ertainty 
an be used so that the whole problem ismodelled using a single formalism, as it would be by any other existing system. Mummu may be used toestablish a validity value using ea
h of the following sets of data.Point-valued probability: Table 5 has point values for ea
h of the 
onstraint probabilities p(CxA)that are based on the disambiguated sample of eight nu
leotide binding domain proteins. The results ofthis 
omputation are given in the se
ond 
olumn of Table 8, and in the �rst graph in Figure 3, both ofwhi
h may be found in the Appendix. In the graph ea
h point on the x-axis 
orresponds to a single setof 
onstraints, with the validity measured up the y-axis. The leftmost point on the x-axis 
orresponds tothe �rst set of 
onstraints in Table 8.Interval-valued probability: Table 6 has interval values whi
h represent the ambiguity surroundingF1 and F2 holding. Results using these values are given in the third 
olumn of Table 8 and the se
ondgraph (reading a
ross the page) in Figure 3. Note that in order to represent intervals graphi
ally, theyhave been transformed into point values by repla
ing them with their mid-points. This transformationmay be justi�ed (Parsons 1993) by an argument based on maximum entropy. A se
ond set of intervalvalues may be obtained by realising that sin
e the nu
leotide binding domain proteins from whi
h Table 2was obtained are of the same 
lass as the proteins whose stru
ture is being predi
ted, while the �=�-sheetproteins are a more general 
lass, we 
ould use the values derived from Table 2 as an upper bound, andthose of Table 3 as a lower bound. Sin
e there are two ways of establishing values from Table 2 we havetwo sets of results and these are given in the fourth and �fth 
olumns of Table 8 and the third and fourthgraphs in Figure 3.Point-valued eviden
e theory: Table 7 gives basi
 probability assignments for the hypothesesfF1g, f:F1g, fF1;:F1g, fF2g, f:F2g, and fF2;:F2g. In addition the values that from Table 6 are6



used as basi
 probability assignments for the hypotheses fC1g, f:C1g, fC2g, f:C2g, fC3g, f:C3g, fC5gand f:C5g. Eviden
e theory may be used to propagate these values through the network of Figure 1,and the results are given in the sixth 
olumn of Table 8 and the �fth graph of Figure 3. Any belief notassigned to fV g is assigned to fV;:V g, so that for the 
onstraint set f g, bel(fV;:V g = 1Point-valued possibility theory: Table 4 gives a set of values whi
h may be used to derive pointpossibility values for the appli
ability of the 
onstraints C1 to C5 and F2. Sin
e there is no data for theappli
ability of F1 it may modelled by setting �(:F1A) = 1, as dis
ussed above. This data gives theresults in the seventh 
olumn of Table 8 and the sixth graph of Figure 3. It should be noted that in thismodel �(V ) = 1 for all sets of 
onstraints, and that, as for all possibilisti
 models, the graph and thetable give the possibility of :V . Alternatively one may use the \disambiguated" data of Table 5, whi
hallows point possibilities to be derived for every 
onstraint. The results of using these values are given inthe eighth 
olumn of Table 8 and the seventh graph of Figure 3.Interval-valued possibility theory: It is also possible to use the \pure" data from Table 6 providedthat interval possibility values are used to take a

ount of the interval nature of the data, representingthe range of possibility values that may be 
al
ulated given the impre
ise information available (Parsons1993). Using Mummu to propagate these values generates the results in the ninth 
olumn of Table 8 andthe eighth graph of Figure 3. In this model �(V ) = [1; 1℄ = 1 in all 
ases.4.2 Hybrid approa
hesAll of the single formalism approa
hes dis
ussed above have skirted around what in many ways seems tobe the natural representation for the problem| one that uses di�erent formalisms. The most a

uratedata that is available is that for the nu
leotide binding domain proteins, and this splits neatly intotwo parts. There are probabilities (Table 6) that model 
onforman
e to C1 to C5, and there is someambiguous data best modelled in eviden
e theory (Table 7) that says something about stru
tures that
onform to F1 and F2. This suggests that the network of Figure 1 be partitioned into two parts as inFigure 2.In this network values are propagated a

ording to eviden
e theory in the right-hand se
tion until avalue for the node V 1 is established. This value is then translated into a probability interval and 
ombinedwith the results from the rest of the network to establish overall probabilisti
 measures of validity. Thetranslation, dis
ussed in detail in (Parsons 1993) uses intervals to model the fa
t that a belief value maybe taken as the lower bound on a probability (Dubois and Prade 1988), thus:Bel(x) = n translates to����! p(x) = [n; 1℄ (1)The results of using this method are given in the tenth 
olumn of Table 8 and the ninth graph of Figure3. This is only one way of 
ombining formalisms in this problem. An alternative is to 
ombine theeviden
e theory model of the ambiguous data about F1 and F2 with the possibility model. Su
h anintegration would be 
arried out in the network of Figure 2, but with every probability repla
ed with apossibility based on values from Table 6. The translation is based upon the fa
t that a belief is a lowerbound on a probability while a possibility is an upper bound (Dubois and Prade 1988), so:Bel(x) = n translates to����! �(x) = [n; 1℄ (2)The results from su
h an integration are given in the eleventh 
olumn of Table 8 and the �nal graph inFigure 3.5 Dis
ussionUnfortunately, there is no obvious \gold standard" (He
kerman 1990) against whi
h to 
ompare theresults. However, it is possible to suggest a number of 
riteria for 
hoosing between the approa
hes basedupon the data that they use, the theory that they are based on, and the results that they generate. Forinstan
e it would seem sensible to use the data of Table 2 when dealing with nu
leotide binding domainproteins, and so the results in the se
ond, third, sixth and eighth to eleventh 
olumns of Table 8 seemmost appropriate. These are, of 
ourse the results depi
ted in the �rst, se
ond, �fth and seventh to tenth7
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Figure 2: A network relating the e�e
t of the 
onstraints in whi
h probability and eviden
e theories maybe integrated.graphs of Figure 3. In this 
ase the 
hoi
e of whi
h results to adopt will depend on whi
h method ofdealing with ambiguity is preferred. The ambiguity may be handled by using \disambiguated" values inwhi
h 
ase the results in the se
ond and eighth 
olumns of Table 8, and the �rst and seventh graphs ofFigure 3, apply. Alternatively, an interval representation of the ambiguity may be adopted, in whi
h 
asethe results in the third and ninth 
olumns of Table 8 and se
ond and eighth graphs of Figure 3 shouldbe 
onsidered. Finally, the ambiguity may be modelled using eviden
e theory, in whi
h 
ase the resultsin the sixth, tenth and eleventh 
olumns, and the �fth, ninth and tenth graphs, are the ones to look at.If a more general 
lass of proteins are being 
onsidered, then the results in the fourth, �fth and seventh
olumns and third, fourth and sixth graphs may be more appropriate sin
e these are at least partly basedupon data from single domain �=� sheet proteins. Another means of 
hoosing the best method might bepreferen
e for a parti
ular te
hnique. In this 
ase the results in the se
ond 
olumn of Table 8 and the �rstgraph of Figure 3 will be preferred by proponents of pure probability measures while those of the sixth
olumn and �fth graph will be adopted by supporters of eviden
e theory, and those of the seventh andeighth 
olumns and sixth and seventh graphs will be favoured by supporters of possibility theory. Thosedo not obje
t too strongly to interval methods may settle for the results of the third, fourth, �fth andninth to eleventh 
olumns (the se
ond, third, fourth and eighth to tenth graphs), and those who preferthe e
le
ti
 approa
h of mixing formalisms should like the results in the tenth and eleventh 
olumnswhi
h 
orrespond to the ninth and tenth graphs.Finally thought might be given to what the results are to be used for, and the 
hoi
e made on the8



basis of whi
h are most useful. In this 
ase it may be of little use having a set of values whi
h 
ontainmany identi
al entries, an argument whi
h with Figure 3 suggests that the results in the se
ond, third,sixth and tenth 
olumns (�rst, se
ond, �fth and ninth graphs) are less useful than the others sin
e thesehave a value of 1 for any 
onstraint set 
ontaining C1. On the other hand this 
ould be a

eptable as a
lear indi
ation of the ne
essity of having stru
tures 
onformant with C1. A similar argument might ruleout the seventh, eighth, ninth and eleventh 
olumns (sixth, seventh, eighth and tenth graphs), whi
h havea value of zero for any 
onstraint set that in
ludes C1. Another way of 
hoosing a method stems fromthe following argument. The predi
tion of protein topology by any theoreti
al means is only a part of thewhole pro
ess whi
h will also in
lude a pra
ti
al analysis whi
h will test out the predi
ted possibilitiesas far as possible. Clearly, if a tedious set of experiments are required in order to reje
t ea
h possiblestru
ture in a set, it would be advantageous to start with the smallest possible set of stru
tures. Thissuggests using the number of possible stru
tures asso
iated with a set of 
onstraints as a measure of itsvalidity. Shirazi et al. (1990) supply the number of stru
tures asso
iated with seven of the 64 possiblesets of 
onstraints, and the order of these, based upon the number of possible stru
tures, agrees with thatobtained from the results in the fourth and �fth 
olumns (third and fourth graphs). The solution ranked`�rst' is the smallest sin
e it 
onforms to the largest set of 
onstraints.6 Con
lusionsIt is to be hoped that this exploration of di�erent approa
hes will be useful in several ways. Firstly itextends the 
omparative study of the use of di�ering un
ertainty handling te
hniques (He
kerman 1990),(He
kerman and Shwe 1993), (SaÆotti et al. 1994) to 
over a new problem. This problem 
ontainsa number of di�erent types of un
ertainty that must be modelled, and the fa
t that di�erent modelsseem appropriate from di�erent points of view provides empiri
al eviden
e for the validity of work on thedi�erent models. In addition, sin
e no model seems to naturally model every aspe
t of the un
ertainty, theprotein topology problem provides motivation for working on using the di�erent models in 
ombination inthe same problem. Further to this motivation, this paper has suggested some means of 
ombining di�erentmethods within one problem, and, using results generated using the implementation of this work in theMummu system, has dis
ussed the use of 
ombinations of formalisms in solving a real problem. Thus thepaper has provided some empiri
al demonstration that using 
ombinations of formalisms is both feasibleand useful.A
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AppendixConstraint Set p(V ) p(V ) p(V ) p(V ) bel(V) �(:V ) �(:V ) �(:V ) p(V ) �(:V )fC1; C2; C3; C5; F1; F2g 1:0 [1:0 1:0℄ [0:984 1:0℄ [0:972 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; C5; F1g 1:0 [1:0 1:0℄ [0:917 1:0℄ [0:876 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; C5; F2g 1:0 [1:0 1:0℄ [0:982 1:0℄ [0:962 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; C5g 1:0 [1:0 1:0℄ [0:905 1:0℄ [0:837 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5; F1; F2g 1:0 [1:0 1:0℄ [0:963 1:0℄ [0:939 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5; F1g 1:0 [1:0 1:0℄ [0:824 1:0℄ [0:759 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5; F2g 1:0 [1:0 1:0℄ [0:830 1:0℄ [0:759 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5g 1:0 [1:0 1:0℄ [0:802 1:0℄ [0:696 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5; F1; F2g 1:0 [1:0 1:0℄ [0:956 1:0℄ [0:922 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5; F1g 1:0 [1:0 1:0℄ [0:794 1:0℄ [0:709 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5; F2g 1:0 [1:0 1:0℄ [0:949 1:0℄ [0:896 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5g 1:0 [1:0 1:0℄ [0:769 1:0℄ [0:640 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC2; C3; C5; F1; F2g 0:999 [0:996 1:0℄ [0:663 1:0℄ [0:524 1:0℄ 0:997 0:03 0:052 [0:125 0:125℄ 0:999 [0 0:078℄fC2; C3; C5; F1g 0:994 [0:994 1:0℄ [0:261 1:0℄ [0:185 0:999℄ 0:990 0:303 0:052 [0:125 0:125℄ [0:996 1℄ [0:125 0:125℄fC2; C3; C5; F1g 0:999 [0:983 0:995℄ [0:630 1:0℄ [0:445 1:0℄ 0:997 0:03 0:052 [0:125 0:125℄ [0:999 1℄ [0 0:125℄fC2; C3; C5g 0:993 [0:976 0:995℄ [0:234 1:0℄ [0:141 0:999℄ 0:988 0:303 0:052 [0:125 0:125℄ [0 0:994℄ [0:125 0:125℄fC1; C2; C3; F1; F2g 1:0 [1:0 1:0℄ [0:975 1:0℄ [0:954 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; F1g 1:0 [1:0 1:0℄ [0:876 1:0℄ [0:810 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; F2g 1:0 [1:0 1:0℄ [0:972 1:0℄ [0:938 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; F1; F2g 1:0 [1:0 1:0℄ [0:859 1:0℄ [0:756 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; F1; F2g 1:0 [1:0 1:0℄ [0:932 1:0℄ [0:877 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; F1g 1:0 [1:0 1:0℄ [0:712 1:0℄ [0:594 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; F2g 1:0 [1:0 1:0℄ [0:922 1:0℄ [0:838 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2g 1:0 [1:0 1:0℄ [0:681 1:0℄ [0:516 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; F1; F2g 1:0 [1:0 1:0℄ [0:944 1:0℄ [0:902 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; F1g 1:0 [1:0 1:0℄ [0:750 1:0℄ [0:654 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; F2g 1:0 [1:0 1:0℄ [0:935 1:0℄ [0:870 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3g 1:0 [1:0 1:0℄ [0:722 1:0℄ [0:578 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5; F1; F2g 1:0 [1:0 1:0℄ [0:901 1:0℄ [0:840 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5; F1g 1:0 [1:0 1:0℄ [0:620 1:0℄ [0:520 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5; F2g 1:0 [1:0 1:0℄ [0:887 1:0℄ [0:793 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5g 1:0 [1:0 1:0℄ [0:585 1:0℄ [0:440 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC2; C3; F1; F2g 0:998 [0:990 0:998℄ [0:558 1:0℄ [0:398 1:0℄ 0:993 0:03 0:052 [0:125 0:125℄ 0:998 [0 0:078℄fC2; C3; F1g 0:988 [0:985 0:998℄ [0:185 1:0℄ [0:120 0:999℄ 0:973 0:303 0:052 [0:125 0:125℄ [0:988 1℄ [0:125 0:125℄fC2; C3; F2g 0:997 [0:955 0:988℄ [0:522 1:0℄ [0:325 1:0℄ 0:992 0:03 0:052 [0:125 0:125℄ [0:997 1℄ [0 0:125℄fC2; C3g 0:986 [0:937 0:986℄ [0:163 1:0℄ [0:090 0:999℄ 0:969 0:303 0:052 [0:125 0:125℄ [0 0:985℄ [0:125 0:125℄fC2; C5; F1; F2g 0:996 [0:985 0:997℄ [0:407 1:0℄ [0:275 1:0℄ 0:990 0:03 0:052 [0:125 0:125℄ 0:996 [0 0:078℄fC2; C5; F1g 0:979 [0:978 0:997℄ [0:110 1:0℄ [0:072 0:996℄ 0:959 0:666 0:052 [0:125 0:125℄ [0:982 1℄ [0:125 0:125℄fC2; C5; F2g 0:995 [0:934 0:982℄ [0:372 1:0℄ [0:216 1:0℄ 0:988 0:03 0:052 [0:125 0:125℄ [0:995 1℄ [0 0:125℄fC2; C5g 0:975 [0:909 0:979℄ [0:096 0:996℄ [0:054 0:996℄ 0:953 0:666 0:052 [0:125 0:125℄ [0 0:977℄ [0:125 0:125℄fC3; C5; F1; F2g 0:978 [0:970 0:995℄ [0:455 1:0℄ [0:328 1:0℄ 0:979 0:03 0:211 [0:125 0:25℄ 0:992 [0 0:078℄fC3; C5; F1g 0:905 [0:957 0:994℄ [0:130 0:992℄ [0:091 0:996℄ 0:918 0:303 0:263 [0:25 0:25℄ [0:965 1℄ [0:25 0:25℄fC3; C5; F2g 0:974 [0:877 0:965℄ [0:419 1:0℄ [0:262 1:0℄ 0:977 0:03 0:211 [0:125 0:25℄ [0:990 1℄ [0 0:25℄fC3; C5g 0:889 [0:833 0:958℄ [0:114 0:992℄ [0:068 0:996℄ 0:906 0:303 0:263 [0:25 0:25℄ [0 0:955℄ [0:25 0:25℄fC1; F1; F2g 1:0 [1:0 1:0℄ [0:854 1:0℄ [0:760 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; F1g 1:0 [1:0 1:0℄ [0:511 1:0℄ [0:394 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; F2g 1:0 [1:0 1:0℄ [0:835 1:0℄ [0:697 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1g 1:0 [1:0 1:0℄ [0:475 1:0℄ [0:321 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC2; F1; F2g 0:991 [0:96 0:993℄ [0:306 1:0℄ [0:186 1:0℄ 0:973 0:03 0:052 [0:125 0:125℄ 0:990 [0 0:078℄fC2; F1g 0:957 [0:944 0:992℄ [0:073 0:996℄ [0:045 0:996℄ 0:891 0:666 0:052 [0:125 0:125℄ [0:954 1℄ [0:125 0:125℄fC2; F2g 0:989 [0:842 0:954℄ [0:275 1:0℄ [0:142 1:0℄ 0:969 0:03 0:052 [0:125 0:125℄ [0:986 1℄ [0 0:125℄fC2g 0:950 [0:789 0:945℄ [0:064 0:996℄ [0:033 0:996℄ 0:875 0:666 0:052 [0:125 0:125℄ [0 0:941℄ [0:125 0:125℄fC3; F1; F2g 0:955 [0:923 0:986℄ [0:349 1:0℄ [0:227 1:0℄ 0:945 0:03 0:211 [0:125 0:25℄ 0:981 [0 0:078℄fC3; F1g 0:819 [0:894 0:984℄ [0:088 0:991℄ [0:057 0:996℄ 0:781 0:303 0:263 [0:25 0:25℄ [0:912 1℄ [0:25 0:25℄fC3; F2g 0:947 [0:727 0:911℄ [0:316 1:0℄ [0:176 1:0℄ 0:938 0:03 0:211 [0:125 0:25℄ [0:973 1℄ [0 0:25℄fC3g 0:792 [0:651 0:896℄ [0:077 0:991℄ [0:042 0:996℄ 0:75 0:303 0:263 [0:25 0:25℄ [0 0:889℄ [0:25 0:25℄fC5; F1; F2g 0:922 [0:889 0:980℄ [0:225 0:999℄ [0:144 0:999℄ 0:918 0:03 0:211 [0:125 0:25℄ 0:972 [0 0:078℄fC5; F1g 0:715 [0:848 0:976℄ [0:050 0:975℄ [0:033 0:987℄ 0:672 0:939 0:474 [0:375 0:375℄ [0:874 1℄ [0 0:625℄fC5; F2g 0:909 [0:64 0:873℄ [0:201 0:998℄ [0:109 0:999℄ 0:906 0:03 0:211 [0:125 0:25℄ [0:96 1℄ [0 0:125℄fC5g 0:678 [0:554 0:851℄ [0:043 0:975℄ [0:025 0:987℄ 0:625 0:939 0:474 [0:375 0:375℄ [0 0:842℄ [0:375 0:375℄fF1; F2g 0:849 [0:75 0:947℄ [0:157 0:999℄ [0:092 0:999℄ 0:781 0:03 0:211 [0:125 0:25℄ 0:927 [0 0:078℄fF1g 0:543 [0:677 0:937℄ [0:032 0:972℄ [0:020 0:985℄ 0:125 1 0:789 [0:625 0:875℄ [0:72 1℄ [0 0:625℄fF2g 0:826 [0:4 0:72℄ [0:139 0:999℄ [0:068 0:999℄ 0:75 0:03 0:211 [0:125 0:25℄ [0:9 1℄ [0 0:125℄fg 0:5 [0:318 0:682℄ [0:028 0:972℄ [0:015 0:985℄ 1 1 [1 1℄ [0 0:667℄ [1 1℄Table 8: Results of the experiment in assessing the validity of sets of 
onstraints
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