
Hybrid models of unertaintyinprotein topology preditionSimon ParsonsAdvaned Computation LaboratoryImperial Caner Researh FundP.O. Box 123Linoln's Inn FieldsLondon WC2A 3PXAbstratPrediting protein struture is an important problem in moleular biology, and one that has attrated alot of attention. It is also a diÆult problem sine the available data is inomplete and pervaded withunertainty. This paper desribes models for the predition of an intermediate level of protein strutureknown as the topology of the protein. The models handle unertainty expliitly, making use of probability,possibility and evidene theories singly and in ombination to handle di�erent aspets of the problem.Keywords: Moleular biology, protein struture predition, unertain data, hybrid models.
1 IntrodutionProteins are large biologial maromoleules that form the main omponents of living organisms. Inaddition, proteins, in the form of enzymes, hormones and antibodies, ontrol most of the ruial proessesin ells. The funtion of a partiular protein is determined by the hemial interations at its surfae, andthese are related to its three dimensional struture. Thus knowledge of protein struture is important.The struture of proteins an be desribed at various levels of detail. The primary struture onsists ofa list of the amino aids that make up the protein. Eah amino aid is one of twenty naturally ourringmoleules from whih all proteins are made. The seondary struture is a desription of the way thatthe amino aids are grouped together into substrutures within the three dimensional struture. Twoimportant forms of seondary struture are �-sheets, whih onsist of a number of �-strands, and �-helies. The tertiary struture of a protein is the set of three dimensional o-ordinates of every atomin the protein. Protein topology is an intermediate level somewhere between seondary and tertiarystruture whih spei�es the relations between seondary strutural units, in terms of how suh units areordered along the protein.Now, knowledge of three dimensional protein struture is sparse. While the determination of theprimary struture of proteins has beome routine, determination of seondary and tertiary struture ismore diÆult. Thus the primary strutures for many tens of thousands of proteins are known, but onlysome hundreds of distint proteins have had their three dimensional struture determined. This �gureis tiny in omparison with the vast number of proteins that exist, and the disrepany motivates muhresearh into determining protein struture. The major problem is that experimental methods are time-onsuming and expensive and may even be impossible to use sine some proteins hange struture whenisolated. In onsequene, moleular biologists are turning to omputational tehniques for preditingprotein struture from amino aid sequenes.
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2 Protein Topology PreditionOf partiular interest is the predition of protein topology beause the topology an be used to guide thehoie of experiments to on�rm partiular ideas about the struture and to searh for similar knownstrutures. A major diÆulty in this predition is that a vast number of possible topologies an behypothesised from a single seondary struture predition. In general, for a mixed �=�-sheet of n strands,where n > 1, there are n!(4n�1)2 possible ways of arranging the strands (Clark et al. 1992) (Table 1).To redue this spae, sientists identify and apply onstraints based upon experimental data (Clark etNo. of strands 2 3 4 5 6No. topologies 4 48 768 15,360 68,640Table 1: The number of possible topologiesal. 1992, 1994), (Cohen and Kuntz 1987). As an example, Taylor and Green (1989) investigated thetopology of nuleotide binding proteins using rules based on previous analyses of �=� sheets:� C1. For parallel pairs of �-strands, �-�-� and �-oil�-� onnetions are right handed (Rihardson1976), (Sternberg and Thornton 1977).� C2. The initial �-strand in the amino aid sequene is not an edge strand in the sheet (Brandon1980).� C3. Only one hange in winding diretion ours (Rihardson 1981).� C4. The �-strands assoiated with the onservedy patterns lie adjaent in the sheet (Walker et al.1982).� C5. All strands lie parallel in the �-sheet.� C6. Unonserved strands are at the edge of the sheet.To evaluate the plausibility of topologies that were onsistent with the onstraints Taylor and Greenemployed �ve folding priniples:� F1. Strands are ordered in the sheet by hydrophobiity, with the most hydrophobiz strands entral.� F2. Parallel �-oil-� onnetions ontain at least 10 amino aids.� F3. Insertions and deletionsx our on the edge of domains.� F4. Most onserved loops should lie adjaent.� F5. Long seondary strutures should pak approximately parallel or anti-parallel, with sequentialunits anti-parallel.After some adjustment of the seondary struture predition they were able to produe a topologialhypothesis that satis�ed C1 to C6, was onsistent with F1 to F4, and was indeterminate with respetto F5. The struture was also similar to the known struture of a nuleotide binding protein.To avoid the problems inherent in both manual searh and exhaustive generate and test algorithms,Clark et al. (1992) developed a onstraint satisfation algorithm for protein topology predition namedCBS1. CBS1 is implemented in Prolog, based on tree searh and ahieves eÆieny through high levelonstraint evaluation and forward pruning of the searh tree. The implementation runs on Sun worksta-tions under Quintus Prolog and has was used to reprodue Taylor and Green's results as well as to identifya new topologial hypothesis onsistent with the onstraints, indiating that the original searh was not�A protein has oil struture where it is neither a �-strand nor an �-helix.yWhen the amino aid sequenes of proteins that perform similar funtions, but are found in di�erent speies, areompared, parts of the sequenes are often found to be the same in all proteins. These are said to be onserved.zLaking an aÆnity for water.xWhen amino aid sequenes are aligned to determine onserved regions, some regions do not math. Thus, to align theonserved regions it is neessary to split up sequenes, `adding' spaes between ertain amino aids. Similarly, it may beneessary to `delete' aids in order to math regions. 2



Protein ID. Constraints Violated Protein ID. Constraints Violatedp4adh F1 p1pfk C5 F1p5adh F1 p2pfk C5 F1p6adh F1 p3pfk C5p7adh F1 p4pfk C5p1ldx p1gpd C3 C5 F1 F2p3ldh F1 p1gd1 C3 C5 F1 F2p4ldh F1 p2gpd C3 C5 F1 F2p3dfr C3 C5 F1 p3pgk F1p4dfr C3 C5 F1 F2p3adk p3grs C2 F1Table 2: The results of heking onstraints against eight nuleotide-binding domain proteinsexhaustive. Clark et al. (1992) also assessed the validity of the onstraints by heking them against theknown strutures of eight nuleotide binding domains with similar funtion. The results are reproduedin Table 2. The protein ID is a unique number whih identi�es the full three dimensional protein stru-ture in a publi database. The strutures that are grouped together in Table 2 are those relating to thesame protein. For instane p1gpd, p1gd1 and p2gpd are di�erent experimentally determined struturesfor D-glyeraldehyde-3-phosphate dehydrogenase. Eah of the variations should be onsidered equallyvalid, so when a rule holds for one form of a protein and not for another, it is ambiguous whether or notthe onstraint holds for that protein. A further set of data onerning the validity of the onstraints ispresented in an earlier paper (Shirazi et al. 1990). Here C1, C2, C3, C5 and F2 were tested against aset of 33 �=� sheet proteins, giving Table 3.Protein ID. Constraints Violated Protein ID. Constraints Violatedp1aat C2 C5 p1ts1 C2 C5p1bp2 C2 C5 p1ubq C3 C5p1a C2 C3 C5 p2b5 C2 C3 C5p1pb C2 C3 C5 p2ab C2 C3 C5p1rn C2 C5 p2dv C2 C5p1ts C2 C5 p2ts C2 C5p1tx C5 p2lzm C5p1hip C2 C5 p2ssi C5p1nxb C3 C5 p3bp2 C2 C5p1ovo C5 p3ts C2 C5p1p2p C2 C5 p3dfr C3 C5p1ppd C2 C5 p3pgm C5p1rn3 C2 C5 p4ts C2 C5p1sbt C1 p4dfr C3 C5 F2p1sn3 C2 C5 p4fxnp1srx C2 C3 C5 p4pti C2 C5p5pa C2 C3 C5Table 3: The results of heking onstraints against 33 �=� sheet proteins.3 Representing the unertaintyTogether these results show that while the folding rules are useful heuristis most are only true some ofthe time. This suggests that a good model of the problem would handle the unertainty in the onstraintsexpliitly. The best way of doing this is not lear, and so in the tradition of experimental investigationsof the best way of modelling unertainty in a given problem (Hekerman 1990), (Hekerman and Shwe1993), (SaÆotti et al. 1994) we disuss a number of di�erent ways in whih the data from Tables 2 and3 may be represented. There are, of ourse, other possibilities whih are not disussed here| we just3



Constraint Number of ases in whih p(XA)the onstraint is violatedC1 1 0.967C2 22 0.333C3 10 0.606C5 31 0.065F1 - -F2 1 0.967Table 4: Probabilities of onstraints holding in nature, based upon the results of the �=� proteinsConstraint Number of ases in whih p(XA)the onstraint is violatedC1 0 1.0C2 1 0.947C3 5 0.737C5 9 0.526F1 15 0.211F2 4 0.789Table 5: Probabilities of onstraints holding in nature based upon the \disambiguated" results of thenuleotide binding proteinsover the most obvious. We also just deal with modelling onstraints C1,C2,C3,C5,F1 and F2 for whihClark et al. (1992) and Shirazi et al. (1990) give data.3.1 Using probability theorySine the data is drawn from a reasonably random population of proteins the following argument anbe made. Table 3 holds a list of 33 proteins. Of these, 24 onform to onstraint C3, and 9 do not, soa struture that onforms to C3, has a probability of P (C3A) = 2333 = 0:606 of existing in nature. Thisargument gives the probabilities of Table 4. Sine the sample size is just 33 proteins, the probabilitieswill not be very aurate, but they are the best values that an be obtained in this ill-known domain.Table 2 may be used to get a seond set of probabilities, but in this ase the data is ambiguous. Of theeight proteins analysed, several have alternative strutures and some onstraints hold for some alternativestrutures and not for others. Thus it is not lear whether or not suh a onstraint is valid for the protein.One solution is to \disambiguate", onsidering eah of the nineteen possible strutures as a separate entity.Doing this gives the probabilities of Table 5. However, it ould be argued that disambiguation distortsthe data, and the unertainty should be modelled in a \purer" way aknowledging the ambiguity. Thisan be done using interval probabilities with the lower value alulated by ounting proteins for whihthe rule is ambiguous as proteins for whih it fails to hold, and the upper value by ounting proteins forwhih the rule is ambiguous as proteins for whih it does hold. This gives Table 6. Alternatively theambiguity ould be modelled using evidene theory.3.2 Using evidene theoryEvidene theory provides good support for modelling ambiguity, providing a mehanism for alloating adegree of belief to the disjuntion of two ompeting hypotheses. Considering Table 2 with respet to F2there are three sets of proteins. We have fp3pgk; p1ldx; p3ldh; p4ldh; p1pfk; p2pfk; p3pfk; p4pfk; p3grs;p3adk; p4adh; p5adh; p6adh; p7adhg where every one of the 14 possible strutures of the six proteinsonforms to F2, fp1gpd; p2gpd; p1gd1g where every possible struture of the protein violates F2, andfp3dfr; p4dfrg where of the two strutures for the protein, one onforms to F2 and one does not. Thisambiguity may be modelled as follows. There are six proteins that onform to F2 so the basi massassignment is m(fF2Ag) = 6=8. There is one protein for whih the onstraint fails to hold. Thusm(f:F2Ag) = 1=8. The remaining mass, 1 � (m(fF2Ag) + m(f:F2Ag)) is the probability that theonstraint either applies or doesn't apply, m(fF2;:F2Ag). This latter is a measure of ignorane aboutthe appliability of the onstraint. For Table 2 the masses of Table 7 are appropriate.4



Constraint Number of ases in whih p(XA)the onstraint is violatedC1 0 1.0C2 1 0.875C3 2 0.75C5 3 0.625F1 5-7 [0.125, 0.375℄F2 1-2 [0.750, 0.875℄Table 6: Probabilities of onstraints holding in nature based upon the \pure" results from the nuleotidebinding proteins Constraint m(fFxAg) m(f:FxAg) m(fFxA;:FxAg)F1 0.125 0.625 0.25F2 0.75 0.125 0.125Table 7: The basi mass assignments for modelling the onstraints using evidene theory aording tothe results from the nuleotide binding proteins3.3 Using possibility theoryIt is also possible to model the onstraints using possibility theory. It is possible to use a number ofdi�erent sets of numerial information, but the basi priniple behind the modelling is the same. If astruture onforms to a onstraint, it is entirely possible that the struture is that of a naturally ourringprotein. However, if a struture fails to onform to a onstraint then it beomes less possible that thestruture is a naturally ourring protein. Indeed the possibility of the struture being a natural proteinfalls to a �gure that reets the proportion of naturally ourring proteins that do not onform to theonstraint. Thus, for eah onstraint Cx, the possibility that the protein ours in nature given thatCx holds, �(CxA) = 1, while the possibility that the protein ours in nature given that Cx does nothold, �(:CxA), depends upon data in Tables 2 and 3. This may be disambiguated or used to de�nean interval in the same way as is done in Tables 4 to 6 for probability theory. For instane, taking thedisambiguated values of Table 5, the possibility of C5 not holding, �(:C5) = 0:474.3.4 Handling ignoraneWe have also to enode the lak of information about the appliability of F1 in Table 3. The usualprobabilisti method would be to delare that p(F1A) = p(:F1A) = 0:5. However, other methods ouldbe used. In evidene theory, sine nothing an be said about the basi probability assignment to F1Aand :F1A, m(fF1Ag) = m(f:F1Ag) = 0, and all the basi probability is assigned to the disjuntion,giving the vauous belief funtion m(fF1A;:F1Ag) = 1. The meaning of this assignment is that it isnot possible to assign any belief to one hypothesis rather than another. Another alternative is to usepossibility theory. Sine there is no knowledge about the hane of F1 holding, it is entirely possiblethat F1 holds and �(F1A) = 1. If :F1A is onsidered, a similar argument may be made to obtain�(:F1A) = 1. From the viewpoint of the information that is available all of these three approahes areperfetly orret, and there is no obvious way of hoosing between them.4 Calulating the validity of struturesHaving onsidered the di�erent ways in whih the unertain nature of the onstraints an be modelled,we turn to onsidering how to employ use these models in topology predition. CBS1 generates as itsoutput sets of possible topologies of nuleotide binding domain proteins and the onstraints to whihthey onform. The kind of output that would be useful to moleular biologists would be some kind ofmeasure of the validity of the sets of topologies based upon the onstraints to whih they onform.To do this we employed Mummu (Parsons 1993) an adaptation of Pulinella (SaÆotti and Umkehrer1991) whih handles interval valued probabilities, possibilities and beliefs, and in whih the intervalsare propagated using interval arithmeti. This system uses a valuation network representation (Shenoy5
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Figure 1: A network relating the e�ets of onstraints to the validity of a struture.1991), and the valuation network of Figure 1 was adopted, based upon the work of Smets and Hsia(1990). This network expresses the fat that the validity of the struture is a ombination of the e�et ofall onstraints. Thus, for C1 there is a node C1 whih is true if C1 holds for the struture in question,and false otherwise. The e�et of this is ombined on the node C1&C1A ! V with pC1A whih is themeasure of how likely it is that a struture that onforms to C1 exists in nature. This is then ombinedwith similar results for other onstraints to get an overall measure of validity V .4.1 Single formalism approahesFirstly we onsider the ways that the models of unertainty an be used so that the whole problem ismodelled using a single formalism, as it would be by any other existing system. Mummu may be used toestablish a validity value using eah of the following sets of data.Point-valued probability: Table 5 has point values for eah of the onstraint probabilities p(CxA)that are based on the disambiguated sample of eight nuleotide binding domain proteins. The results ofthis omputation are given in the seond olumn of Table 8, and in the �rst graph in Figure 3, both ofwhih may be found in the Appendix. In the graph eah point on the x-axis orresponds to a single setof onstraints, with the validity measured up the y-axis. The leftmost point on the x-axis orresponds tothe �rst set of onstraints in Table 8.Interval-valued probability: Table 6 has interval values whih represent the ambiguity surroundingF1 and F2 holding. Results using these values are given in the third olumn of Table 8 and the seondgraph (reading aross the page) in Figure 3. Note that in order to represent intervals graphially, theyhave been transformed into point values by replaing them with their mid-points. This transformationmay be justi�ed (Parsons 1993) by an argument based on maximum entropy. A seond set of intervalvalues may be obtained by realising that sine the nuleotide binding domain proteins from whih Table 2was obtained are of the same lass as the proteins whose struture is being predited, while the �=�-sheetproteins are a more general lass, we ould use the values derived from Table 2 as an upper bound, andthose of Table 3 as a lower bound. Sine there are two ways of establishing values from Table 2 we havetwo sets of results and these are given in the fourth and �fth olumns of Table 8 and the third and fourthgraphs in Figure 3.Point-valued evidene theory: Table 7 gives basi probability assignments for the hypothesesfF1g, f:F1g, fF1;:F1g, fF2g, f:F2g, and fF2;:F2g. In addition the values that from Table 6 are6



used as basi probability assignments for the hypotheses fC1g, f:C1g, fC2g, f:C2g, fC3g, f:C3g, fC5gand f:C5g. Evidene theory may be used to propagate these values through the network of Figure 1,and the results are given in the sixth olumn of Table 8 and the �fth graph of Figure 3. Any belief notassigned to fV g is assigned to fV;:V g, so that for the onstraint set f g, bel(fV;:V g = 1Point-valued possibility theory: Table 4 gives a set of values whih may be used to derive pointpossibility values for the appliability of the onstraints C1 to C5 and F2. Sine there is no data for theappliability of F1 it may modelled by setting �(:F1A) = 1, as disussed above. This data gives theresults in the seventh olumn of Table 8 and the sixth graph of Figure 3. It should be noted that in thismodel �(V ) = 1 for all sets of onstraints, and that, as for all possibilisti models, the graph and thetable give the possibility of :V . Alternatively one may use the \disambiguated" data of Table 5, whihallows point possibilities to be derived for every onstraint. The results of using these values are given inthe eighth olumn of Table 8 and the seventh graph of Figure 3.Interval-valued possibility theory: It is also possible to use the \pure" data from Table 6 providedthat interval possibility values are used to take aount of the interval nature of the data, representingthe range of possibility values that may be alulated given the impreise information available (Parsons1993). Using Mummu to propagate these values generates the results in the ninth olumn of Table 8 andthe eighth graph of Figure 3. In this model �(V ) = [1; 1℄ = 1 in all ases.4.2 Hybrid approahesAll of the single formalism approahes disussed above have skirted around what in many ways seems tobe the natural representation for the problem| one that uses di�erent formalisms. The most auratedata that is available is that for the nuleotide binding domain proteins, and this splits neatly intotwo parts. There are probabilities (Table 6) that model onformane to C1 to C5, and there is someambiguous data best modelled in evidene theory (Table 7) that says something about strutures thatonform to F1 and F2. This suggests that the network of Figure 1 be partitioned into two parts as inFigure 2.In this network values are propagated aording to evidene theory in the right-hand setion until avalue for the node V 1 is established. This value is then translated into a probability interval and ombinedwith the results from the rest of the network to establish overall probabilisti measures of validity. Thetranslation, disussed in detail in (Parsons 1993) uses intervals to model the fat that a belief value maybe taken as the lower bound on a probability (Dubois and Prade 1988), thus:Bel(x) = n translates to����! p(x) = [n; 1℄ (1)The results of using this method are given in the tenth olumn of Table 8 and the ninth graph of Figure3. This is only one way of ombining formalisms in this problem. An alternative is to ombine theevidene theory model of the ambiguous data about F1 and F2 with the possibility model. Suh anintegration would be arried out in the network of Figure 2, but with every probability replaed with apossibility based on values from Table 6. The translation is based upon the fat that a belief is a lowerbound on a probability while a possibility is an upper bound (Dubois and Prade 1988), so:Bel(x) = n translates to����! �(x) = [n; 1℄ (2)The results from suh an integration are given in the eleventh olumn of Table 8 and the �nal graph inFigure 3.5 DisussionUnfortunately, there is no obvious \gold standard" (Hekerman 1990) against whih to ompare theresults. However, it is possible to suggest a number of riteria for hoosing between the approahes basedupon the data that they use, the theory that they are based on, and the results that they generate. Forinstane it would seem sensible to use the data of Table 2 when dealing with nuleotide binding domainproteins, and so the results in the seond, third, sixth and eighth to eleventh olumns of Table 8 seemmost appropriate. These are, of ourse the results depited in the �rst, seond, �fth and seventh to tenth7
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Figure 2: A network relating the e�et of the onstraints in whih probability and evidene theories maybe integrated.graphs of Figure 3. In this ase the hoie of whih results to adopt will depend on whih method ofdealing with ambiguity is preferred. The ambiguity may be handled by using \disambiguated" values inwhih ase the results in the seond and eighth olumns of Table 8, and the �rst and seventh graphs ofFigure 3, apply. Alternatively, an interval representation of the ambiguity may be adopted, in whih asethe results in the third and ninth olumns of Table 8 and seond and eighth graphs of Figure 3 shouldbe onsidered. Finally, the ambiguity may be modelled using evidene theory, in whih ase the resultsin the sixth, tenth and eleventh olumns, and the �fth, ninth and tenth graphs, are the ones to look at.If a more general lass of proteins are being onsidered, then the results in the fourth, �fth and seventholumns and third, fourth and sixth graphs may be more appropriate sine these are at least partly basedupon data from single domain �=� sheet proteins. Another means of hoosing the best method might bepreferene for a partiular tehnique. In this ase the results in the seond olumn of Table 8 and the �rstgraph of Figure 3 will be preferred by proponents of pure probability measures while those of the sixtholumn and �fth graph will be adopted by supporters of evidene theory, and those of the seventh andeighth olumns and sixth and seventh graphs will be favoured by supporters of possibility theory. Thosedo not objet too strongly to interval methods may settle for the results of the third, fourth, �fth andninth to eleventh olumns (the seond, third, fourth and eighth to tenth graphs), and those who preferthe eleti approah of mixing formalisms should like the results in the tenth and eleventh olumnswhih orrespond to the ninth and tenth graphs.Finally thought might be given to what the results are to be used for, and the hoie made on the8



basis of whih are most useful. In this ase it may be of little use having a set of values whih ontainmany idential entries, an argument whih with Figure 3 suggests that the results in the seond, third,sixth and tenth olumns (�rst, seond, �fth and ninth graphs) are less useful than the others sine thesehave a value of 1 for any onstraint set ontaining C1. On the other hand this ould be aeptable as alear indiation of the neessity of having strutures onformant with C1. A similar argument might ruleout the seventh, eighth, ninth and eleventh olumns (sixth, seventh, eighth and tenth graphs), whih havea value of zero for any onstraint set that inludes C1. Another way of hoosing a method stems fromthe following argument. The predition of protein topology by any theoretial means is only a part of thewhole proess whih will also inlude a pratial analysis whih will test out the predited possibilitiesas far as possible. Clearly, if a tedious set of experiments are required in order to rejet eah possiblestruture in a set, it would be advantageous to start with the smallest possible set of strutures. Thissuggests using the number of possible strutures assoiated with a set of onstraints as a measure of itsvalidity. Shirazi et al. (1990) supply the number of strutures assoiated with seven of the 64 possiblesets of onstraints, and the order of these, based upon the number of possible strutures, agrees with thatobtained from the results in the fourth and �fth olumns (third and fourth graphs). The solution ranked`�rst' is the smallest sine it onforms to the largest set of onstraints.6 ConlusionsIt is to be hoped that this exploration of di�erent approahes will be useful in several ways. Firstly itextends the omparative study of the use of di�ering unertainty handling tehniques (Hekerman 1990),(Hekerman and Shwe 1993), (SaÆotti et al. 1994) to over a new problem. This problem ontainsa number of di�erent types of unertainty that must be modelled, and the fat that di�erent modelsseem appropriate from di�erent points of view provides empirial evidene for the validity of work on thedi�erent models. In addition, sine no model seems to naturally model every aspet of the unertainty, theprotein topology problem provides motivation for working on using the di�erent models in ombination inthe same problem. Further to this motivation, this paper has suggested some means of ombining di�erentmethods within one problem, and, using results generated using the implementation of this work in theMummu system, has disussed the use of ombinations of formalisms in solving a real problem. Thus thepaper has provided some empirial demonstration that using ombinations of formalisms is both feasibleand useful.AknowledgementThis work was partially supported by ESPRIT Basi Researh Projet 3085 DRUMS while I was a PhD.student in the Department of Eletroni Engineering, Queen Mary and West�eld College, London. I amgrateful to Domini Clark at the ICRF for help in understanding the domain.Referenes[1℄ Branden, C. 1990. Relation between struture and funtion of �=� proteins, Quarterly review ofbiophysial hemistry, 13:317{338.[2℄ Clark, D. A., Shirazi, J. and Rawlings, C. J. 1992. Protein topology predition through onstraint-based searh and the evaluation of topologial folding rules, Protein Engineering, 4:751{760.[3℄ Clark, D. A., Rawlings, C. J., Shirazi, J., Veron, A. and Reeve, M. 1993. Protein topology preditionthrough parallel onstraint logi programming, Proeedings of the First International Conferene onIntelligent Systems for Moleular Biology, pp 83{91, Washington D.C.[4℄ Cohen, F. E. and Kuntz, I. D. 1987. Predition of the three diemnsional struture of human growthhormone Proteins, struture, funtion, and genetis, 2:162{167.[5℄ Dubois, D. and Prade, H. 1988. Modelling unertainty and indutive inferene: a survey of reentnon-additive probability systems. Ata Psyhologia, 68:53{78.9
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AppendixConstraint Set p(V ) p(V ) p(V ) p(V ) bel(V) �(:V ) �(:V ) �(:V ) p(V ) �(:V )fC1; C2; C3; C5; F1; F2g 1:0 [1:0 1:0℄ [0:984 1:0℄ [0:972 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; C5; F1g 1:0 [1:0 1:0℄ [0:917 1:0℄ [0:876 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; C5; F2g 1:0 [1:0 1:0℄ [0:982 1:0℄ [0:962 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; C5g 1:0 [1:0 1:0℄ [0:905 1:0℄ [0:837 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5; F1; F2g 1:0 [1:0 1:0℄ [0:963 1:0℄ [0:939 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5; F1g 1:0 [1:0 1:0℄ [0:824 1:0℄ [0:759 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5; F2g 1:0 [1:0 1:0℄ [0:830 1:0℄ [0:759 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; C5g 1:0 [1:0 1:0℄ [0:802 1:0℄ [0:696 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5; F1; F2g 1:0 [1:0 1:0℄ [0:956 1:0℄ [0:922 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5; F1g 1:0 [1:0 1:0℄ [0:794 1:0℄ [0:709 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5; F2g 1:0 [1:0 1:0℄ [0:949 1:0℄ [0:896 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C5g 1:0 [1:0 1:0℄ [0:769 1:0℄ [0:640 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC2; C3; C5; F1; F2g 0:999 [0:996 1:0℄ [0:663 1:0℄ [0:524 1:0℄ 0:997 0:03 0:052 [0:125 0:125℄ 0:999 [0 0:078℄fC2; C3; C5; F1g 0:994 [0:994 1:0℄ [0:261 1:0℄ [0:185 0:999℄ 0:990 0:303 0:052 [0:125 0:125℄ [0:996 1℄ [0:125 0:125℄fC2; C3; C5; F1g 0:999 [0:983 0:995℄ [0:630 1:0℄ [0:445 1:0℄ 0:997 0:03 0:052 [0:125 0:125℄ [0:999 1℄ [0 0:125℄fC2; C3; C5g 0:993 [0:976 0:995℄ [0:234 1:0℄ [0:141 0:999℄ 0:988 0:303 0:052 [0:125 0:125℄ [0 0:994℄ [0:125 0:125℄fC1; C2; C3; F1; F2g 1:0 [1:0 1:0℄ [0:975 1:0℄ [0:954 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; F1g 1:0 [1:0 1:0℄ [0:876 1:0℄ [0:810 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; F2g 1:0 [1:0 1:0℄ [0:972 1:0℄ [0:938 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; C3; F1; F2g 1:0 [1:0 1:0℄ [0:859 1:0℄ [0:756 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; F1; F2g 1:0 [1:0 1:0℄ [0:932 1:0℄ [0:877 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; F1g 1:0 [1:0 1:0℄ [0:712 1:0℄ [0:594 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2; F2g 1:0 [1:0 1:0℄ [0:922 1:0℄ [0:838 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C2g 1:0 [1:0 1:0℄ [0:681 1:0℄ [0:516 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; F1; F2g 1:0 [1:0 1:0℄ [0:944 1:0℄ [0:902 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; F1g 1:0 [1:0 1:0℄ [0:750 1:0℄ [0:654 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3; F2g 1:0 [1:0 1:0℄ [0:935 1:0℄ [0:870 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C3g 1:0 [1:0 1:0℄ [0:722 1:0℄ [0:578 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5; F1; F2g 1:0 [1:0 1:0℄ [0:901 1:0℄ [0:840 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5; F1g 1:0 [1:0 1:0℄ [0:620 1:0℄ [0:520 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5; F2g 1:0 [1:0 1:0℄ [0:887 1:0℄ [0:793 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; C5g 1:0 [1:0 1:0℄ [0:585 1:0℄ [0:440 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC2; C3; F1; F2g 0:998 [0:990 0:998℄ [0:558 1:0℄ [0:398 1:0℄ 0:993 0:03 0:052 [0:125 0:125℄ 0:998 [0 0:078℄fC2; C3; F1g 0:988 [0:985 0:998℄ [0:185 1:0℄ [0:120 0:999℄ 0:973 0:303 0:052 [0:125 0:125℄ [0:988 1℄ [0:125 0:125℄fC2; C3; F2g 0:997 [0:955 0:988℄ [0:522 1:0℄ [0:325 1:0℄ 0:992 0:03 0:052 [0:125 0:125℄ [0:997 1℄ [0 0:125℄fC2; C3g 0:986 [0:937 0:986℄ [0:163 1:0℄ [0:090 0:999℄ 0:969 0:303 0:052 [0:125 0:125℄ [0 0:985℄ [0:125 0:125℄fC2; C5; F1; F2g 0:996 [0:985 0:997℄ [0:407 1:0℄ [0:275 1:0℄ 0:990 0:03 0:052 [0:125 0:125℄ 0:996 [0 0:078℄fC2; C5; F1g 0:979 [0:978 0:997℄ [0:110 1:0℄ [0:072 0:996℄ 0:959 0:666 0:052 [0:125 0:125℄ [0:982 1℄ [0:125 0:125℄fC2; C5; F2g 0:995 [0:934 0:982℄ [0:372 1:0℄ [0:216 1:0℄ 0:988 0:03 0:052 [0:125 0:125℄ [0:995 1℄ [0 0:125℄fC2; C5g 0:975 [0:909 0:979℄ [0:096 0:996℄ [0:054 0:996℄ 0:953 0:666 0:052 [0:125 0:125℄ [0 0:977℄ [0:125 0:125℄fC3; C5; F1; F2g 0:978 [0:970 0:995℄ [0:455 1:0℄ [0:328 1:0℄ 0:979 0:03 0:211 [0:125 0:25℄ 0:992 [0 0:078℄fC3; C5; F1g 0:905 [0:957 0:994℄ [0:130 0:992℄ [0:091 0:996℄ 0:918 0:303 0:263 [0:25 0:25℄ [0:965 1℄ [0:25 0:25℄fC3; C5; F2g 0:974 [0:877 0:965℄ [0:419 1:0℄ [0:262 1:0℄ 0:977 0:03 0:211 [0:125 0:25℄ [0:990 1℄ [0 0:25℄fC3; C5g 0:889 [0:833 0:958℄ [0:114 0:992℄ [0:068 0:996℄ 0:906 0:303 0:263 [0:25 0:25℄ [0 0:955℄ [0:25 0:25℄fC1; F1; F2g 1:0 [1:0 1:0℄ [0:854 1:0℄ [0:760 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; F1g 1:0 [1:0 1:0℄ [0:511 1:0℄ [0:394 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1; F2g 1:0 [1:0 1:0℄ [0:835 1:0℄ [0:697 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC1g 1:0 [1:0 1:0℄ [0:475 1:0℄ [0:321 1:0℄ 1:0 0:03 0 [0 0℄ 1:0 [0 0℄fC2; F1; F2g 0:991 [0:96 0:993℄ [0:306 1:0℄ [0:186 1:0℄ 0:973 0:03 0:052 [0:125 0:125℄ 0:990 [0 0:078℄fC2; F1g 0:957 [0:944 0:992℄ [0:073 0:996℄ [0:045 0:996℄ 0:891 0:666 0:052 [0:125 0:125℄ [0:954 1℄ [0:125 0:125℄fC2; F2g 0:989 [0:842 0:954℄ [0:275 1:0℄ [0:142 1:0℄ 0:969 0:03 0:052 [0:125 0:125℄ [0:986 1℄ [0 0:125℄fC2g 0:950 [0:789 0:945℄ [0:064 0:996℄ [0:033 0:996℄ 0:875 0:666 0:052 [0:125 0:125℄ [0 0:941℄ [0:125 0:125℄fC3; F1; F2g 0:955 [0:923 0:986℄ [0:349 1:0℄ [0:227 1:0℄ 0:945 0:03 0:211 [0:125 0:25℄ 0:981 [0 0:078℄fC3; F1g 0:819 [0:894 0:984℄ [0:088 0:991℄ [0:057 0:996℄ 0:781 0:303 0:263 [0:25 0:25℄ [0:912 1℄ [0:25 0:25℄fC3; F2g 0:947 [0:727 0:911℄ [0:316 1:0℄ [0:176 1:0℄ 0:938 0:03 0:211 [0:125 0:25℄ [0:973 1℄ [0 0:25℄fC3g 0:792 [0:651 0:896℄ [0:077 0:991℄ [0:042 0:996℄ 0:75 0:303 0:263 [0:25 0:25℄ [0 0:889℄ [0:25 0:25℄fC5; F1; F2g 0:922 [0:889 0:980℄ [0:225 0:999℄ [0:144 0:999℄ 0:918 0:03 0:211 [0:125 0:25℄ 0:972 [0 0:078℄fC5; F1g 0:715 [0:848 0:976℄ [0:050 0:975℄ [0:033 0:987℄ 0:672 0:939 0:474 [0:375 0:375℄ [0:874 1℄ [0 0:625℄fC5; F2g 0:909 [0:64 0:873℄ [0:201 0:998℄ [0:109 0:999℄ 0:906 0:03 0:211 [0:125 0:25℄ [0:96 1℄ [0 0:125℄fC5g 0:678 [0:554 0:851℄ [0:043 0:975℄ [0:025 0:987℄ 0:625 0:939 0:474 [0:375 0:375℄ [0 0:842℄ [0:375 0:375℄fF1; F2g 0:849 [0:75 0:947℄ [0:157 0:999℄ [0:092 0:999℄ 0:781 0:03 0:211 [0:125 0:25℄ 0:927 [0 0:078℄fF1g 0:543 [0:677 0:937℄ [0:032 0:972℄ [0:020 0:985℄ 0:125 1 0:789 [0:625 0:875℄ [0:72 1℄ [0 0:625℄fF2g 0:826 [0:4 0:72℄ [0:139 0:999℄ [0:068 0:999℄ 0:75 0:03 0:211 [0:125 0:25℄ [0:9 1℄ [0 0:125℄fg 0:5 [0:318 0:682℄ [0:028 0:972℄ [0:015 0:985℄ 1 1 [1 1℄ [0 0:667℄ [1 1℄Table 8: Results of the experiment in assessing the validity of sets of onstraints
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Results based on the possibilities from Table 5 Results based on the interval possibilities fromTable 6Figure 3(ont): Results of the experiment in assessing the validity of sets of onstraints
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