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Abstract

Predicting protein structure is an important problem in molecular biology, and one that has attracted a
lot of attention. It is also a difficult problem since the available data is incomplete and pervaded with
uncertainty. This paper describes models for the prediction of an intermediate level of protein structure
known as the topology of the protein. The models handle uncertainty explicitly, making use of probability,
possibility and evidence theories singly and in combination to handle different aspects of the problem.
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1 Introduction

Proteins are large biological macromolecules that form the main components of living organisms. In
addition, proteins, in the form of enzymes, hormones and antibodies, control most of the crucial processes
in cells. The function of a particular protein is determined by the chemical interactions at its surface, and
these are related to its three dimensional structure. Thus knowledge of protein structure is important.
The structure of proteins can be described at various levels of detail. The primary structure consists of
a list of the amino acids that make up the protein. Each amino acid is one of twenty naturally occurring
molecules from which all proteins are made. The secondary structure is a description of the way that
the amino acids are grouped together into substructures within the three dimensional structure. Two
important forms of secondary structure are (-sheets, which consist of a number of S-strands, and a-
helices. The tertiary structure of a protein is the set of three dimensional co-ordinates of every atom
in the protein. Protein topology is an intermediate level somewhere between secondary and tertiary
structure which specifies the relations between secondary structural units, in terms of how such units are
ordered along the protein.

Now, knowledge of three dimensional protein structure is sparse. While the determination of the
primary structure of proteins has become routine, determination of secondary and tertiary structure is
more difficult. Thus the primary structures for many tens of thousands of proteins are known, but only
some hundreds of distinct proteins have had their three dimensional structure determined. This figure
is tiny in comparison with the vast number of proteins that exist, and the discrepancy motivates much
research into determining protein structure. The major problem is that experimental methods are time-
consuming and expensive and may even be impossible to use since some proteins change structure when
isolated. In consequence, molecular biologists are turning to computational techniques for predicting
protein structure from amino acid sequences.



2 Protein Topology Prediction

Of particular interest is the prediction of protein topology because the topology can be used to guide the
choice of experiments to confirm particular ideas about the structure and to search for similar known
structures. A major difficulty in this prediction is that a vast number of possible topologies can be
hypothesised from a single secondary structure prediction. In general, for a mixed «/f-sheet of n strands,
where n > 1, there are W possible ways of arranging the strands (Clark et al. 1992) (Table 1).
To reduce this space, scientists identify and apply constraints based upon experimental data (Clark et

No. of strands | 2 3 4 ) 6
No. topologies | 4 48 768 15,360 68,640

Table 1: The number of possible topologies

al. 1992, 1994), (Cohen and Kuntz 1987). As an example, Taylor and Green (1989) investigated the
topology of nucleotide binding proteins using rules based on previous analyses of o/ sheets:

e C1. For parallel pairs of #-strands, f-a-3 and S-coil*-$ connections are right handed (Richardson
1976), (Sternberg and Thornton 1977).

e (C2. The initial f-strand in the amino acid sequence is not an edge strand in the sheet (Brandon
1980).

e C3. Only one change in winding direction occurs (Richardson 1981).

e C4. The B-strands associated with the conserved’ patterns lie adjacent in the sheet (Walker et al.
1982).

e (5. All strands lie parallel in the -sheet.
e (6. Unconserved strands are at the edge of the sheet.

To evaluate the plausibility of topologies that were consistent with the constraints Taylor and Green
employed five folding principles:

e F1. Strands are ordered in the sheet by hydrophobicity, with the most hydrophobic* strands central.
e F2. Parallel $-coil-8 connections contain at least 10 amino acids.

e F3. Insertions and deletions® occur on the edge of domains.

e F4. Most conserved loops should lie adjacent.

e F5. Long secondary structures should pack approximately parallel or anti-parallel, with sequential
units anti-parallel.

After some adjustment of the secondary structure prediction they were able to produce a topological
hypothesis that satisfied C'1 to C6, was consistent with F'1 to F4, and was indeterminate with respect
to F'5. The structure was also similar to the known structure of a nucleotide binding protein.

To avoid the problems inherent in both manual search and exhaustive generate and test algorithms,
Clark et al. (1992) developed a constraint satisfaction algorithm for protein topology prediction named
CBS1. CBS1 is implemented in Prolog, based on tree search and achieves efficiency through high level
constraint evaluation and forward pruning of the search tree. The implementation runs on Sun worksta-
tions under Quintus Prolog and has was used to reproduce Taylor and Green’s results as well as to identify
a new topological hypothesis consistent with the constraints, indicating that the original search was not

*A protein has coil structure where it is neither a S-strand nor an a-helix.

TWhen the amino acid sequences of proteins that perform similar functions, but are found in different species, are
compared, parts of the sequences are often found to be the same in all proteins. These are said to be conserved.

fLacking an affinity for water.

§When amino acid sequences are aligned to determine conserved regions, some regions do not match. Thus, to align the
conserved regions it is necessary to split up sequences, ‘adding’ spaces between certain amino acids. Similarly, it may be
necessary to ‘delete’ acids in order to match regions.



| Protein ID. | Constraints Violated || Protein ID. | Constraints Violated |

pdadh F1 plptk C5 F1
pbadh F1 p2pfk C5 F1
p6adh F1 p3pfk Ch
p7adh F1 p4pfk Ch

plldx plgpd C3 C5 F1 F2
p3ldh F1 plgdl C3 C5 F1 F2
p4ldh F1 p2gpd C3 C5 F1 F2
p3dfr C3C5F1 p3pgk F1
pddfr C3 C5 F1 F2

p3adk p3grs C2 F1

Table 2: The results of checking constraints against eight nucleotide-binding domain proteins

exhaustive. Clark et al. (1992) also assessed the validity of the constraints by checking them against the
known structures of eight nucleotide binding domains with similar function. The results are reproduced
in Table 2. The protein ID is a unique number which identifies the full three dimensional protein struc-
ture in a public database. The structures that are grouped together in Table 2 are those relating to the
same protein. For instance plgpd, plgdl and p2gpd are different experimentally determined structures
for D-glyceraldehyde-3-phosphate dehydrogenase. Each of the variations should be considered equally
valid, so when a rule holds for one form of a protein and not for another, it is ambiguous whether or not
the constraint holds for that protein. A further set of data concerning the validity of the constraints is
presented in an earlier paper (Shirazi et al. 1990). Here C1, C2, C3, C5 and F2 were tested against a
set of 33 /3 sheet proteins, giving Table 3.

| Protein ID. | Constraints Violated || Protein ID. | Constraints Violated |

plaat C2 Ch pltsl C2 Ch
plbp2 C2 Ch plubq C3 Ch
plcac C2C30C5 p2bsc C2C30C5h
plcpb C2 C3 C5 p2cab C2 C3 C5
plcrn C2 Ch5 p2cdv C2 Ch5
plcts C2 Ch5 p2cts C2 Ch5
plctx Ch p2lzm Ch
plhip C2 Ch p2ssi Ch
plnxb C3 Ch p3bp2 C2 C5
plovo Ch5 p3cts C2 Ch5
plp2p C2 Ch5 p3dfr C3 Ch
plppd C2 Ch p3pgm Ch
plrn3 C2 Ch pdcts C2 Ch
plsbt C1 pddfr C3 C5 F2
plsn3d C2 Ch5 pdfxn

plsrx C2C3C5 pdpti C2 C5
pocpa C2C30C5h

Table 3: The results of checking constraints against 33 /3 sheet proteins.

3 Representing the uncertainty

Together these results show that while the folding rules are useful heuristics most are only true some of
the time. This suggests that a good model of the problem would handle the uncertainty in the constraints
explicitly. The best way of doing this is not clear, and so in the tradition of experimental investigations
of the best way of modelling uncertainty in a given problem (Heckerman 1990), (Heckerman and Shwe
1993), (Saffiotti et al. 1994) we discuss a number of different ways in which the data from Tables 2 and
3 may be represented. There are, of course, other possibilities which are not discussed here— we just



Constraint | Number of cases in which p(XA)
the constraint is violated

C1 1 0.967
C2 22 0.333
C3 10 0.606
C5 31 0.065
F1 - -
F2 1 0.967

Table 4: Probabilities of constraints holding in nature, based upon the results of the a/f proteins

Constraint | Number of cases in which p(XA)
the constraint is violated

C1 0 1.0
C2 1 0.947
C3 5 0.737
C5 9 0.526
F1 15 0.211
F2 4 0.789

Table 5: Probabilities of constraints holding in nature based upon the “disambiguated” results of the
nucleotide binding proteins

cover the most obvious. We also just deal with modelling constraints C'1,C2,C3,C5,F1 and F2 for which
Clark et al. (1992) and Shirazi et al. (1990) give data.

3.1 Using probability theory

Since the data is drawn from a reasonably random population of proteins the following argument can
be made. Table 3 holds a list of 33 proteins. Of these, 24 conform to constraint C'3, and 9 do not, so
a structure that conforms to C'3, has a probability of P(C3A4) = % = 0.606 of existing in nature. This
argument gives the probabilities of Table 4. Since the sample size is just 33 proteins, the probabilities
will not be very accurate, but they are the best values that can be obtained in this ill-known domain.

Table 2 may be used to get a second set of probabilities, but in this case the data is ambiguous. Of the
eight proteins analysed, several have alternative structures and some constraints hold for some alternative
structures and not for others. Thus it is not clear whether or not such a constraint is valid for the protein.
One solution is to “disambiguate”, considering each of the nineteen possible structures as a separate entity.
Doing this gives the probabilities of Table 5. However, it could be argued that disambiguation distorts
the data, and the uncertainty should be modelled in a “purer” way acknowledging the ambiguity. This
can be done using interval probabilities with the lower value calculated by counting proteins for which
the rule is ambiguous as proteins for which it fails to hold, and the upper value by counting proteins for
which the rule is ambiguous as proteins for which it does hold. This gives Table 6. Alternatively the
ambiguity could be modelled using evidence theory.

3.2 Using evidence theory

Evidence theory provides good support for modelling ambiguity, providing a mechanism for allocating a
degree of belief to the disjunction of two competing hypotheses. Considering Table 2 with respect to F'2
there are three sets of proteins. We have {p3pgk, plldx, p3idh, pdldh, plpfk, p2pfk, p3pfk, pApfk, p3grs,
p3adk, pdadh, psadh, pbadh, pTadh} where every one of the 14 possible structures of the six proteins
conforms to F2, {plgpd,p2gpd, plgdl} where every possible structure of the protein violates F'2; and
{p3dfr, pddfr} where of the two structures for the protein, one conforms to F2 and one does not. This
ambiguity may be modelled as follows. There are six proteins that conform to F'2 so the basic mass
assignment is m({F2A}) = 6/8. There is one protein for which the constraint fails to hold. Thus
m({-F2A}) = 1/8. The remaining mass, 1 — (m({F2A4}) + m({-F2A})) is the probability that the
constraint either applies or doesn’t apply, m({F2,-F2A}). This latter is a measure of ignorance about
the applicability of the constraint. For Table 2 the masses of Table 7 are appropriate.



Constraint | Number of cases in which p(XA)
the constraint is violated
C1 0 1.0
C2 1 0.875
C3 2 0.75
C5 3 0.625
F1 5-7 [0.125, 0.375]
F2 1-2 [0.750, 0.875]

Table 6: Probabilities of constraints holding in nature based upon the “pure” results from the nucleotide
binding proteins

Constraint | m({FzA}) m({-FzA}) m({FzA,~FzA})
F1 0.125 0.625 0.25
F2 0.75 0.125 0.125

Table 7: The basic mass assignments for modelling the constraints using evidence theory according to
the results from the nucleotide binding proteins

3.3 Using possibility theory

It is also possible to model the constraints using possibility theory. It is possible to use a number of
different sets of numerical information, but the basic principle behind the modelling is the same. If a
structure conforms to a constraint, it is entirely possible that the structure is that of a naturally occurring
protein. However, if a structure fails to conform to a constraint then it becomes less possible that the
structure is a naturally occurring protein. Indeed the possibility of the structure being a natural protein
falls to a figure that reflects the proportion of naturally occurring proteins that do not conform to the
constraint. Thus, for each constraint Cz, the possibility that the protein occurs in nature given that
Cx holds, II(CzA) = 1, while the possibility that the protein occurs in nature given that Cz does not
hold, II(-CzA), depends upon data in Tables 2 and 3. This may be disambiguated or used to define
an interval in the same way as is done in Tables 4 to 6 for probability theory. For instance, taking the
disambiguated values of Table 5, the possibility of C'5 not holding, II(-C5) = 0.474.

3.4 Handling ignorance

We have also to encode the lack of information about the applicability of F'1 in Table 3. The usual
probabilistic method would be to declare that p(F1A4) = p(=F1A4) = 0.5. However, other methods could
be used. In evidence theory, since nothing can be said about the basic probability assignment to F'1A
and ~F1A, m({F1A}) = m({-F1A}) = 0, and all the basic probability is assigned to the disjunction,
giving the vacuous belief function m({F'1A4,—-F1A}) = 1. The meaning of this assignment is that it is
not possible to assign any belief to one hypothesis rather than another. Another alternative is to use
possibility theory. Since there is no knowledge about the chance of F'1 holding, it is entirely possible
that F'1 holds and II(F1A4) = 1. If =F1A is considered, a similar argument may be made to obtain
II(-F1A) = 1. From the viewpoint of the information that is available all of these three approaches are
perfectly correct, and there is no obvious way of choosing between them.

4 Calculating the validity of structures

Having considered the different ways in which the uncertain nature of the constraints can be modelled,
we turn to considering how to employ use these models in topology prediction. CBS1 generates as its
output sets of possible topologies of nucleotide binding domain proteins and the constraints to which
they conform. The kind of output that would be useful to molecular biologists would be some kind of
measure of the validity of the sets of topologies based upon the constraints to which they conform.

To do this we employed Mummu (Parsons 1993) an adaptation of Pulcinella (Saffiotti and Umkehrer
1991) which handles interval valued probabilities, possibilities and beliefs, and in which the intervals
are propagated using interval arithmetic. This system uses a valuation network representation (Shenoy
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Figure 1: A network relating the effects of constraints to the validity of a structure.

1991), and the valuation network of Figure 1 was adopted, based upon the work of Smets and Hsia
(1990). This network expresses the fact that the validity of the structure is a combination of the effect of
all constraints. Thus, for C'1 there is a node C'1 which is true if C'1 holds for the structure in question,
and false otherwise. The effect of this is combined on the node C1&C1A — V with pC1A which is the
measure of how likely it is that a structure that conforms to C1 exists in nature. This is then combined
with similar results for other constraints to get an overall measure of validity V.

4.1 Single formalism approaches

Firstly we consider the ways that the models of uncertainty can be used so that the whole problem is
modelled using a single formalism, as it would be by any other existing system. Mummu may be used to
establish a validity value using each of the following sets of data.

Point-valued probability: Table 5 has point values for each of the constraint probabilities p(CzA)
that are based on the disambiguated sample of eight nucleotide binding domain proteins. The results of
this computation are given in the second column of Table 8, and in the first graph in Figure 3, both of
which may be found in the Appendix. In the graph each point on the x-axis corresponds to a single set
of constraints, with the validity measured up the y-axis. The leftmost point on the x-axis corresponds to
the first set of constraints in Table 8.

Interval-valued probability: Table 6 has interval values which represent the ambiguity surrounding
F1 and F2 holding. Results using these values are given in the third column of Table 8 and the second
graph (reading across the page) in Figure 3. Note that in order to represent intervals graphically, they
have been transformed into point values by replacing them with their mid-points. This transformation
may be justified (Parsons 1993) by an argument based on maximum entropy. A second set of interval
values may be obtained by realising that since the nucleotide binding domain proteins from which Table 2
was obtained are of the same class as the proteins whose structure is being predicted, while the a/S-sheet
proteins are a more general class, we could use the values derived from Table 2 as an upper bound, and
those of Table 3 as a lower bound. Since there are two ways of establishing values from Table 2 we have
two sets of results and these are given in the fourth and fifth columns of Table 8 and the third and fourth
graphs in Figure 3.

Point-valued evidence theory: Table 7 gives basic probability assignments for the hypotheses
{F1}, {-F1}, {F1,-F1}, {F2}, {-F2}, and {F2,-F2}. In addition the values that from Table 6 are



used as basic probability assignments for the hypotheses {C'1}, {-C1}, {C2}, {-C2}, {C3}, {-C3}, {C5}
and {—~C5}. Evidence theory may be used to propagate these values through the network of Figure 1,
and the results are given in the sixth column of Table 8 and the fifth graph of Figure 3. Any belief not
assigned to {V'} is assigned to {V, =V}, so that for the constraint set { }, bel({V,-V} =1

Point-valued possibility theory: Table 4 gives a set of values which may be used to derive point
possibility values for the applicability of the constraints C'1 to C5 and F'2. Since there is no data for the
applicability of F'1 it may modelled by setting II(=F1A4) = 1, as discussed above. This data gives the
results in the seventh column of Table 8 and the sixth graph of Figure 3. It should be noted that in this
model II(V) = 1 for all sets of constraints, and that, as for all possibilistic models, the graph and the
table give the possibility of =V. Alternatively one may use the “disambiguated” data of Table 5, which
allows point possibilities to be derived for every constraint. The results of using these values are given in
the eighth column of Table 8 and the seventh graph of Figure 3.

Interval-valued possibility theory: It is also possible to use the “pure” data from Table 6 provided
that interval possibility values are used to take account of the interval nature of the data, representing
the range of possibility values that may be calculated given the imprecise information available (Parsons
1993). Using Mummu to propagate these values generates the results in the ninth column of Table 8 and
the eighth graph of Figure 3. In this model II(V) = [1, 1] = 1 in all cases.

4.2 Hybrid approaches

All of the single formalism approaches discussed above have skirted around what in many ways seems to
be the natural representation for the problem— one that uses different formalisms. The most accurate
data that is available is that for the nucleotide binding domain proteins, and this splits neatly into
two parts. There are probabilities (Table 6) that model conformance to C'1 to C5, and there is some
ambiguous data best modelled in evidence theory (Table 7) that says something about structures that
conform to F'1 and F2. This suggests that the network of Figure 1 be partitioned into two parts as in
Figure 2.

In this network values are propagated according to evidence theory in the right-hand section until a
value for the node V1 is established. This value is then translated into a probability interval and combined
with the results from the rest of the network to establish overall probabilistic measures of validity. The
translation, discussed in detail in (Parsons 1993) uses intervals to model the fact that a belief value may
be taken as the lower bound on a probability (Dubois and Prade 1988), thus:

translates to

Bel(z) =n —— p(z) =[n,1] (1)

The results of using this method are given in the tenth column of Table 8 and the ninth graph of Figure
3.

This is only one way of combining formalisms in this problem. An alternative is to combine the
evidence theory model of the ambiguous data about F1 and F2 with the possibility model. Such an
integration would be carried out in the network of Figure 2, but with every probability replaced with a
possibility based on values from Table 6. The translation is based upon the fact that a belief is a lower
bound on a probability while a possibility is an upper bound (Dubois and Prade 1988), so:

translates to

Bel(z) =n —— II(z) =[n,1] (2)

The results from such an integration are given in the eleventh column of Table 8 and the final graph in
Figure 3.

5 Discussion

Unfortunately, there is no obvious “gold standard” (Heckerman 1990) against which to compare the
results. However, it is possible to suggest a number of criteria for choosing between the approaches based
upon the data that they use, the theory that they are based on, and the results that they generate. For
instance it would seem sensible to use the data of Table 2 when dealing with nucleotide binding domain
proteins, and so the results in the second, third, sixth and eighth to eleventh columns of Table 8 seem
most appropriate. These are, of course the results depicted in the first, second, fifth and seventh to tenth
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graphs of Figure 3. In this case the choice of which results to adopt will depend on which method of
dealing with ambiguity is preferred. The ambiguity may be handled by using “disambiguated” values in
which case the results in the second and eighth columns of Table 8, and the first and seventh graphs of
Figure 3, apply. Alternatively, an interval representation of the ambiguity may be adopted, in which case
the results in the third and ninth columns of Table 8 and second and eighth graphs of Figure 3 should
be considered. Finally, the ambiguity may be modelled using evidence theory, in which case the results
in the sixth, tenth and eleventh columns, and the fifth, ninth and tenth graphs, are the ones to look at.

If a more general class of proteins are being considered, then the results in the fourth, fifth and seventh
columns and third, fourth and sixth graphs may be more appropriate since these are at least partly based
upon data from single domain a/f sheet proteins. Another means of choosing the best method might be
preference for a particular technique. In this case the results in the second column of Table 8 and the first
graph of Figure 3 will be preferred by proponents of pure probability measures while those of the sixth
column and fifth graph will be adopted by supporters of evidence theory, and those of the seventh and
eighth columns and sixth and seventh graphs will be favoured by supporters of possibility theory. Those
do not object too strongly to interval methods may settle for the results of the third, fourth, fifth and
ninth to eleventh columns (the second, third, fourth and eighth to tenth graphs), and those who prefer
the eclectic approach of mixing formalisms should like the results in the tenth and eleventh columns
which correspond to the ninth and tenth graphs.

Finally thought might be given to what the results are to be used for, and the choice made on the



basis of which are most useful. In this case it may be of little use having a set of values which contain
many identical entries, an argument which with Figure 3 suggests that the results in the second, third,
sixth and tenth columns (first, second, fifth and ninth graphs) are less useful than the others since these
have a value of 1 for any constraint set containing C'l. On the other hand this could be acceptable as a
clear indication of the necessity of having structures conformant with C'1. A similar argument might rule
out the seventh, eighth, ninth and eleventh columns (sixth, seventh, eighth and tenth graphs), which have
a value of zero for any constraint set that includes C'l. Another way of choosing a method stems from
the following argument. The prediction of protein topology by any theoretical means is only a part of the
whole process which will also include a practical analysis which will test out the predicted possibilities
as far as possible. Clearly, if a tedious set of experiments are required in order to reject each possible
structure in a set, it would be advantageous to start with the smallest possible set of structures. This
suggests using the number of possible structures associated with a set of constraints as a measure of its
validity. Shirazi et al. (1990) supply the number of structures associated with seven of the 64 possible
sets of constraints, and the order of these, based upon the number of possible structures, agrees with that
obtained from the results in the fourth and fifth columns (third and fourth graphs). The solution ranked
‘first’ is the smallest since it conforms to the largest set of constraints.

6 Conclusions

It is to be hoped that this exploration of different approaches will be useful in several ways. Firstly it
extends the comparative study of the use of differing uncertainty handling techniques (Heckerman 1990),
(Heckerman and Shwe 1993), (Saffiotti et al. 1994) to cover a new problem. This problem contains
a number of different types of uncertainty that must be modelled, and the fact that different models
seem appropriate from different points of view provides empirical evidence for the validity of work on the
different models. In addition, since no model seems to naturally model every aspect of the uncertainty, the
protein topology problem provides motivation for working on using the different models in combination in
the same problem. Further to this motivation, this paper has suggested some means of combining different
methods within one problem, and, using results generated using the implementation of this work in the
Mummu system, has discussed the use of combinations of formalisms in solving a real problem. Thus the
paper has provided some empirical demonstration that using combinations of formalisms is both feasible
and useful.
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Appendix

Constraint Set P(V) 8] ) 8] bel(V) [ L(=V) [ H(=vV) [ T(=V) (V) (=V)
C1,C2,C3,C5, F1, F2} 1.0 1.0 1.0] 0.984 1.0 0.972 1.0 1.0 0.03 ] 0 0] 1.0 0 0]
C1,C2,C3,C5, F1} 1.0 1.0 1.0] 0.917 1.0 0.876 1.0 1.0 0.03 0 0 0] 1.0 0 0]
Cc1,C2,C3,C5, F2} 1.0 1.0 1.0] 0.982 1.0 0.962 1.0 1.0 0.03 0 0 0] 1.0 0 0]
c1,C2,C3,C5} 1.0 1.0 1.0] 0.905 1.0 0.837 1.0 1.0 0.03 0 0 0] 1.0 0 0]
C1,C38,C5, F1, F2} 1.0 1.0 1.0] 0.963 1.0 0.939 1.0 1.0 0.03 0 0 0] 1.0 0 0]

{C1,C38,C5, F1} 1.0 [1.0 1.0] [0.824 1.0] [0.759 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{Cc1,C38,C5, F2} 1.0 [1.0 1.0] [0.830 1.0] [0.759 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{C1,C38,C5} 1.0 [1.0 1.0] [0.802 1.0] [0.696 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{C1,C2,C5, F1, F2} 1.0 [1.0 1.0] [0.956 1.0] [0.922 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]
Cc1,C2,C5, F1} 1.0 1.0 1.0] 0.794 1.0 0.709 1.0 1.0 0.03 0 0 0] 1.0 0 0]
c1,C2,C5, F2} 1.0 1.0 1.0] 0.949 1.0 0.896 1.0 1.0 0.03 0 0 0] 1.0 0 0]
c1,C2,C5} 1.0 1.0 1.0] 0.769 1.0 0.640 1.0 1.0 0.03 0 0 0] 1.0 0 0]
Cc2,C3,C5, F1, F2} 0.999 0.996 1.0] 0.663 1.0 0.524 1.0 0.997 0.03 0.052 0.125 0.125] | 0.999 00.078]
Cc2,C38,C5, F1} 0.994 0.994 1.0] 0.261 1.0 0.185 0.999] | 0.990 0.303 0.052 0.125 0.125] | [0.996 1] 0.125 0.125]
c2,C38,C5, F1} 0.999 0.983 0.995] 0.630 1.0 0.445 1.0] 0.997 0.03 0.052 0.125 0.125] | [0.999 1] 0 0.125]
c2,C3,C5} 0.993 0.976 0.995] 0.234 1.0 0.141 0.999] | 0.988 0.303 0.052 0.125 0.125] | [0 0.994] 0.125 0.125]

{C1,C2,C3, F1, F2} 1.0 [1.0 1.0] [0.975 1.0] [0.954 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{c1,C2,C3, F1} 1.0 [1.0 1.0] [0.876 1.0] [0.810 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{Cc1,C2,C3, F2} 1.0 [1.0 1.0] [0.972 1.0] [0.938 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{C1,C2,C3, F1, F2} 1.0 [1.0 1.0] [0.859 1.0] [0.756 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]
C1,C2, F1, F2} 1.0 1.0 1.0] 0.932 1.0 0.877 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
c1,C2, F1} 1.0 1.0 1.0] 0.712 1.0 0.594 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
c1,C2, F2} 1.0 1.0 1.0] 0.922 1.0 0.838 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
c1,C2} 1.0 1.0 1.0] 0.681 1.0 0.516 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
C1,C38, F1, F2} 1.0 1.0 1.0] 0.944 1.0 0.902 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
Cc1,C3, F1} 1.0 1.0 1.0] 0.750 1.0 0.654 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
c1,cC3, F2} 1.0 1.0 1.0] 0.935 1.0 0.870 1.0] 1.0 0.03 0 0 0] 1.0 0 0]

{Cc1,C3} 1.0 [1.0 1.0] [0.722 1.0] [0.578 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{C1,C5, F1, F2} 1.0 [1.0 1.0] [0.901 1.0] [0.840 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]

{C1,C5, F1} 1.0 [1.0 1.0] [0.620 1.0] [0.520 1.0] 1.0 0.03 0 [0 0] 1.0 [0 0]
C1,C5, F2} 1.0 1.0 1.0] 0.887 1.0 0.793 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
Cc1,C5} 1.0 1.0 1.0] 0.585 1.0 0.440 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
Cc2,C38, F1, F2} 0.998 0.990 0.998] 0.558 1.0 0.398 1.0] 0.993 0.03 0.052 0.125 0.125] | 0.998 00.078]
c2,C3, F1} 0.988 0.985 0.998] 0.185 1.0 0.120 0.999] | 0.973 0.303 0.052 0.125 0.125] | [0.988 1] 0.125 0.125]
c2,C3, F2} 0.997 0.955 0.988] 0.522 1.0 0.325 1.0] 0.992 0.03 0.052 0.125 0.125] | [0.997 1] 0 0.125]
c2,C3} 0.986 0.937 0.986] 0.163 1.0 0.090 0.999] | 0.969 0.303 0.052 0.125 0.125] | [0 0.985] 0.125 0.125]
Cc2,C5, F1, F2} 0.996 0.985 0.997] 0.407 1.0 0.275 1.0] 0.990 0.03 0.052 0.125 0.125] | 0.996 0 0.078]
Cc2,C5, F1} 0.979 0.978 0.997] 0.110 1.0 0.072 0.996] | 0.959 0.666 0.052 0.125 0.125] | [0.982 1] 0.125 0.125]

{Cc2,C5, F2} 0.995 | [0.934 0.982] | [0.372 1.0] [0.216 1.0] 0.988 0.03 0.052 [0.125 0.125] | [0.995 1] | [0 0.125]

{c2,C5} 0.975 | [0.909 0.979] | [0.096 0.996] | [0.054 0.996] | 0.953 0.666 0.052 [0.125 0.125] | [0 0.977] | [0.125 0.125]

{C3,C5, F1, F2} 0.978 | [0.970 0.995] | [0.455 1.0] [0.328 1.0] 0.979 0.03 0.211 [0.125 0.25] 0.992 [0 0.078]
C3,C5, F1} 0.905 0.957 0.994] 0.130 0.992] 0.091 0.996] | 0.918 0.303 0.263 0.25 0.25] [0.965 1] 0.25 0.25]
Cc3,C5, F2} 0.974 0.877 0.965] 0.419 1.0] 0.262 1.0] 0.977 0.03 0.211 0.125 0.25] [0.990 1] 0 0.25]
Cc3,C5} 0.889 0.833 0.958] 0.114 0.992] 0.068 0.996] | 0.906 0.303 0.263 0.25 0.25] [0 0.955] 0.25 0.25]
C1,F1, F2} 1.0 1.0 1.0] 0.854 1.0] 0.760 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
Cc1,F1} 1.0 1.0 1.0] 0.511 1.0] 0.394 1.0] 1.0 0.03 0 0 0] 1.0 0 0]
c1, F2} 1.0 1.0 1.0] 0.835 1.0] 0.697 1.0] 1.0 0.03 0 0 0] 1.0 0 0]

C1} 1.0 1.0 1.0] 0.475 1.0] 0.321 1.0] 1.0 0.03 0 0 0] 1.0 0 0]

{C2, F1, F2} 0.991 | [0.96 0.993] [0.306 1.0] [0.186 1.0] 0.973 0.03 0.052 [0.125 0.125] | 0.990 [0 0.078]

{Cc2, F1} 0.957 | [0.944 0.992] | [0.073 0.996] | [0.045 0.996] | 0.891 0.666 0.052 [0.125 0.125] | [0.954 1] | [0.125 0.125]

{Cc2, F2} 0.980 | [0.842 0.954] | [0.275 1.0] [0.142 1.0] 0.969 0.03 0.052 [0.125 0.125] | [0.986 1] | [0 0.125]

{c2} 0.950 | [0.789 0.945] | [0.064 0.996] | [0.033 0.996] | 0.875 0.666 0.052 [0.125 0.125] | [0 0.941] | [0.125 0.125]
C3, F1, F2} 0.955 0.923 0.986] 0.349 1.0] 0.227 1.0] 0.945 0.03 0.211 0.125 0.25] 0.981 00.078]
Cc3,F1} 0.819 0.894 0.984] 0.088 0.991] 0.057 0.996] | 0.781 0.303 0.263 0.25 0.25] [0.912 1] 0.25 0.25]
c3, F2} 0.947 0.727 0.911] 0.316 1.0] 0.176 1.0] 0.938 0.03 0.211 0.125 0.25] [0.973 1] 0 0.25]
c3} 0.792 0.651 0.896] 0.077 0.991] 0.042 0.996] | 0.75 0.303 0.263 0.25 0.25] [0 0.889] 0.25 0.25]
C5, F1, F2} 0.922 0.889 0.980] 0.225 0.999] 0.144 0.999] | 0.918 0.03 0.211 0.125 0.25] 0.972 0 0.078]
C5,F1} 0.715 0.848 0.976] 0.050 0.975] 0.033 0.987] | 0.672 0.939 0.474 0.375 0.375] | [0.874 1] 0 0.625]
Cs5, F2} 0.909 0.64 0.873] 0.201 0.998] 0.109 0.999] | 0.906 0.03 0.211 0.125 0.25] [0.96 1] 0 0.125]

{C5} 0.678 | [0.554 0.851] | [0.043 0.975] | [0.025 0.987] | 0.625 0.939 0.474 [0.375 0.375] | [0 0.842] | [0.375 0.375]

{F1, F2} 0.849 | [0.75 0.947] [0.157 0.999] | [0.092 0.999] | 0.781 0.03 0.211 [0.125 0.25] 0.927 [0 0.078]

{F1} 0.543 | [0.677 0.937] | [0.032 0.972] | [0.020 0.985] | 0.125 1 0.789 [0.625 0.875] | [0.72 1] [0 0.625]

{F2} 0.826 | [0.4 0.72] [0.139 0.999] | [0.068 0.999] | 0.75 0.03 0.211 [0.125 0.25] [0.9 1] [0 0.125]

{1 0.5 [0.318 0.682] | [0.028 0.972] | [0.015 0.985] 1 1 [11] [0 0.667] | [11]

Table 8: Results of the experiment in assessing the validity of sets of constraints
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Figure 3: Results of the experiment in assessing the validity of sets of constraints
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Figure 3(cont): Results of the experiment in assessing the validity of sets of constraints
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Figure 3(cont): Results of the experiment in assessing the validity of sets of constraints
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