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Abstract

One approach to predicting the toxicology of novel compounds is to

apply expert knowledge. The field of artificial intelligence has identified

a number of ways of doing this, and some of these approaches are briefly

described in this chapter. We also examine two expert systems—derek,

which predicts a variety of types of toxicology, and star, which predicts

carcinogenicity—in some detail. star reasons about carcinogenicity using

a system of argumentation. We believe that argumentation systems have

great potential in this area, and so discuss them at length.

1 Introduction

One way to build a computer system to solve a problem is to replicate the way
that a human would deal with the problem. For some tasks this is not a good
solution. We wouldn’t write a program to do arithmetic by the same symbolic
manipulation that humans carry out—it just wouldn’t be efficient1—and the

1Indeed, Reverse Polish Notation was invented precisely to improve the efficiency of com-
puter manipulation of arithmetic symbols [38].
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same is true of any problem for which there are clear algorithmic solutions.
However, for some problems, the best we can do is to try to replicate the way that
humans solve the problems. Problems such as diagnosing an illness, identifying
chemical compounds from the output of a mass spectrometer, and deciding how
to configure a computer are all tasks where copying what humans do seems to
be the best we can do, and the same may be true of predicting the toxicology
of novel compounds.

Now, all the tasks mentioned above have (at least) one thing in common.
These are all tasks that humans can only complete once they have completed a
significant amount of training and have gained a good deal of experience. They
are tasks that can only be completed by human experts. When we build systems
that capture the aspects of the problem-solving ability of these experts, we call
them expert systems, and it is such systems that are the subject of this chapter.2

The study of expert systems is a sub-field of artificial intelligence, and rose
to great prominence in the late 1970s. This was when the pioneers of the
expert system field were building and trialling the earliest expert systems—
mycin, which carried out medical diagnosis [10, 91], dendral, which identified
chemical compounds from mass spectrometer readings [11, 24], and r1/xcon
which configured vax computers [68]. Expert systems seemed to offer great
advantages over conventional software systems and other artificial intelligence
techniques. They could, it seemed, be used to replicate, and possibly replace,
expensive human experts, and bring scarce expertise into the domain of mass
production. This led to a huge growth in interest in the field, both academically
and commercially, and the field seemed to have a bright future. However, by the
late 1980s it had become clear that expert systems were not as widely applicable
as some had claimed, and most of the interest in the area subsided.

This subsidence, in our view, was only to be expected. Expert systems were
oversold, and it is only natural that this would become apparent in due course.
However, underneath all the hype, the basic idea behind expert systems remains
sound. For some problems they provide a very good solution and in that kind
of role they are flourishing (as we will see, flourishing remarkably widely) and
will continue to.

Our aim in this chapter is to examine the extent to which expert systems can
provide a suitable solution to the problem of predicting toxicity, and to provide
some pointers to those who want to try such a solution for themselves. We start
with a description of two of the main approaches to building expert systems
in Section 2. We then take a look, Section 3 at two particular expert systems,
derek and star, that do this kind of risk prediction. The second of these
systems works using a system of argumentation—that is it builds up reasons for
and against predictions in order to decide which is best—and because we believe
that argumentation is a particularly good approach, we describe in some detail,

2It should be stressed that the important feature of expert systems is this capturing of the
ability of human experts. The aim of building an expert system is not to mimic a human
expert, but to isolate an expert’s problem-solving ability with the aim of using this ability to
improve upon the problem-solving performance of that expert. Some expert systems do indeed
manage to outperform the expert whose ability they capture, others are not so successful.
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Section 4, both the general approach to argumentation used by star, and the
directions in which we are developing the theory. Finally, Section 5, we precis
the chapter.

2 Expert systems

The key idea behind expert systems is that some problems are best solved by
applying knowledge about the problem domain, knowledge that only people very
familiar with the domain are likely to have. This naturally creates a need to rep-
resent that knowledge, and knowledge representation is a subject that has been
widely researched. The knowledge needed to solve a problem rarely includes the
exact answer to particular instance of the problem. Instead, the expert system
has to take the knowledge that it has and infer new information from it that
bears upon the exact problem it is solving. As a result we are interested in how
to perform this reasoning as well as how to represent knowledge. This section
looks at two commonly used approaches to knowledge representation and their
associated form of reasoning.

2.1 Rule-based systems

One of the earliest, and most successful approaches to knowledge representation
is the use of production rules [18, 19] similar to:

if battery good and battery charging
then battery ok

Such rules provide a very natural means of capturing the information of a do-
main expert—in this case an expert in the diagnosis of problems with the elec-
trical system of a car. These rules also provide a relatively simple means of
reasoning with this information, which we can briefly illustrate with the rules
in Figure 1.

If, for example, we are told that the battery is old and the alternator is
broken, then we can reason as follows. “battery is old” can be used with r1 to
learn that “battery is dodgy” is true, and “alternator is broken” can be used
with r2 to learn that “battery is charging” is not true. Having established that
these facts are true, they can then be used with r3 to learn that “battery is
bad” is true, and so on. Finally we can conclude that “radio is not working” and
“lights are not working” are true. This kind of reasoning is known as forward
chaining.

We can also use the rules in backward chaining to show the same thing.
In this form of reasoning we start from, for example, the desire to determine
whether “radio is not working” and look for possible proofs of this fact. In
this case there is only one possibility, that presented by r4. To use this rule
also requires that “battery is bad” be true, and again there is only one way to
establish this fact—the use of r3. To apply r3, it must be the case that “battery
is dodgy” is true and “battery is charging” is false, and these themselves can
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r1 if battery is old
then battery is dodgy

r2 if alternator is broken
then not battery is charging

r3 if battery is dodgy and not battery is charging
then battery is bad

r4 if battery is bad
then radio is not working

r5 if battery is bad
then lights are not working

Figure 1: An example rule-base

only be established by applying r1 and r2. To do this requires that “battery
is old” and “alternator is broken” be true, and these, luckily, accord with what
we were told to begin with.

What we have given here is a very simplified account of rule-based reasoning,
but this is the essence of how it proceeds. There are additional complexities,
such as how to do the necessary pattern matching—handled by algorithms like
rete [26] and treat [71]—but solutions have been found to these and are
implemented in programming environments like ops5 [25], clips [14] and jess
[49]. These environments allow one to write rules and then invoke forward and
backward chaining on them, and so make it possible to simply construct the
heart of an expert system.3

Rules were used as the basis of many expert systems, including the early
systems mycin [10, 91], dendral [11, 24], and r1/xcon [68], as well as more
recent systems, like draco, which helps astronomers sift through large amounts
of data [69]. mycin, for example, makes use of both forward and backward
chaining when attempting to find a diagnosis. It starts using backward chain-
ing to determine whether there is some organism (significant organism in the
terminology of the system) that it should be treating, and then to determine
what bacteria is most likely to be the cause. The first of these tasks is achieved
by rules like:

if organism-1 comes from a sterile site
then organism-1 is significant

and the second is achieved by rules like:

3And jess, for example, by allowing arbitrary Java function calls from within rules, makes
it possible to combine rules with conventional software.
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if the identity of the organism is not known with certainty,
and the gram stain of the organism is gramneg,
and the morphology of the organism is rod,
and the aerobicity of the organism is aerobic

then there is strongly suggestive evidence that the identity of the
organism is enterobactericeae.

Once the system has determined that there is a significant organism, and has
a likely identity for that organism, it then forward chains to determine what
therapy should be applied (in mycin all therapies are courses of antibiotics).
This forward chaining uses rules like:

if the identity of the organism is bacteroides
then I recommend therapy chosen from among the following drugs:

clindamycin
chloramphenicol
erythromycin
tetracycline
carbenecillin

One of the reasons that rules proved so popular as a mechanism for knowl-
edge representation is that they are very natural. By this we mean that it is
relatively easy for anyone (including the domain expert) to understand them. It
is relatively clear what rules mean, and it is relatively easy for the domain ex-
pert to learn how to write them down. However, there are problems with using
rules. One such problem is that fact that rules lack a well-defined semantics.
In other words while, because of their naturalness, it is clear roughly what rules
mean, it is not clear exactly what they mean, and this lack of precision makes it
hard to be sure exactly what an expert system is doing, or how it will behave.
In turn that can make it hard to trust for critical applications.

Another major problem with using rules as described so far as the basis of
an expert system is that they are categorical. In our example above, we are only
allowed to represent the fact that “battery is old” is true, or is not true. There
is no way to represent, for example, that we believe the battery to be old, but
are not sure. This is a problem because so much information is not categorical.
Indeed in most domains most of the information that an expert system must
represent is imperfect, and this has prompted the development of a wide variety
of mechanisms for representing and reasoning with this imperfect data [77].

Such mechanisms do not work well with rules. Although it is natural to try
to associate some kind of a measure of belief with a rule,4 producing something
like:

if battery good and battery charging
then battery ok (0.8)

early attempts to do this were not very satisfactory. Indeed the best known sys-
tem of attaching measures to rules, certainty factors [91, 92], turned out to have

4Indeed exactly this kind of approach was adopted in mycin.
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some internal inconsistencies [40, 46]. Because of these failings, it seemed that
a better solution was to look for a different kind of knowledge representation.5

2.2 Bayesian networks

Rather than thinking in terms of expert rules, let’s consider describing a domain
in terms of the important variables that it contains. For every variable Xi which
captures some aspect of the current state of the domain, one way to express the
imperfect nature of the information we have about X is to say that each possible
value xij

of each Xi has some probability Pr(xij
) of being the current value of

Xi. Writing x for the set of all xij
, we have:

Pr : x ∈ x 7→ [0, 1]

and ∑

j

Pr(xij
) = 1

In other words, the probability Pr(xij
) is a number between 0 and 1 and the

sum of the probabilities of all the possible values of Xi is 1. If Xi is known to
have value xij

then Pr(xij
) = 1 and if it is known not to have value xij

then
Pr(xij

) = 0.
Given two of these variables, X1 and X2, then the probabilities of the various

values of X1 and X2 may be related to one another. If they are not related, a
case we distinguish be referring to X1 and X2 as being independent, then for
any two values x1i

and x2j
, we have:

Pr(x1i
∧ x2j

) = Pr(x1i
) Pr(x2j

)

If the variables are not independent, then:

Pr(x1i
∧ x2j

) = Pr(x1i
|x2j

) Pr(x2j
)

where Pr(x1i
|x2j

) is the probability of X1 having value x1i
given that X2 is

known to take value x2j
. Such conditional probabilities capture the relationship

between X1 and X2, representing, for instance, the fact that x1i
(the value

“wet”, say, of the variable “state of clothes”) becomes much more likely when
x2j

(the value “raining” of the variable “weather condition”) is known to be
true.

If we take the set of these Xi of which the agent is aware, the set X, then for
each pair of variables in X we can establish whether the pair are independent

5Here we are broadly tracing the historical development of these techniques. Initial work on
rule-based systems made use of categorical rules. Later it became apparent that mechanisms
for handling imperfect knowledge were required, and techniques like certainty factors were
developed. When their failings became apparent, and other efforts such as Nilsson’s prob-
abilistic logic [75] were also found to be problematic, techniques like the Bayesian networks
described in the next section were invented. Subsequently much more satisfactory combina-
tions of probability and logic have been created [20, 31], in turn overcoming limitations of
Bayesian networks (which are inherently propositional).
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Figure 2: An example Bayesian network

or not. We can then build up a graph in which each node corresponds to a
variable in X and an arc joins two nodes if the variables represented by those
nodes are not independent of each other. The resulting graph is known as a
Bayesian network6 [79], and provides a form of knowledge representation that
is explicitly tailored to representing imperfect information.

Figure 2 is an example of a fragment of a Bayesian network for diagnosing
faults in cars. It represents the fact that the age of the battery (represented
by the node battery old) has a probabilistic influence on how good the battery
is, and that this in turn has an influence on whether the battery is operational
(battery ok ), the latter being affected also by whether the alternator is working
and, as a result, whether the battery is recharged when the car moves. The
operational state of the battery affects whether the radio and lights will work.
In this network it is expected that the observations that can be carried out are
those relating to the lights and the radio (and possibly the age of the battery),
and that the result of these observations can be propagated through the network
to establish the probability of the alternator being okay and the battery being
good. In this case these latter variables are the ones that we are interested in
since they relate to fixing the car.

As mentioned above, when building an expert system we are not only inter-
ested in how to represent knowledge, but also how to reason with it. It turns
out that the graphical structure of a Bayesian network provides a convenient
computational framework in which to calculate the probabilities of interest to
the agent. In general, the expert system will have some set of variables whose
values have been observed, and once these observations have been taken, we will
want it to calculate the probabilities of the various values of some other set of
variables. The details of how this may be achieved are rather complex (see [79]
for details), but provide effective7 algorithms that allow networks with several

6The notion of independence captured in the arcs of a Bayesian network is somewhat more
complex than that described here, but the difference is not relevant for the purposes of this
chapter. For full details, see [79].

7It turns out that computing values of probabilities in Bayesian networks is not computa-
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Figure 3: The general architecture of an expert system

hundred variables to be solved in only a few seconds—a speed that is sufficient
for all but the most exacting real-time domains. In brief these algorithms work
by passing messages between the nodes in the graph. If we observe something
that changes the probability of “battery old” in Figure 2, this new value is sent
to “battery good”, which updates its probability, and sends a message to “bat-
tery ok”. When “battery ok” updates in turn, it sends messages to “radio ok”,
“lights ok” and “battery charging”, and so on through the network. The full
range of algorithms for propagating probabilities through Bayesian networks are
described in [13, 16].

We should also note that there have been many successful applications of
Bayesian networks. These include pathfinder [41], a system for diagnosis of
diseases of the lymphatic system, midas [48], a system for dealing with mildew
in wheat, and a system for diagnosing faults in the space shuttle [45]. These are
all somewhat specialised systems, and ones that most of us will never come into
contact with. However, there are expert systems based on Bayesian networks
that we have all come into contact with at one time or another—these are the
various systems employed by the Microsoft Windows operating systems (from
Windows 95 onwards) for tasks such as troubleshooting [43].

2.3 Other aspects of expert systems

Whatever form of knowledge representation is used by an expert system—
whether rules, Bayesian networks, or other mechanisms like frames [70] and
semantic networks [85]—there are a number of common features of any expert
system.

These common features can be best illustrated by Figure 3, which gives the
general architecture of an expert system. Any such system has some form of
knowledge-base, in which knowledge is stored in some knowledge representation.
Associated with this is some form of inference engine, which carries out the
appropriate kind of reasoning on the knowledge-base. The user of the system
interacts with it through some form of graphical user interface, and this interac-

tionally efficient in general—the problem is NP-hard [15] even if the values are only computed
approximately [17]—but in many practical cases, the computation can be performed in rea-
sonable time.

8



tion is typically to inform the system of some things the user knows to be true.
This information sparks off some reasoning by the system, which then informs
the user of the results of the inference. Finally, a knowledge engineer maintains
and updates the knowledge-base by means of some kind of knowledge editor.

In addition to such common features, there are also a number of problems in
developing expert systems whatever the underlying knowledge representation.
Perhaps the most severe of these is the knowledge acquisition bottleneck. This
refers to the fact that the step that most limits the speed of development of
an expert system is the acquisition of the knowledge it uses. The traditional
approach is to interview a domain expert and obtain their knowledge, but even
if this is a suitable technique,8 it generally proves to be very slow. As a result,
there has been much work on trying to automate the process, including the
development of techniques for rule induction [84, 86], learning Bayesian networks
from data [42], and inductive logic programming in which logical relations are
inferred from data [7, 73].

Another problem that it is worth remembering is the opposition which faced
the adoption of many expert systems. When many organisations came to im-
plement expert systems, they found that their employees objected to the idea
of bringing in machines as experts. Understandably, those employees saw the
use of expert systems as undermining their role—either replacing them in the
job that they had previously done, or removing their chance to learn the ex-
pertise now encoded in the machine. This problem led to many expert systems
(of the form we have been describing), being portrayed as expert assistants to
some human operator—the role of the assistant being, for example, to remember
and point out unlikely but plausible outcomes that the human operator should
consider.

3 Expert systems for risk prediction

A number of expert systems have been developed in the broad areas of toxicology
and carcinogenicity risk prediction including topkat [21], tox-match [56],
casetox [57], HazardExpert [93] and multicase [58]. In this section we look
in some detail at derek, which predicts various forms of toxicity, and star,
which predicts carcinogenicity.

3.1 DEREK

derek is an expert system for the prediction of toxicology risk [88, 89]. It was
developed by lhasa uk, a not-for-profit company based around the Department
of Chemistry at the University of Leeds.9 derek is a rule-based system, with
many of the features of a classic expert system, the rules being developed by

8There are many reasons why it might not be, including the fact that the expert in question
may not wish to have their knowledge acquired for use in a computer system.

9An early version of derek was developed by Schering Agrochemicals and donated to
lhasa, which is now responsible for the development of the system [52].
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the expert toxicologists who work for lhasa and the various organisations that
use derek.

A consultation with derek begins with the user entering the structure of
the chemical in question. The system then compares the structure with rules
such as [51]:

if a substance contains a carbamate group bear-
ing a small N-alkyl substituents approximately 5.2
angstroms from a nitrogen, oxygen or sulfur atom,
bearing a small- to medium-sized lipophilic sub-
stituent or substituents and ideally carrying a posi-
tive charge at biological pH
and it is not too large to fit into the enzyme cavity
and it has a log P = -0.5 to + 3.0

then the substance is likely to be insectidal.

The structural information for such rules are written in the language patran
[64, 74], and additional information is recorded in the language chmtrn.

These rules and the structural activity relationships they encode, are used to
identify any structural fragments, or toxicophores, that are suspected of being
the cause of any toxicity in the chemical. These toxicophores are then displayed,
along with a description of the toxicity they are suspected of causing—the kinds
of toxicity covered by the system are mutagenicity, carcinogenicity, and skin sen-
sitization. The performance of the system is typical of expert systems. Tested on
250 chemicals from the National Toxicology Program salmonella mutagenicity
database, derek correctly predicted the genotoxicity of 98% of the 112 Ames
positive compounds, and the non-genotoxicity of 70% of the Ames negative
compounds [36]. An analysis of this performance is contained in [37].

As mentioned above, the rule-base used by derek is under constant de-
velopment, and some of the techniques used for this development have been
published. A description of the development and validation of the part of the
derek rule-base that relates to skin sensitization can be found in [3], while [51]
explains how the rex system [50] can be used to automatically generate new
rules for derek.

3.2 StAR

The star project, a collaboration between lhasa and the Imperial Cancer Re-
search Fund10 developed software for identifying the risk of carcinogenicity as-
sociated with chemical compounds [27, 61], extending the work in derek.

In the carcinogenicity prediction domain, environmental and epidemiological
impact statistics are often unavailable, so an approach known as argumentation
is adopted. In this approach, the expert system builds arguments, based on
whatever information is available, for or against the carcinogenicity of the chem-
ical in question, and uses the interaction between these arguments to estimate

10The icrf has now become Cancer Research UK. The project also involved Logic Pro-
gramming Associates and City University, London.
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the gravity of the risk. Thus if there is one argument that a chemical might
be carcinogenic (because it contains some functional group which is known to
cause cancer in rats) then there is a risk that the chemical might cause cancer
in humans. However, if there is a second argument which defeats the first (by,
for instance, pointing out that the cancer-causing mechanism in rats involves an
enzyme which is not present in humans) then the risk is considered to be lower.
A British Government report on micro-biological risk assessment identifies star
as a major new approach to this important problem [39].

The demonstrator system produced by the star project is a prototype for
a computer based assistant for the prediction of the potential carcinogenic risk
due to novel chemical compounds. A notion of hazard identification is taken as
a preliminary stage in the assessment of risk, and the hazard identification used
in star draws heavily on the approach taken in derek. As described above,
derek is able to detect chemical sub-structures within molecules, known as
structural alerts, and relate these to a rule-base linking them with likely types
of toxicity. star builds on derek’s ability to identify structural alerts, but uses
a different set of alerts. In particular, the alerts used by star were taken from
a U.S. fda report identifying sub-structures associated with various forms of
carcinogenic activity [23].

The user of the carcinogenicity risk adviser presents the system with the
chemical structure of the compound to be assessed, together with any additional
information which may be thought relevant (such as possible exposure routes, or
species of animal that will be exposed to the chemical). The chemical structure
may be presented using a graphical interface. The database of structural alerts
is then searched for matches against the entered structure. If a match is found,
a theorem prover tries to construct arguments for or against the hazard being
manifest in the context under consideration. Having constructed all the relevant
arguments, a report is generated on the basis of the available evidence, and the
user can take appropriate action. Thus the star system is an expert assistant
rather than a system that is intended to take action directly.

For a better understanding of how star works, let’s look at some exam-
ples. For ease of presentation, these examples use a simplified database, and
some of the following assessments may be chemically or biologically naive. The
argumentation mechanism, however, is accurately described.

The first example is shown in Figure 4. Here, the user has entered a relatively
simple structure based on an aromatic ring. The system has identified that
it contains an alert for epoxides (the triangular structure to the top right).
Whilst constructing arguments, the system has recognised that the LogP value
is relevant in this case, and so queries the user for this information (loosely,
the value of LogP gives a measure of how easily the substance will be absorbed
into tissue). The functional group for epoxides is indicative of a direct acting
carcinogen, and the value of LogP supplied by the user is supportive of the
substance being readily absorbed into tissue. Hazard recognition plus supportive
evidence, with no arguments countering potential carcinogenic activity, yields
the classification of a “probable human carcinogen” (the result might be different
for different animals). Figure 4 shows the summary report. The query box is
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Figure 4: The star Demonstrator: Example 1

illustrated in this screen image, although it would normally have been closed by
this stage.

The second example is shown in Figure 5. This involves a structure which
contains an alert for peroxisome proliferators. The top-most screen contains
a simple non-judgemental statement to this effect. The lower screen contains
the summary of the argumentation stage of analysis. Here, evidence is equiv-
ocal because there is evidence both for and against the carcinogenicity of the
compound.

The third example shows how star handles equivocal evidence in more de-
tail. Figure 6 shows the reports generated for another compound for which there
are arguments for and against carcinogenicity, and so no overall conclusion can
be reached. The argument for carcinogenicity is that the structure contains
the same peroxisome proliferators alert as in the previous example, and this
is indicative of carcinogenic activity in rats and mice. Set against this is the
argument that extrapolating from the result in rodents to carcinogenicity in hu-
mans is questionable since large doses were required to cause cancer in the test
subjects. As indicated in Figure 6, the star system can produce further levels
of explanation—in this case explanation related to the “high doses required to
obtain results in rats and mice”.

The use of argumentation in star is discussed in more detail in [53] and [60],
while the representation of chemical structure—part of the specialised knowl-
edge representation required for the toxicology domain—is described in [95],
and the main reference for the system of argumentation that underpins star
is [59]. It is also worth noting that, as part of the star project, experiments
were carried out to test people’s intuitive understanding of the terms used to
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Figure 5: The star Demonstrator: Example 2

express the results of the argumentation process. These results are explored in
[2, 28]. The experiments on how people interpret arguments are useful in the
context of star because argumentation is being used not only as a mechanism
for reaching a decision about carcinogenicity, but also as a means of explaining
it. In this sense argumentation can be considered an extension of approaches
like that of casetox [57] where properties are inferred on the basis of structural
similarity. However, as we will discuss in the next section, argumentation can
go far beyond this.

Before we pass on to this discussion, it is worth noting that the results from
the star project have been incorporated in the successor to derek, derek for
Windows. The model of argumentation used in derek for Windows is described
in [55], and its use in derek for Windows is elaborated in [54]. Finally, [12]
describes how an extended version of the argumentation system is applied in the
meteor system for predicting potential metabolic pathways for xenobiotics.

13



Figure 6: The star Demonstrator: Example 3

4 Systems of argumentation

Having given an example of the kind of system that can be built using an
argumentation system, we turn to examining in more detail the kind of reasoning
that can be handled using this kind of approach.

4.1 An overview of argumentation

An argument for a claim may be considered as a tentative proof for the claim.
The philosopher Stephen Toulmin [96] proposed a generic framework for the
structure of arguments which has been influential in the design of intelligent
systems which use argumentation [29, 60, 98]. Our analysis, informed by Toul-
min’s structure, considers an argument to have the form of a proof, without
necessarily its force.

Suppose φ is a statement that a certain chemical is carcinogenic at a specified
level of exposure. Then an argument for φ is a finite, ordered sequence of
inferences Gφ = (φ0, φ1, φ2, . . . , φn−1). Each sub-claim φi is related to one or
more preceding sub-claims φj , j < i, in the sequence as result of the application
of an inference rule, Ri, to those sub-claims. The rules

⋃

i

{Ri}

underwrite the reason why φ is a reasonable conclusion, and they correspond
to warrants in Toulmin’s schema and are called step-warrants in Verheij’s legal

14



r1 battery old→ battery dodgy

r2 alternator broken→ ¬battery charging
r3 battery dodgy ∧ ¬battery charging → battery bad

r4 battery bad→ ¬radio working
r5 battery bad→ ¬lights working

Figure 7: An example set of formulae

∧-I
` ϕ ` ψ
` ϕ ∧ ψ

→-E
` ϕ ` ϕ→ ψ

` ψ

Figure 8: Two rules for natural deduction

argumentation system [98]. Note that Ri and Rj may be the same rule for
different i and j.

We may present the sequence for a very simple argument graphically as
follows:

φ0

R1−→ φ1

R2−→ φ2 −→ . . . −→ φn−1

Rn−→ φ

If any of these rules were rules of inference generally considered valid in deductive
logic (modus ponens, say), then we would be confident that truth would be
preserved by use of the rule. In other words, using a valid rule of inference at
step i means that whenever φi−1 is true, so too is φi. If all the rules of inference
are valid in this sense, then the argument Gφ constitutes a deductive proof of
φ. As an example, consider the logical formulae in Figure 7—a reformulation
of the rules from Figure 1—and the rules of inference in Figure 8. The first of
these rules says that if you can prove two things separately, then you can prove
their conjunction. The second is just modus ponens. Now, if we are told that
the battery is old and the alternator is broken, then we can give the following
argument for ¬lights working:

battery old, battery dodgy, alternator broken,

¬battery charging, battery bad,¬lights working

Note that to represent even this straightforward example graphically requires a
branching structure like that given in Figure 9 (which covers the first part of
the argument only, but enough to show the idea).11

11A simple linear argument would be:

p ∧ q ∧ r
∧−E
−→ p ∧ q

∧−E
−→ p

where ∧-E is:
` ϕ ∧ ψ

ϕ
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battery old
︸ ︷︷ ︸

battery old→ battery dodgy
︸ ︷︷ ︸

↘ →-E ↙
battery dodgy
︸ ︷︷ ︸

↘

∧-I battery dodgy ∧ ¬battery charging
︸ ︷︷ ︸

↗
¬battery charging
︸ ︷︷ ︸

↗ →-E ↖
alternator broken
︸ ︷︷ ︸

alternator broken→ ¬battery charging
︸ ︷︷ ︸

Figure 9: A branching argument structure

1
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This machinery would be sufficient if we were only interested in inferences
that were valid in the sense of preserving truth. However, the situations of
interest to us in toxicology (as indeed is the case in many domains) are when
some or all of the inference rules are not valid.

In pure mathematics in general, once a theorem has been proven true, fur-
ther proofs do not add to its truth, nor to the extent to which we are willing
to believe the theorem to be true. However, even pure mathematicians may
have variable belief in an assertion depending upon the means used to prove it.
For example, constructivist mathematicians (e.g. [5, 97]) do not accept infer-
ence based on proof techniques which purport to demonstrate the existence of
a mathematical object without also constructing it. Typically, such proofs use
a reductio ad absurdum argument, showing that an assumption of non-existence
of the object leads to a contradiction. Thus, constructivist mathematicians will
seek an alternative proof for an assertion which a non-constructivist mathemati-
cian would accept as already proven.

Although originally a contentious notion within pure mathematics, construc-
tivist mathematics has obvious applications to computing, and has recently been
proposed as a medium for the foundations of quantum physics [8]. Likewise, in
another example, not all mathematicians accept the use of computers in proofs,
or may do so only for some proofs. Computers have been used, for instance, to
prove the Four Color Map Theorem [1] and to demonstrate the non-existence
of projective planes of order 10 [62]. For an interesting deconstruction of math-
ematical proofs as “objectively existing real things” see Appendix D of [32].

Argumentation extends this idea of different kinds of proof being more or
less convincing. In general, all alternative arguments are of great interest, and
the greater the number of independent arguments that exist for a claim, the
stronger is the case for it, and the stronger may be our belief in its truth.
However, in arriving at a considered view as to our belief in the truth of a claim
φ, we also need to consider the arguments against it, the arguments in favour of
its negation ¬φ (which may not be the same thing), and any arguments which
attack its supporting sub-claims, φi.

Given these different arguments and counter-arguments, it is possible to
define a symbolic calculus, called a Logic of Argumentation, which enables
the combination (“flattening”) of arguments for and against a proposition [30].
Since an argument is a tentative proof of a claim, our degree of belief in the
claim will likely depend upon the argument advanced for it. Thus, for each
pair (φ,Gφ) consisting of a claim and an argument for it, we can associate a
measure αφ of our strength of belief in φ given Gφ. We represent this as a
triple (φ,Gφ, αφ), which we call an assessed argument.12 The belief-indicator
may be a quantitative measure, such as a probability, or an element from a
qualitative dictionary, such as {Likely, Unlikely}. In either case, we can define
algebraic operations on the set of belief-indicators (the “denotation dictionary
for belief”) enabling us to generate the degree of belief in a combined argument,

12The use of “assessment” here is analogous to the concept of valuation in mathematical
logic [83].
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when we know the degrees of belief of the subsidiary arguments. In addition to
belief-indicators, one can also define other labels for claim-argument pairs, such
as the values of world-states and the consequences of actions arising from the
claim [30].

The fact that we can attach measures to arguments based upon their rela-
tionship to other arguments (a relationship that can be based upon the contents
of the grounds or the sub-claims) is very powerful. It gives us a way of defining
alternative meta-theories for argumentation systems, and of using these meta-
theories for reasoning about the arguments themselves. This is the key feature of
argumentation, and one that distinguishes it from other approaches to reasoning
about toxicology.

4.2 Argumentation applied to prediction of carcinogenic-

ity

The star system described above is one example of how argumentation can be
applied to risk prediction, and the approach has been applied by workers at
Cancer Research UK to other risk prediction problems (see [78], for another
example). There are other ways of using argumentation, however, and in this
section we describe one direction in which we are moving [66]. We start with
the question :

On what basis do scientists claim that a chemical substance is car-
cinogenic?

Such claims can be based upon evidence from a number of sources (adapted
from [22] and [35]):

• Using chemical theoretical reasoning, on the basis of the chemical struc-
ture of the substance and the known carcinogenicity of chemicals with
congeneric structures.

• From mutagenicity tests, applying the substance to tissue-cultures in lab-
oratory experiments.

• From experiments involving the application of the chemical to human or
animal cadavars.

• From bioassays, applying the substance to animals in a laboratory exper-
iment.

• From epidemiological studies of humans, either case-control studies (where
a case group of people exposed to the substance is matched with a control
group not so exposed, and their relative incidences of cancer compared),
or cohort studies (where the incidence of the cancer among people exposed
to the substance is compared with that in the general population, while
controlling for other potential causal and interacting factors).

• From elucidation of theoretically-sound bio-medical causal pathways.13

13These are E-theories in Pera’s [80, page 154] typology of scientific theories.
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Now, elucidation of causal pathways is generally not undertaken until evidence
of an empirical nature is observed. Hence, we focus on the other categories
of evidence. There are a number of comments one can make on the relative
value of these different approaches. Reasoning from chemical structure is still
an imprecise and immature science for most substances; indeed, automated pre-
diction of carcinogenicity and other properties of chemicals on the basis of their
structure is an active area of Artificial Intelligence research [44, 94]. Mutagenic
tests may demonstrate carcinogenicity in principle, but do not reveal what will
happen in a whole, living organism (with, for instance, viral defences), nor in an
environment similar to that of people exposed to the substance. Experiments
with cadavars have similar difficulties. Moreover, because the incidence rates of
many cancers are very small, epidemiological studies may require large sample
sizes, and so can be quite expensive. Also, the time-lag between exposure to
typical environmental doses and the onset of a cancer can be very long (in the
order of decades), so these studies can take years to complete. For these reasons
and others, the most common form of assessment of potential carcinogenicity is
the bioassay.

We therefore turn our attention to animal bioassays. Because of the diffi-
culties in inferring conclusions about humans on the basis of evidence about
animal species, most cautious scientists and policy makers would not assert car-
cinogenicity to humans from a bioassay: they would, at best, only claim that
there is a (perhaps high) probability of human carcinogenicity.14 However, al-
though it is perhaps the most contentious, the animal-to-human inference is not
the only inference being deployed in concluding such a probability. It is also
not the only inference deployed when quantifying the extent of risk. It therefore
behooves us to examine all the modes of inference used. In doing so, we have
abstracted from a number of descriptions and critiques of carcinogenic risk as-
sessment processes [4, 6, 9, 22, 33, 34, 35, 47, 63, 72, 76, 82, 87, 90], both ideal
and actual.

For the purposes of exposition, we therefore suppose an archetypal animal
bioassay for a chemical substance X is undertaken. This will involve the admin-
istration of specific doses of X to selected animal subjects, usually repeatedly,
in a laboratory environment. Typically, two or three non-zero dose-levels are
applied to the subject animals, along with a zero-dose to the control group.
The rates at which cancers of a specific nature develop is then observed in each
group until a pre-determined time-point (usually the natural life-span of the
animal). Those animals still alive at that time are then killed, and a statistical
analysis of the hypotheses that exposure to the substance X results in increased
incidence of cancer is then undertaken. Suppose that, based on this animal
bioassay, a claim is then made that X is carcinogenic to humans at a specified
dose. For ease of expression we will notate this claim by φ. In asserting φ

from the evidence of the bioassay, a number of subsidiary inferences need to

14Indeed, the USA Environmental Protection Agency guidelines [22] permit one to claim
probable human carcinogenicity from (sufficiently strong) animal evidence alone. Although
such a claim would be classed in the second of two categories of “probable”, it is still above
“possible” human carcinogenicity.
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be made. We have expressed these in the form of “FROM antecedent TO con-
sequent”. This is short-hand for saying that an act of inference is undertaken
whenever one assumes that the consequent is true (or takes a particular value)
upon the antecedent being true (or, respectively, having taken a corresponding
value).

The list of subsidiary inferences is as follows:

1. FROM Administered dose TO Delivered dose. Animal bodies de-
fend themselves against foreign substances. Their ability to do this may
be impacted by the amount of the foreign substance ingested or to which
the animal is exposed. For example, chemicals applied to nasal tissues are
initially repelled by defences in the tissues themselves. Larger doses may
destroy this first line of defence, thereby permitting proportionately more
of the chemical to enter the body’s circulatory pathways than would occur
for smaller doses. In other words, the dose delivered to the target tissue
or organ of the body may not be proportionate to the dose administered
to the animal by the experimenter.

2. FROM A sample of animals TO A population of the same species.

Reasoning from a sample to a population from which the sample is drawn
in known as statistical inference.

3. FROM A genetically uniform animal population TO A geneti-

cally more diverse population. Animal subjects used in laboratory
experiments are often closely related genetically, both in order to control
for the impact of genetic diversity on responses and because, for reasons
of convenience, subjects are used from readily-available sources. Conse-
quently, the animal subjects used in bioassays are often not as diverse
genetically as would be a wild population of the same species.

4. FROM An animal population TO The human population. This
is perhaps the most contentious inference-step in carcinogenicity claims
from bioassays. Animals differ from humans in their physiology and in
their body chemistry, so it is not surprising that they also differ from us
in reactions to potential carcinogens. Indeed, they differ from each other.
According to Graham et al. [34, page 18], writing more than a decade
ago, “Several hundred chemicals are known to be carcinogenic to labora-
tory animals, but direct evidence of their human carcinogenicity is either
insufficient or nonexistent.” Formaldehyde, for instance, was found to
cause significant nasal cancers in rats but not in mice [34], while epidemi-
ological studies of humans whose professions exposed them to high levels of
the chemical found no significant increases in such cancers. Conversely—
and perversely—epidemiological studies did reveal significant increases in
brain cancers and leukaemias, for which there was no biologically-plausible
explanation [34].

5. FROM A site specificity in bioassay animals TO A possibly dif-

ferent site specificity in humans. Most chemicals are pre-carcinogens
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which must be altered by the body’s metabolic processes into an actively
carcinogenic form. This happens differently in different species, because
the body-chemistries are different or because the physiology or relative
sizes of organs are different. Hence, a chemical may cause liver cancer in
one animal species, but not in another species, or act elsewhere in another.

6. FROM Localised exposure TO Broader exposure. Bioassays ad-
minister a chemical to a specific site in a specific way to the subject
animals, as for example, in bioassays of formaldehyde applied to nasal
passages to test for nasal cancer. In contrast, humans exposed to it may
receive the chemical in a variety of ways. Morticians exposed to formalde-
hyde may receive it via breathing and by direct application to their skin,
for example.

7. FROM Large doses TO Small doses. At typical levels of exposure,
the incidences of most individual cancers in the general population are
quite small, of the orders of a few percent or much less. At equivalent
dose levels, then, bioassays will require very large sample sizes to detect
statistically significant increases in cancer incidence. This would be pro-
hibitively expensive, and so most bioassays administer doses considerably
greater than the equivalent doses received (allowing for the relative sizes
of the animal and human species) in the environment. In order to as-
sert carcinogenicity, then, a conversion model—a dose-response curve—is
required to extrapolate back from large to small dose levels.

While one might expect the dose-response curve to slope upwards with
increasing dose levels, this is not always the case. For example, high doses
of a chemical may kill cells before they can become cancerous; or a chem-
ical may be so potent that even low doses initiate cancer in all cells able
to be so initiated, and thus higher doses have no further or a lesser effect.
Indeed, if the chemical is believed to be mutagenic as well as carcinogenic,
then even a single single molecule of the chemical should cause an effect.
The issue of whether or not a threshold level for dose exists (below which
no response would be observed) is a contentious one in most cases. Fu-
elling controversy is the fact that claims of carcinogenicity can be very
sensitive to the dose-response model used. Two theoretically-supported
models for the risks associated with aflatoxin peanuts, for example, show
human risk likelihood differing by a factor of 40,000 [82]. Similarly, the
Chief Government Medical Officer of Great Britain recently admitted that
the number of people eventually contracting CJD in Britain as a result
of eating contaminated beef may be anywhere between a few hundred
and several million [99]. For this reason, this inference is probably the
most controversial aspect of carcinogenicity claims, after that of animal-
to-human inference (Inference-Mode No. 4 above).

8. FROM An animal dose-level TO A human equivalent. The dis-
cussion of Inference-Mode no. 7 used the phrase “allowing for the relative
sizes of the animal and human species”. But how is this to be done? Is the
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dose extrapolated according to relative body weights of the two species
(animal and human); or skin surface area (which may be appropriate for
chemicals absorbed through the skin); or relative size of the organ af-
fected? What is appropriate if different organs are affected in different
species?

9. FROM Administered doses TO Environmental exposure. In order
to expedite response times, bioassays may administer the chemical in a
manner different to that likely to be experienced by humans exposed to
it in their environment. For example, the chemical may be fed via a tube
directly into the stomach of the animal subject, which is unlikely to be
the case naturally.

10. FROM A limited number of doses TO Cumulative exposure.

Some chemicals may only produce adverse health effects after a lifetime
of accumulated exposure. Body chemistry can be very subtle, and a small
number of large doses of a chemical may have a very different impact from
a much larger number of smaller doses, even when the total dose received
is the same in each case.

11. FROM A pure chemical substance TO A chemical compound.

Most chemicals to which people are exposed are compounds of several
chemicals, not pure substances. Bioassay experiments, however, need to
be undertaken with pure substances, so as to eliminate any spurious causal
effects. Consequently, a bioassay will not be able to assess any effects due
to interactions between substances which occur in a real environment,
including any transformations which take place inside the human body.

12. FROM The human population TO Individual humans. Individ-
uals vary in their reactions to chemical stimuli, due to factors such as
their genetic profiles, lifestyles, and personalities. Risks of carcinogenicity
may be much higher or much lower than claimed for specific groups or
individuals.

These forms of inference could correspond to the inference rules Ri discussed in
the previous section.

To claim human carcinogenicity on the basis of evidence from a bioassay
thus depends on a number of different modes of inference, each of which must
be valid for the claim to stand. We could write:
“The chemical X is carcinogenic to humans at dose d based on a bioassay of
animal species a if:

• There is a relationship between administered dose and delivered dose in
the bioassay, AND

• The sample of animals used for the experiment was selected in a represen-
tative manner from the population of animals, AND
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• The animal population from which the sample was drawn is as genetically
diverse as the animal population as a whole, AND

• The specific animal physiology and chemistry relevant to the activity of X
is sufficiently similar to human physiology and chemistry,”

...

and so on, through the remaining eight inference steps.
It is important to note that even if all modes of inference were valid in a

particular case, our assertion could, strictly speaking, only validly be that the
chemical X is associated with an increase in incidence of the particular cancer.
The assertion φ does not articulate, nor could a bioassay or epidemiological
study prove, a causal pathway from one to the other. There may, for example,
be other causal factors leading both to the presence of the chemical in the
particular environment and to the observed carcinogenicity.

For the archetypal analysis above, we began with the assumption of just
one bioassay being used as evidence to assert a claim for carcinogenicity. In
reality, however, there is often evidence from more than one experiment and, if
so, statistical meta-analysis may be appropriate [81]. This may involve pooling
of results across different animal species, or across both animal and human
species.15 None of these tasks are straightforward, and will generally involve
further modes of inference, which we have yet to explore. The situation is further
complicated by the fact that most chemical substances which adversely impact
the body cause a number of effects—cell mutation, malignant tumours, benign
tumours, toxicity to cells, cell death, cell replication, suppression of the immune
system, endocrine disturbances and so on. Some of these clearly interact—dead
cells cannot then become cancerous, for instance—and the extent of interaction
may be a non-linear function of the dose levels delivered. Simple claims about
carcinogenicity often ignore these other effects and their interactions with the
growth of malignant tumours (“carcinogenicity”). We do not deal with this
issue here.

It is possible that working biomedical scientists and scientific risk assessors
would consider the list above to be an example of extreme pedantry, and that
many of these modes of inferences are no more than assumptions made in order
to derive usable results. We have treated them as inference-modes so as to be
quite clear about the reasoning processes involved. Our purpose in doing so is
to make possible the automation of these processes, which we believe we can do
using an argumentation formalism as described above.

For now this still remains to be done. However, we have begun to take some
steps in this direction. In [65] we describe a formal system of argumentation
that includes in the grounds of an argument the inference rules used (in effect
replicating the full chain of reasoning in the grounds). This makes it possible to
attack an argument not only in terms of the formulae used in its construction,

15The U.S.A. Environmental Protection Agency Guidelines [22] deal, at a high level, with
the second issue.
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but also the mode of inference. This, in turn, paves the way for argumentation
based upon different logics, logics that can capture the different inference-modes
described above.

We have also [67] investigated how argumentation may be used to support
the process of scientific enquiry. This work shows how a system of argumentation
may be used to keep track of different claims, about the toxicity of a chemical
for instance, and to summarise the overall belief in the claim at a particular
time. In addition, we have shown that this form of argumentation eventually
converges on the right prediction about toxicity given the evidence—showing
that the system exhibits the necessary soundness of reasoning. Future work is
to combine these two pieces of work, allowing the different claims in the latter
to be based on the different kinds of reasoning of the former.

5 Summary

The aims of this chapter were to examine the extent to which expert systems
can provide a suitable solution to the problem of predicting toxicity, and to
provide some pointers to those who want to try such a solution for themselves.
These aims were achieved in the following way.

First, we gave a description of the kind of knowledge representation and
reasoning possible with production rules and Bayesian networks, two of the
main approaches to building expert systems. Then we looked in some detail at
two particular expert systems, derek and star, that predict toxicology risk.
The heart of the star system is provided by a mechanism for argumentation—a
system of reasoning that builds up reasons for and against predictions in order
to decide which is best. This kind of reasoning is described in detail, along
with the directions in which we are developing the theory. This, we feel, gives
a good survey of the way in which expert systems techniques can be applied
to toxicology risk prediction. The second aim was achieved by the provision of
copious references throughout the chapter.

In summary, our view is that expert systems techniques are a good foun-
dation from which to attack the problem of predicting toxicology risk. We feel
that the most promising of these techniques is that of argumentation, a position
supported by [39], although argumentation needs to be extended, along the lines
described above, before its full value will be realised.
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