
On the relationship between DeLP and ASPIC+

Simon Parsons1 and Andrea Cohen2

1 Department of Informatics, King’s College London
simon.parsons@kcl.ac.uk

2 Institute for Computer Science and Engineering, CONICET-UNS
Department of Computer Science and Engineering, Universidad Nacional del Sur

ac@cs.uns.edu.ar

Abstract. In this chapter we consider the relationship between DeLP
and ASPIC+. The fact that these systems are different is well known,
but what is less well known is exactly how these systems differ, and,
perhaps more interestingly, the ways in which they are the similar. We
do not get to the bottom of the relationship between the systems in this
chapter, but we do at least set the foundations for a detailed exploration.

Keywords: structured argumentation, defeasible logic programming,
DeLP, ASPIC+

1 Introduction

As discussed in [8], work on argumentation can be traced back at least as far as
the mid-1980s, where it grew out of attempts to create logics that were capable
of defeasible reasoning. Early work on argumentation produced many differ-
ent systems with different ways of representing knowledge, with different ways
of constructing arguments, with different ways of identifying conflicts between
arguments, and with different methods for identifying what conclusions were
acceptable, that is which conclusions could reasonably be drawn from a given
knowledge base. In the early 1990s, Dung’s introduction of abstract argumen-
tation [12, 13] changed the study of argumentation in two ways. First, Dung’s
work led researchers to separate the process of determining acceptable conclu-
sions from the process of determining what arguments could be constructed
from a knowledge base, and what conflicts existed between them. The first of
these processes was the domain of abstract argumentation, the second of these
processes was the domain of structured argumentation. Second, Dung’s work let
to a form of standardization of work on argumentation. Because his approach
to determining acceptable arguments — and hence the justified conclusions of
the acceptable arguments — became widely adopted, it led to most work on
argumentation having a common theme in its use of the Dung semantics.

One indication of the extent to which the Dung semantics came to dominate
work on argumentation is their adoption by the ASPIC+ framework. ASPIC+

[17, 20] was conceived as a general abstract model of structured argumentation,
and reading through the detail of the way it represents knowledge, constructs

arguments, and identifies conflicts (see Section 2), it clearly draws in elements of
many different argumentation systems. However, it only considers one method
for establishing which arguments are acceptable, the Dung semantics.

Now, widely used as they are, the Dung semantics are not the only way to es-
tablish the conclusions of an argumentation system. Indeed, there are approaches
to doing just this which have been around longer. One of these was proposed by
Guillermo Simari in his PhD thesis in 1989 [21, 22], and this method for estab-
lishing the warranted conclusions of a knowledge base was later integrated into
the Defeasible Logic Programming (DeLP) approach proposed in [14]. Because
DeLP does not make use of the Dung semantics, it cannot be thought of as a
specialization of the ASPIC+ framework. However, that does not, on its own,
mean that the frameworks are particularly different. Indeed, as we show in this
chapter, the two approaches are similar in many regards.

In the body of this chapter we seek to revisit several aspects that differen-
tiate DeLP from ASPIC+, analyze the common grounds between the two ap-
proaches, and study the possibility of establishing conditions, either on ASPIC+

or on DeLP, that would help bridge the gap between them. We start with a
brief introduction of the two, ASPIC+ in Section 2 and DeLP in Section 3.
Then, in Section 4 we move on to comparing the two approaches. We discuss the
similarities and differences between them under four headings: their knowledge
representation capabilities, the mechanism they adopt for argument construc-
tion, the different kinds of attack and defeat they consider, and the way in
which they select accepted arguments and justified conclusions.

2 ASPIC+ Background

ASPIC+ is deliberately defined in a rather abstract way, as a system with a min-
imal set of features that can capture the notion of argumentation. This is done
with the intention that it can be instantiated by a number of concrete systems
that then inherit all of the properties of the more abstract system. ASPIC+

starts from a logical language L with a notion of negation. A given instantiation
will then be equipped with inference rules, and ASPIC+ distinguishes two kinds
of inference rules: strict rules and defeasible rules. Strict rules, denoted using→,
are rules whose conclusions hold without exception. Defeasible rules, denoted
⇒, are rules whose conclusions hold unless there is an exception.

The language and the set of rules define an argumentation system:

Definition 1 (Argumentation System). An argumentation system is a tuple
AS = 〈L, , Rules, n〉 where:

– L is a logical language.
– is a function from L to 2L , such that:

• ϕ is a contrary of ψ if ϕ ∈ ψ, ψ 6∈ ϕ;
• ϕ is a contradictory of ψ if ϕ ∈ ψ, ψ ∈ ϕ;
• each ϕ ∈ L has at least one contradictory.

– Rules = Ruless ∪ Rulesd is a set of strict (Ruless) and defeasible (Rulesd)
inference rules of the form φ1, . . . , φn → φ and φ1, . . . , φn ⇒ φ respec-
tively (where φi, φ are meta-variables ranging over wff in L), and Ruless ∩
Rulesd = ∅.

– n : Rulesd 7→ L is a naming convention for defeasible rules.

The function generalizes the usual symmetric notion of negation to allow non-
symmetric conflict between elements of L. The contradictory of some ϕ ∈ L is
close to the usual notion of negation, and we denote that ϕ is a contradictory of
ψ by “ϕ = ¬ψ”. Note that, given the characterization of , elements in L may
have multiple contraries and contradictories. As we will see below, the naming
convention for defeasible rules is necessary because there are cases in which we
want to write rules that deny the applicability of certain defeasible rules. Naming
the rules, and having those names be in L makes it possible to do this, and the
denying applicability makes use of the contraries of the rule names.

An argumentation system, as defined above, is just a language and some rules
which can be applied to formulae in that language. To provide a framework in
which reasoning can happen, we need to add information that is known, or
believed, to be true. In ASPIC+, this information makes up a knowledge base:

Definition 2 (Knowledge Base). A knowledge base in an argumentation sys-
tem 〈L, , Rules, n〉 is a set K ⊆ L consisting of two disjoint subsets Kn and Kp.

We call Kn the axioms and Kp the ordinary premises. We make this distinction
between the elements of the knowledge base for the same reason that we make
the distinction between strict and defeasible rules. We are distinguishing between
those elements — axioms and strict rules — which are definitely true and allow
truth-preserving inferences to be made, and those elements — ordinary premises
and defeasible rules — which can be disputed.

Combining the notions of argumentation system and knowledge base gives
us the notion of an argumentation theory :

Definition 3 (Argumentation Theory). An argumentation theory AT is a
pair 〈AS,K〉 of an argumentation system AS and a knowledge base K.

We are now nearly ready to define an argument. But first we need to introduce
some notions that can be defined just by understanding that an argument is made
up of some subset of the knowledge base K, along with a sequence of rules, that
lead to a conclusion. Given this, Prem(·) returns all the premises, Conc(·) returns
the conclusion and TopRule(·) returns the last rule in the argument. Sub(·)
returns all the sub-arguments of a given argument, that is all the arguments
that are contained in the given argument. In addition, given A′ ∈ Sub(A) such
that A′ 6= A, we will say that A′ is a proper sub-argument of A.

Definition 4 (Argument). An argument A from an argumentation theory
AT = 〈〈L, , Rules, n〉,K〉 is:

1. φ if φ ∈ K with: Prem(A) = {φ}; Conc(A) = φ; Sub(A) = {A}; and
TopRule(A) = undefined.

2. A1, . . . , An → φ if Ai, 1 ≤ i ≤ n, are arguments and there exists a strict rule
of the form Conc(A1), . . . , Conc(An)→ φ in Ruless. Prem(A) = Prem(A1)∪
. . .∪ Prem(An); Conc(A) = φ; Sub(A) = Sub(A1)∪ . . .∪ Sub(An)∪ {A}; and
TopRule(A) = Conc(A1), . . . , Conc(An)→ φ.

3. A1, . . . , An ⇒ φ if Ai, 1 ≤ i ≤ n, are arguments and there exists a de-
feasible rule of the form Conc(A1), . . . , Conc(An)⇒ φ in Rulesd. Prem(A) =
Prem(A1)∪. . .∪Prem(An); Conc(A) = φ; Sub(A) = Sub(A1)∪. . .∪Sub(An)∪
{A}; and TopRule(A) = Conc(A1), . . . , Conc(An)⇒ φ.

We write A(AT) to denote the set of arguments from the theory AT .

In other words, an argument is either an element of K, or it is a rule and its
conclusion such that each premise of the rule is the conclusion of an argument.
Note that, as stated by the authors in [17]: “Note that all premises in ASPIC+

arguments are used in deriving its conclusion, so enforcing a notion of relevance
analogous to the subset minimality condition requirement on premises in classical
logic approaches to argumentation”.

A key concept in argumentation is the idea that even if there is an argu-
ment for some conclusion, indicating that there is a prima facie case for the
conclusion, the conclusion may not be reasonable because there is a stronger ar-
gument that it does not hold. This notion is particularly natural in a multiagent
setting, where different agents have different viewpoints, leading to conflicting
arguments. However, it is perfectly possible for a single argumentation theory,
representing the information held by a single individual, to be the basis of con-
flicting arguments. We capture this kind of interaction through the idea that one
argument can attack and defeat another.

An argument can be attacked in three ways: on its ordinary premises, on
its conclusion (either final or intermediate), or on its defeasible inference rules.
These three kinds of attack are called undermining, rebutting and undercutting
attacks, respectively.

Definition 5 (Attack). An argument A attacks an argument B iff A under-
mines, rebuts or undercuts B, where:

– A undermines B (on B′) iff Conc(A) ∈ φ for some B′ = φ ∈ Prem(B) and
φ ∈ Kp.

– A rebuts B (on B′) iff Conc(A) ∈ φ for some B′ ∈ Sub(B) of the form
B′′

1 , . . . , B
′′
2 ⇒ φ.

– A undercuts B (on B′) iff Conc(A) ∈ n(r) for some B′ ∈ Sub(B) such that
TopRule(B′) is a defeasible rule r of the form φ1, . . . , φn ⇒ φ.

We denote “A attacks B” by (A,B).

In all these cases, the idea is that an attack can be made on an element of
an argument that is not known for sure to hold. An attack can thus be made
on an ordinary premise — which might be an assumption or a belief — rather
than an axiom, and both the other forms of attack involve defeasible rules. The
difference between strict rules, using →, and defeasible rules, using ⇒, is nicely

summarized by [14]. A defeasible rule captures “tentative information that may
be used if nothing (can) be posed against it”. The fact that “nothing can be
posed against” the use of a defeasible rule is established by a proof mechanism
that looks for arguments against conclusions established using defeasible rules
[14]:

(a) defeasible rule represents a weak connection between the head and the
body of the rule. The effect of a defeasible rule comes from a dialectical
analysis . . . which involves the consideration of arguments and counter-
arguments where that rule is included.

ASPIC+ allows defeasible rules to be undercut, in which case the application of
the rule is attacked by an argument that states the rule does not hold3. Similarly,
since defeasible rules are tentative, ASPIC+ allows the conclusions of such rules
to be rebutted. The particular notion of rebutting used in ASPIC+ is said to
be restricted, meaning that an argument with a strict TopRule(·) can rebut an
argument with a defeasible TopRule(·), but not vice versa. Rebutting is thus
asymmetric4.

Typically we want to model information that is believed to different degrees,
and within ASPIC+ we do this using a preference order over the elements of Rd

and Kp. The question then is how these preferences combine into an ordering �
over arguments:

Definition 6 (Preference Ordering). A preference ordering � is a binary
relation over arguments, i.e., � ⊆ A × A, where A is the set of all arguments
from an argumentation theory. Given A,B ∈ A, we say A’s preference level is
less than or equal to that of B iff A � B.

ASPIC+ does not make any assumption about the properties of the preference
ordering, but as an example of a property one might use to establish �, consider
the weakest link principle from [17]. This assumes two pre-orderings ≤,≤′ over
Rd and Kp respectively, and combines them into A ≺ B as follows:

– the defeasible rules in A include a rule which is weaker than (strictly less
than according to ≤) all the defeasible rules in B, and

– the ordinary premises in A include an ordinary premise which is weaker
(strictly less than according to ≤′) all the ordinary premises in B.

A ≺ B is then defined as usual as A � B and B 6� A.
Given A ≺ B, we can then use this to factor the preference over arguments

into the notion of attack. Attacks can be distinguished as to whether they are
preference-dependent (rebutting and undermining) or preference-independent

3 The canonical example here comes from [19] via [17], and is the rule that normally
objects that appear red, are red. However, in the situation that everything is illu-
minated with red light, this rule no longer holds since under red light everything,
including things that are not red, will appear to be red.

4 This asymmetry is not uncontroversial, see [4, 16] for arguments against it.

(undercutting). The former succeed only when the attacker is preferred. The
latter succeed whether or not the attacker is preferred.

By combining the definition of arguments, attack relation and preference
ordering, we have the following definitions:

Definition 7 (Structured Argumentation Framework). A Structured Ar-
gumentation Framework (SAF) is a triple 〈A, Att,�〉, where A is the set of all
arguments from an argumentation theory, Att is the attack relation, and � is a
preference ordering on A.

Definition 8 (Defeat). A defeats B iff A undercuts B, or if A rebuts/undermines
B on B′ and A’s preference level is not less than that of B′ (A ⊀ B′).

Then the idea of an argumentation framework follows from Definitions 7 and 8.

Definition 9 (Argumentation Framework). An Argumentation Framework
(AF) corresponding to a structured argumentation framework SAF = 〈A, Att,�〉
is a pair 〈A, Defeats〉 such that Defeats is the defeat relation on A determined
by SAF .

In the general case, argumentation frameworks will include a defeat relation
between arguments, and a natural question is what arguments are considered
reasonable given those defeats. Now, argumentation frameworks as defined in
Definition 9 correspond to the abstract argumentation frameworks of [13]. As
a result, all the mechanisms that are defined in [13], and in later work such as
[2, 5, 6, 23, 24], for establishing the acceptability of a set of arguments — that is
identifying various mutually coherent subsets of arguments — can be employed.

Consider this example of an ASPIC+ argumentation framework, adapted
from [17]:

Example 1. Consider the argumentation system AS1 = 〈L1, , Rules1, n〉, where:

L1 = {a, b, c, d, e, f, nd,¬a,¬b,¬c,¬d,¬e,¬f,¬nd}

Rules1 = Rs1∪Rd1
, with Rs1 = {d, f → ¬b} and Rd1

= {a⇒ b;¬c⇒ d; e⇒ f ;
a⇒ ¬nd}, and the function n(·) gives n(¬c⇒ d) = nd. We then add the knowl-
edge base K1 such that Kn1

= ∅ and Kp1
= {a;¬c; e;¬e} to get the argumenta-

tion theory AT1 = 〈AS1,K1〉. From this we can construct the arguments:

A1 = [a];A2 = [A1 ⇒ b];A3 = [A1 ⇒ ¬nd];
B1 = [¬c];B2 = [B1 ⇒ d];B′

1 = [e];B′
2 = [B′

1 ⇒ f];B = [B2, B
′
2 → ¬b];

C = [¬e];

Let us call this set of argumentsA1, so that:A1 = {A1, A2, A3, B1, B2, B
′
1, B

′
2, B,C}.

Note that Prem(B) = {¬c; e}, Sub(B) = {B1;B2;B′
1;B′

2;B}, Conc(B) = ¬b, and
TopRule(B) = d, f → ¬b. The attacks between these arguments are shown in
Figure 1 (a). These make up the set Att1 = {(C,B′

1), (B′
1, C), (C,B′

2), (C,B),
(B,A2), (A3, B2), (A3, B)}. With a preference order � defined by : A2 ≺ B;C ≺
B;C ≺ B′

1;C ≺ B′
2, we have the structured argumentation framework 〈A1, Att1,�〉.

(a) Attack relation (b) Defeat relation

Fig. 1. Attack relations and defeat relations from Example 1. In (a), the solid arrows
denote undermining attacks, the dashed arrow denotes a rebutting attack, and dotted
arrows denote undercutting attacks.

This structured argumentation framework establishes a defeat relationDefeats1 =
{(B′

1, C), (B,A2), (A3, B), (A3, B2)} which is shown in Figure 1 (b). With this,
we can finally write down the argumentation framework 〈A1, Defeats1〉.

This completes a standard description of ASPIC+. In addition, in [15] we in-
troduced some ways of thinking about ASPIC+ which will be useful here.

Definition 10. Let AT = 〈AS,K〉 be an argumentation theory, where AS is the
argumentation system AS = 〈L, , Rules, n〉. We define the closure of a set of
propositions P ⊆ K under a set of rules R ⊆ Rules as Cl(P)R, where:

1. P ⊆ Cl(P)R;
2. if p1, . . . , pn ∈ Cl(P)R and p1, . . . , pn → p ∈ RS, then p ∈ Cl(P)R;
3. if p1, . . . , pn ∈ Cl(P)R and p1, . . . , pn ⇒ p ∈ RD, then p ∈ Cl(P)R; and
4. @S ⊂ Cl(P)R such that S satisfies the previous conditions.

We use this notion of closure to establish a notion of inference in systems like
ASPIC+ and DeLP:

Definition 11. Let AT = 〈AS,K〉 be an argumentation theory, where AS is the
argumentation system AS = 〈L, , Rules, n〉. Given a set of propositions P ⊆ K,
a set of rules R ⊆ Rules and a proposition p ∈ K, we say that p is inferred from
P and R, noted as P `R p, if p ∈ Cl(P)R.

Finally, we made use of the idea of the set of rules in an argument:

Definition 12 (Argument Rules). Let AT = 〈AS,K〉 be an argumentation
theory and A ∈ A(AT). We define the set of rules of A as follows:

Rules(A) =

∅ A ∈ K

{TopRule(A)} ∪
⋃n

i=1 Rules(Ai) A = A1, . . . , An Conc(A)

This allows us to describe an argument A as a triple:

(G,R, p)

where G = Prem(A) are the grounds on which A is based, R = Rules(A) is
the set of rules that are used to construct A from G, and p = Conc(A) is the
conclusion of A. Moreover, for any an argument (G,R, p), it holds that G `R p.

We can also identify the sets of strict and defeasible rules of an argument A as
Ruless(A) = Rules(A)∩Ruless (respectively, Rulesd(A) = Rules(A)∩Rulesd),
where Rules = Ruless ∪ Rulesd is the set of rules of the argumentation system
AS in the argumentation theory AT . In addition, if Rulesd(A) = ∅, argument A
is said to be strict ; otherwise, if Rulesd(A) 6= ∅, A is a defeasible argument. Also,
given S ⊆ L, S � 5φ iff there exists a strict argument A such that Conc(A) = φ
and Prem(A) ⊆ S (i.e. if there exists a strict argument for φ with all its premises
taken from S).

3 DeLP Background

Defeasible Logic Programming (DeLP, for short) [14] is a formalism that com-
bines results of Logic Programming and Defeasible Argumentation. As expressed
by the authors in [14], DeLP extends logic programming with the possibility of
representing information in the form of weak rules (referred to as defeasible
rules) in a declarative manner. Then, it makes use of a defeasible argumentation
inference mechanism to determine the warranted conclusions and, as a result,
provide answers to queries.

The following description of DeLP is drawn from [14]. The basic unit in
DeLP is a defeasible logic program:

Definition 13 (Defeasible Logic Program). A Defeasible Logic Program P,
abbreviated de.l.p., is a possibly infinite set of facts, strict rules and defeasible
rules. In a program P, we will distinguish the subset Π of facts and strict rules,
and the subset ∆ of defeasible rules. When required, we will denote P as (Π,∆).

The elements of a DeLP program are written in logic-programming style, where
facts, strict rules and defeasible rules are defined in [14] as follows:

Definition 14 (Fact). Let L be a set of ground atoms. A fact is a literal, i.e.
a ground atom “A” or a negated ground atom “¬A”, where A ∈ L and “¬”
represents strong negation6.

In particular, any pair of literals “A” and “¬A” are said to be complementary.

5 The authors in [17] use the symbol `. We replaced it with � in order to avoid
confusions with the notion of inference introduced in Definition 11.

6 In [14] the authors use “∼” to denote strong negation. However, in order to harmonize
notation, in this chapter we will adopt the notation “¬” introduced for ASPIC+.

Definition 15 (Strict Rule). A Strict Rule is an ordered pair, denoted
“Head ← Body”, whose first member, Head, is a literal, and whose second
member, Body, is a finite non-empty set of literals. A strict rule with head L0

and body {L1, . . . , Ln} can also be written as: L0 ← L1, . . . , Ln (n > 0).

It should be noted that, although the initial characterization of DeLP given
in [14] requires defeasible rules to have a non-empty body, at the end of the paper
the authors discuss some extensions for DeLP, among which they consider the
inclusion of presumptions [18], which can be considered as “defeasible facts”.
Specifically, in [14] it is mentioned that:

In our approach, a rule like “a —< ” would express that “there are (de-
feasible) reasons to believe in a.”

Next, we present a generalized definition of defeasible rule, which accounts for
presumptions:

Definition 16 (Defeasible Rule). A Defeasible Rule is an ordered pair, de-
noted “Head —< Body”, whose first member, Head, is a literal, and whose second
member, Body, is a finite set of literals. A defeasible rule with head L0 and body
{L1, . . . , Ln} can also be written as: L0 —< L1, . . . , Ln (n > 0). A defeasible rule
with head L and empty body (i.e. a presumption) can also be written as: L —< .

Given a de.l.p., we are interested in what can be derived from it:

Definition 17 (Defeasible Derivation). Let P = (Π,∆) be a de.l.p. and
L a ground literal. A defeasible derivation of L from P, denoted P |∼ L, consists
of a finite sequence L1, L2, . . . , Ln = L of ground literals, and each literal Li is
in the sequence because:

a) Li is a fact in Π or a presumption in ∆; or
b) there exists a rule Ri in P (strict or defeasible) with head Li and body

B1, B2, . . . , Bk and every literal of the body is an element Lj of the sequence
appearing before Li, (j < i.)

As [14] say:

Given a de.l.p. P, a derivation for a literal L from P is called “de-
feasible”, because as we will show next, there may exist information in
contradiction with L that will prevent the acceptance of L as a valid
conclusion.

In other words, a defeasible derivation may contain strict rules, but a derivation
that only contains strict rules is not considered to be a defeasible derivation.

The idea of a defeasible derivation is then used to define an argument in
DeLP. Intuitively, an argument is a minimal set of rules used to derive a con-
clusion:

Definition 18 (Argument Structure). Let L be a literal, and P = (Π,∆) a
de.l.p.. We say that 〈A,L〉 is an argument structure for L, if A is a set of
defeasible rules of ∆, such that:

1. there exists a defeasible derivation for L from Π ∪A;
2. the set Π ∪A is non-contradictory; and
3. A is minimal: there is no proper subset A′ of A such that A′ satisfies condi-

tions (1) and (2).

From here on, we will sometimes refer to an argument structure simply as
an argument. To complete the definition, we have to define the term “non-
contradictory”. [14] gives the definition:

Definition 19 (Contradictory Set of Rules). A set of rules is contradictory
if and only if, there exists a defeasible derivation for a pair of complementary
literals from this set.

and the paper takes the idea as applying to de.l.p.s as well (that is both sets of
rules and facts can be non-contradictory). Moreover, the authors in [14] impose
the requirement that the set Π of a de.l.p. P has to be non-contradictory.
Specifically, this choice has to do with the meaning associated with facts and
strict rules, as they represent domain information that is indisputable.

Note that the existence of a DeLP argument (with a non-contradictory and
minimal set of rules) does not guarantee either its acceptance, or that its con-
clusion is justified. This is because the argument may be in contradiction with
other arguments, which may in turn be accepted. The requirement that an ar-
gument is non-contradictory, does, however, rule out the fact that the argument
is in conflict with itself. Furthermore, it rules out the possibility of building an
argument that contradicts the strict knowledge of a de.l.p..

Conflicts between arguments are characterized in [14] via the notion of counter-
argument, which relies on the notion of disagreement between literals.

Definition 20 (Disagreement). Let P = (Π,∆) be a de.l.p.. We say that
two literals h1 and h2 disagree, if and only if the set Π∪{h1, h2} is contradictory.

Definition 21 (Attack). We say that 〈A1, h1〉 counter-argues, rebuts, or at-
tacks 〈A2, h2〉 at literal h, if and only if there exists a sub-argument 〈A, h〉 of
〈A2, h2〉 such that h1 and h disagree.

Note that attacks in DeLP can be aimed not only at the final conclusion of an
argument, but also at its intermediate conclusions. Such intermediate conclusions
correspond to the conclusions of its proper sub-arguments where, as defined
in [14], an argument 〈B, q〉 is a sub-argument of 〈A, h〉 if B ⊆ A.

Given an attack from argument 〈A1, h1〉 to 〈A2, h2〉, these two arguments
can be compared in order to determine which one prevails. Briefly, if argument
〈A2, h2〉 is not better than 〈A1, h1〉 with respect to a comparison criterion, noted
〈A1, h1〉 ⊀ 〈A2, h2〉, 〈A1, h1〉 will be called a defeater of 〈A2, h2〉.

Definition 22 (Defeat). Let 〈A1, h1〉 and 〈A2, h2〉 be two argument structures
such that 〈A1, h1〉 counter-argues 〈A2, h2〉 at literal h. We say that 〈A1, h1〉 is a
defeater for 〈A2, h2〉 if and only if either:

a) the attacked sub-argument 〈A, h〉 of 〈A2, h2〉 is such that 〈A, h〉 ≺ 〈A1, h1〉,
in which case 〈A1, h1〉 is a proper defeater of 〈A2, h2〉; or

b) the attacked sub-argument 〈A, h〉 of 〈A2, h2〉 is such that 〈A, h〉 ⊀ 〈A1, h1〉
and 〈A1, h1〉 ⊀ 〈A, h〉, in which case 〈A1, h1〉 is a blocking defeater of 〈A2, h2〉.

Note that the second case in the previous definition does not only account for
the case where the compared arguments are considered to be equivalent by the
adopted comparison criterion, but also for the case where the attacking argument
and the attacked sub-argument are incomparable (i.e. they are not related by
the comparison criterion).

Example 2. Consider the de.l.p. P2 = (Π2, ∆2), with the same facts and rules
as the argumentation system and knowledge base of the argumentation theory
AT1 from Example 1:

Π2 =
{
¬b ← d, f

}
∆2 =

a —< b —< a
¬c —< d —< ¬c
e —< f —< e
¬e —< ¬nd —< a

Note that the ordinary premises of the knowledge base K1 are represented as
presumptions in ∆2. Furthermore, in Example 1, the defeasible rule “a⇒ ¬nd”
refers to the name associated to the defeasible rule “¬c⇒ d” in the argumenta-
tion system AS1. In contrast, in DeLP rules do not have associated names and
thus, the literal “¬nd” in the head of the defeasible rule “¬nd —< a” will not
appear in any other rule or fact of the de.l.p. P2.7

Finally, from the DeLP program P2 we can build the following arguments,
similarly to those obtained in Example 1:

〈A1, a〉, with A1 = {a —< }
〈A2, b〉, with A2 = {(a —<), (b —< a)}
〈A3,¬nd〉, with A3 = {(a —<), (¬nd —< a)}
〈B1,¬c〉, with B1 = {¬c —< }
〈B2, d〉, with B2 = {(¬c —<), (d —< ¬c)}
〈B′

1, e〉, with B′
1 = {e —< }

〈B′
2, f〉, with B′

2 = {(e —<), (f —< e)}
〈B,¬b〉, with B = {(¬c —<), (d —< ¬c), (e —<), (f —< e)}
〈C,¬e〉, with C = {¬e —< }

Note that the only difference between the set of ASPIC+ arguments from Ex-
ample 1 and the one listed above is that the DeLP argument 〈B,¬b〉 does not
include the strict rule “¬b ← d, f”, whereas the ASPIC+ argument B includes
the strict rule “d, f → ¬b”. Let us call the set of DeLP arguments A2, so that:
A2 = {〈A1, a〉, 〈A2, b〉, 〈A3,¬nd〉, 〈B1,¬c〉, 〈B2, d〉, 〈B′

1, e〉, 〈B′
2, f〉, 〈B,¬b〉, 〈C,¬e〉}.

The attacks between these arguments make up the relationAtt2 = {(〈C,¬e〉, 〈B′
1, e〉),

7 In [11] an extension of DeLP was proposed, where defeasible rules have labels asso-
ciated with them, and those labels (as well as their complement with respect to the
strong negation “¬”) can appear in the head of defeasible rules. We will come back
to this point later in Section 4.3.

(a) Attack relation (b) Defeat relation

Fig. 2. (a) Attacks and (b) defeats between the arguments built from the DeLP pro-
gram from Example 2.

(〈B′
1, e〉, 〈C,¬e〉), (〈C,¬e〉, 〈B′

2, f〉), (〈C,¬e〉, 〈B,¬b〉), (〈B,¬b〉, 〈A2, b〉), (〈A2, b〉,
〈B,¬b〉)}. This set of attacks is depicted in Figure 2 (a) where, for illustration
purposes, the conclusions of the arguments are omitted. In particular, differ-
ently from Example 1, the attack involving arguments 〈B,¬b〉 and 〈A2, b〉 is
symmetric; furthermore, since DeLP does not account for undercutting attacks,
the attacks from 〈A3,¬nd〉 to 〈B2, d〉 and 〈B,¬b〉 in Example 1 no longer ex-
ist.8 Finally, if we resolve the attacks using a comparison criterion such that:
〈A2, b〉 ≺ 〈B,¬b〉; 〈C,¬e〉 ≺ 〈B,¬b〉; 〈C,¬e〉 ≺ 〈B′

1, e〉; 〈C,¬e〉 ≺ 〈B′
2, f〉, we ob-

tain the following defeat relationDefeats2 = {(〈B′
1, e〉, 〈C,¬e〉), (〈B,¬b〉, 〈A2, b〉)},

shown in Figure 2 (b).

In order to determine the justified conclusions of accepted arguments built
from a DeLP program (referred to in [14] as warranted literals), we need to
account for the defeat relation between arguments. In particular, given an argu-
ment 〈A0, h0〉, all defeaters for 〈A0, h0〉 have to be considered. Let 〈A1, h1〉 be
one of such defeaters. Then, since 〈A1, h1〉 is an argument structure, defeaters
for it may also exist, and so on. As a result, in order to determine the acceptance
status of argument 〈A0, h0〉 (thus, the warrant status of its conclusion h0) [14] in-
troduces the notion of dialectical tree, a tree structure that gathers all sequences
of defeaters starting from a given argument (the root of the tree). Then, once
built, the dialectical tree is marked according to the following criterion: (1) leaf
nodes are marked as undefeated and (2) a non-leaf node (i.e. an inner node or
the root) is marked as undefeated if all its children are marked as defeated; oth-
erwise it is marked as defeated. Finally, a literal h is said to be warranted from a
de.l.p. P if there exists an argument 〈A, h〉 obtained from P such that 〈A, h〉
is the root of a marked dialectical tree and is marked as undefeated; moreover, in
that case, argument 〈A, h〉 will be considered as accepted. For full details on the

8 In particular, the extension of DeLP introduced in [9] and [11] accounts for the
existence of undercutting attacks. As mentioned before, we will come back to this
point later in Section 4.3.

construction of dialectical trees and their marking criterion, we refer the reader
to [14].

4 Comparison and Discussion

In this section we will study and compare different features of ASPIC+ and
DeLP, identifying the commonalities and differences between them. In addi-
tion, for those elements where the two systems differ, we will try to provide
alternative characterizations with the aim of either bridging the gap between
them, or pointing towards a way in which the gap might be bridged.

4.1 Knowledge Representation

There are clearly some commonalities between ASPIC+ and DeLP. Both start
with the same raw materials, a set of facts, F , and a set of rules, R. We can
imagine both of these being partitioned into strict and defeasible parts:

F = FS ∪ FD

R = RS ∪RD

where the subscript S denotes the strict part and D denotes the defeasible
part (and there are no elements which are both strict and defeasible). Then,
given sets F and R, the corresponding ASPIC+ argumentation system AS is
〈L, , RS ∪RD, n〉 and the corresponding knowledge base is K = FS ∪ FD, to
then make up the argumentation theory AT 〈AS,K〉. Similarly, in DeLP, this
knowledge would be represented as a defeasible logic program P = (FS∪RS , FD∪
RD).

Recall that, as noted above, even though the same elements are used in
ASPIC+ and DeLP, these systems represent defeasible facts differently. On the
one hand, ASPIC+ explicitly accounts for defeasible facts within the knowledge
base K: the set FD corresponds to the set of ordinary premises Kp. On the
other hand, as mentioned before, DeLP accounts for defeasible facts under the
notion of presumption; hence, defeasible facts are represented as a special case
of defeasible rules. This is also how defeasible facts are represented in aspic- [4].

4.2 Argument Construction

There are several differences between the notion of argument in ASPIC+ and
in DeLP, and these lead to three main points of comparison:

1. Argument structure: arguments in DeLP and ASPIC+ differ in structure
even when built from the same knowledge, though they can be related at a
rather abstract level;

2. Minimality: ASPIC+ arguments are not explicitly minimal sets of facts and
rules (though they contain no irrelevant information), whereas DeLP argu-
ments are, and even when the obvious notion of minimality is applied to
ASPIC+ arguments it differs from that imposed in DeLP. Finally;

3. Consistency: DeLP arguments are required to conform to a kind of consis-
tency, whereas ASPIC+ arguments are not. However, ASPIC+ does make
use of a notion of c-consistency that can be considered to be complementary
to the use of consistency in DeLP.

Argument Structure There are several ways in which the structure of DeLP
and ASPIC+ arguments are different.

Firstly, the two systems rely on different mechanisms for the construction
of arguments. As expressed in Definition 4, an ASPIC+ argument corresponds
to a tree structure, where the root node is the argument itself and every other
node corresponds to one of its proper sub-arguments. Furthermore, any node
in the tree is connected to its children through the application of a strict or
defeasible rule — specifically, the conclusions of the children are the premises
of the rule and the conclusion of the parent is the conclusion of the rule. In
contrast, a DeLP argument is characterized by a set of rules and a conclusion,
so there is no explicit structure to a DeLP argument in the same way that there
is to an ASPIC+ argument. Moreover, unlike an ASPIC+ argument, a DeLP
argument does not contain every piece of information (facts and rules) used in
its construction process. Specifically, an argument only includes the defeasible
knowledge (defeasible rules and presumptions) used for building it. This does not
mean that DeLP ignores strict information when constructing an argument.
Rather strict knowledge is taken into account when considering the notion of
defeasible derivation, a key element in the argument construction process in
DeLP.

Secondly, ASPIC+ does not impose restrictions on arguments, other than the
implicit requirement that their construction as tree structures results from the
application of strict and defeasible rules on their sub-arguments. In other words,
ASPIC+ arguments will not include irrelevant elements. In contrast, DeLP
explicitly constrains the definition of an argument by imposing two requirements
on its set of defeasible rules: minimality and consistency.

This leads us to the third difference between the ways that arguments are
constructed in ASPIC+ and DeLP. This is that the check that an argument
is non-contradictory, performed when constructing it, effectively considers all
the strict knowledge in the de.l.p.. When considering whether 〈A, h〉 is an
argument, it is necessary to check that there is no combination of strict infor-
mation that could, with the rules in A, be used to derive two complementary
literals. This contrasts with ASPIC+ which only takes into account the elements
explicitly recorded in the argument structure.

Given these structural differences between arguments in ASPIC+ and DeLP,
we need to find a unifying mechanism for bringing them closer. For that pur-
pose, we can consider a notion of derivation, similar to the one proposed in
Definition 17 for DeLP. In particular, given an ASPIC+ argument A, there ex-
ists a defeasible derivation of Conc(A) from S, where S = Prem(A) ∪ Rules(A).
Furthermore, the conclusion of every sub-argument of A will appear in the cor-
responding derivation.

However, since defeasible derivations are sequences of literals, the same ar-
gument (either in ASPIC+ or in DeLP) could be associated with multiple
derivations which result from the permutation of elements in the sequence (while
maintaining the condition b) from Definition 17). Moreover, the notion of defea-
sible derivation makes it possible to include literals in the sequence that are not
needed to derive the conclusion of an argument. Thus, by including irrelevant lit-
erals, a potentially infinite number of defeasible derivations could be associated
with the same argument.

The above mentioned issue suggests the need to find an alternative unifying
mechanism for ASPIC+ and DeLP arguments. If we consider the sets of rules
and facts used for deriving the conclusions of arguments, referred to as deriving
sets, then we have a common basis. On the one hand, the deriving set of an
ASPIC+ argument A will be Prem(A) ∪ Rules(A). On the other hand, the
deriving set of a DeLP argument 〈A′, h〉 will contain every defeasible rule and
presumption in A′, and should also include the facts and strict rules used in
the derivation of h. However, it could be the case that some literal l in the
derivation of h is associated with multiple strict derivations. In such a case,
the same DeLP argument would have multiple deriving sets associated with
it. As a result, we can conclude that given the existence of a DeLP argument
〈A′, h〉, there will exist an ASPIC+ argument A with Conc(A) = h and whose
deriving set coincides with one of the deriving sets of 〈A′, h〉. Conversely, given an
ASPIC+ argument A such that Conc(A) = h, if there exists a DeLP argument
〈A′, h〉 such that A′ contains the DeLP counterpart of every defeasible rule in
the ASPIC+ argument A, then the deriving set of A will coincide with one of
the deriving sets of 〈A′, h〉.

Minimality As we pointed out above, one difference between ASPIC+ and
DeLP is that Definition 4 does not impose any minimality requirement on
the grounds or the set of rules of an ASPIC+ argument while Definition 18
does. Nevertheless, as already mentioned and as discussed in [17] and [15], every
premise and rule of an ASPIC+ argument is used for deriving its conclusion,
meaning that the argument does not contain any extraneous propositions or
rules. In particular, in [15] it was formally shown that, given the characteriza-
tion of an ASPIC+ argument A as a triple (G,R, c), every element in G is the
conclusion of a sub-argument A′ of A and is the premise of a rule in R, and
that every rule in R is the TopRule of a sub-argument A′′ of A. This feature
of ASPIC+ arguments can be considered as a form of minimality, as irrelevant
elements are not introduced within an argument.

For DeLP arguments, the subset-minimality requirement imposed in the
third clause of Definition 18 ensures that irrelevant elements will not be in-
cluded in an argument; otherwise, there would be a smaller set of defeasible
rules satisfying the first two clauses of Definition 18 and the argument in ques-
tion would not be an argument. In addition, the subset-minimality requirement
in DeLP avoids introducing redundant elements to an argument. To illustrate
the notion of redundancy, let us consider the following example.

Example 3. Given the de.l.p. P3 = (Π3, ∆3):

Π3 =

{
p
q

}
∆3 =

r —< p
r —< q
s —< r
t —< r, s

we can build an argument 〈A, t〉, with A = {(r —< p), (s —< r), (t —< r, s)}. Alter-
natively, we can build an argument 〈B, t〉, withB = {(r —< q), (s —< r), (t —< r, s)}.
However, there is no argument 〈C, t〉 with C = {(r —< p), (r —< q), (s —< r), (t —< r, s)},
because C is a superset of A and B.

Let us now consider the knowledge represented in Example 3 in the context of
an ASPIC+ argumentation system:

Example 4. Consider the argumentation system AS4 = 〈L4, ,R4, n〉, where
L4 = {p, q, r, s, t,¬p,¬q,¬r,¬s,¬t} and R4 = {p ⇒ r; q ⇒ r; r ⇒ s; r, s ⇒ t}.
By adding the knowledge base K4 = {p, q} we obtain the argumentation theory
AT4 = 〈AS4,K4〉, from which we can construct (among others) the following
arguments:

A1 = [p];A2 = [A1 ⇒ r];A3 = [A2 ⇒ s];A = [A2, A3 ⇒ t];
B1 = [q];B2 = [B1 ⇒ r];B3 = [B2 ⇒ s];B = [B2, B3 ⇒ t];
C = [B2, A3 ⇒ t]

Argument C from Example 4 is redundant because its set of rules provides two
ways to derive r, one that relies on p and another that relies on q, and r appears
twice in the derivation of t: once to produce s, and once when the rule r, s⇒ t is
applied. Then C, the redundant argument, uses both rules for deriving r while
arguments A and B use just one of them, providing a more compact derivation.

Another situation that can occur in ASPIC+, which in DeLP is prevented
by the third clause of Definition 18 is the existence of circularity within an
argument. This is illustrated by the following example:

Example 5. Consider the argumentation system AS1 = 〈L5, ,R5, n〉, where
L5 = {a, b, c, d, e,¬a,¬b,¬c,¬d,¬e} and R5 = {a, b ⇒ d; d ⇒ b; b, c ⇒ e}. By
adding the knowledge base K5 = {a, b, c} we obtain the argumentation theory
AT5 = 〈AS5,K5〉, from which we can construct the following arguments:

D1 = [a];D2 = [b];D3 = [D1, D2 ⇒ d];D4 = [D3 ⇒ b];D5 = [c];
D = [D4, D5 ⇒ e];E = [D2, D5 ⇒ e]

such that D = ({a, b, c}, {a, b ⇒ d; d ⇒ b; b, c ⇒ e}, e) and E = ({b, c},
{b, c⇒ e}, e).

In the context of Example 5, argument E is circular because it starts with a
and b as premises, from which it derives c. Then, it uses c to (again) derive b
and, finally, use c and the second derivation of b to obtain the conclusion e. This
loop is removed in E to give a more compact argument for the conclusion e.

Moreover, this circularity becomes evident when observing the characterization
of D and E as a triple, since the sets of grounds and rules of argument E are
proper subsets of those of argument D.

In contrast to these examples of circularity and redundancy in ASPIC+,
because of the subset-minimality requirement established by the third clause in
Definition 18, an argument like D would not exist in DeLP.

One way to bridge this gap between ASPIC+ and DeLP is to impose some
form of minimality on an ASPIC+ argument. In [15] we showed that defin-
ing ASPIC+ arguments to eliminate circularity and redundancy was equivalent
to enforcing minimality on the set of grounds or rules used to construct the
argument. (To be precise, if we describe an ASPIC+ argument A as a triple
(G,R, c), then if there is no argument (G′, R, c) such that G′ ⊂ G and no argu-
ment (G,R′, c) such that R′ ⊂ R, then A is not redundant or circular.) However,
note that this is a less restrictive form of minimality than the one enforced in
DeLP, since DeLP necessarily requires the set of defeasible rules, RD ⊆ R
in the notation we introduced in Definition 10, to be minimal. Furthermore, as
grounds (facts) are not included within a DeLP argument, the minimality check
on that set is not necessary. As a result, it could be the case that an argument is
minimal in ASPIC+ but not in DeLP. In contrast, for every argument in DeLP
(which, by definition, is minimal) there exists a minimal argument in ASPIC+

having the same set of defeasible rules. This difference between the notion of
minimality in ASPIC+ and in DeLP is illustrated in the following example.

Example 6. Let AT6 = 〈AS6,K6〉 be an argumentation theory, where AS6 =
〈L6, ,R6, n〉, R6 = {d⇒ b; b⇒ c; b, c ⇒ a} and K6 = Kn6

= {b, d}. From AT
we can construct the following arguments:

A1 = [d];A2 = [A1 ⇒ b];A3 = [A2 ⇒ c];A4 = [b];A = [A4, A3 ⇒ a];
B = [A2, A3 ⇒ a];A5 = [A4 ⇒ c];C = [A4, A5 ⇒ a]

Here, A = (G,R, a), with G = {b, d} and R = R6. In this case, A is not
minimal since there exists B = (G′, R, a) with G′ = {d} ⊂ G. On the other
hand, argument C is represented by the triple (G′′, R′, a), with G′′ = {b} and
R′ = {b ⇒ c; b, c ⇒ a}. In particular, argument C is minimal. Furthermore, B
is also minimal since, even though R′ ⊂ R, (G′, R′, a) is not an argument for a.

Let us now consider the DeLP program P6 = (Π6, ∆6):

Π6 = {(b —< d), (c —< b), (a —< b, c)}

Here, there is only one argument whose conclusion is the literal a; this is the ar-
gument 〈C ′, a〉, with C ′ = {(c —< b), (a —< b, c)}. In particular, argument 〈C ′, a〉
in DeLP would correspond to argument C in ASPIC+. Note that, even though
there exists a derivation for the literal a from the set B′ = {d, (b —< d), (c —< b),
(a —< b, c)}, there is no other argument for a. In particular, B′ would correspond
to the ASPIC+ argument B, whose set of grounds is G′ = {d} and its set of
rules (following DeLP’s notation) is R = {(b —< d), (c —< b), (a —< b, c)}.

This relates back to the point we made in the previous section about relating
DeLP and ASPIC+ through deriving sets. Even if the sets of defeasible rules
in a DeLP argument A and an ASPIC+ argument A′ coincide, the arguments
can have different conclusions, or the same conclusion and different deriving
sets, because the strict part of the DeLP argument is not constrained. These
situations are illustrated in the following example.

Example 7. Consider the argumentation system AS7 = 〈L7, ,R7, n〉, where
L7 = {a, b, c, d,¬a,¬b,¬c,¬d} and R7 = {a→ c; a→ b; b→ c; d⇒ a}. Then, if
we add the knowledge base K7 = Kn7

= {d}, we get the argumentation theory
AT7 = 〈AS7,K7〉. From this theory, we can build the following arguments:

D = [d]; A = [D ⇒ a]; C = [A→ c]; B = [A→ b]; C ′ = [B → c]

The DeLP counterpart of the argumentation theory AT7 would be the de.l.p.

P7 = (Π7, ∆7):

Π7 =

d
c ← a
c ← b
b ← a

 ∆7 =
{
a —< d

}
from which we can build the following arguments: 〈D, d〉, with D = ∅; and
〈A, a〉, 〈A, b〉, 〈A, c〉, with A = {a —< d}. Note that, unlike in ASPIC+, since
DeLP arguments do not include the strict knowledge used in the derivation
of their conclusions, there is only one argument for c. Furthermore, whereas in
ASPIC+ we have two arguments for c, one of which has a unique deriving set,
argument 〈A, c〉, will have two deriving sets: one of them including the strict
rule c ← a, and the other including the strict rules c ← b and b ← a. As a
result, the DeLP argument 〈A, c〉 has the same conclusion and the same set of
defeasible rules as the ASPIC+ arguments C and C ′, but their deriving sets
differ. On the other hand, even though the DeLP argument 〈A, a〉 has the same
set of defeasible rules as the ASPIC+ arguments C and C ′, their conclusions
differ: Conc(C) = Conc(C ′) = c while the conclusion of 〈A, a〉 is a; also, the
deriving set of 〈A, a〉 differs from that of the ASPIC+ arguments C and C ′.

Consistency The last aspect to consider in terms of argument construction is
the requirement in DeLP that the set Π ∪ A which gives rise to the defeasible
derivation behind an argument 〈A, h〉 is non-contradictory. The requirement for
the basis of an argument to be consistent is not uncommon in argumentation
systems — see, for example, [1, 3] — but this is not exactly what is required
in DeLP. In DeLP, the consistency is between the argument structure in the
form of the defeasible rules A, and the entire set of strict information in the
knowledge base Π. The effect of the consistency requirement in DeLP, which
is encoded in clause 2 of Definition 18, is to prevent an argument from coming
into existence if it derives the complement of something that is in the strict part
of the knowledge base Π, or can be derived from the corresponding program P

using the facts and rules in both Π and A. That is a rather stronger check than
is imposed in systems such as [1, 3], as shown in the following example:

Example 8. Let AS8 = 〈L8, ,R8, n〉 be an argumentation system, where L8 =
{a, b,¬a,¬b} and R8 = {b ⇒ ¬a}. Then, if we add the knowledge base K8 =
Kn8

= {a, b}, we get the argumentation theory AT8 = 〈AS8,K8〉. In ASPIC+,
and many other argumentation systems, from this argumentation theory we can
construct the following arguments:

A1 = [a]; A2 = [b]; A3 = [A2 ⇒ ¬a]

However from the corresponding de.l.p. P8 = (Π8, ∆8):

Π8 = {a, b} ∆8 =
{
¬a —< b

}
we can build the arguments 〈∅, a〉 and 〈∅, b〉, but are prevented from building
the argument 〈{¬a —< b},¬a〉 because its conclusion ¬a contradicts the fact a.

This difference represents a fundamental difference in viewpoint between DeLP
and ASPIC+ (and other systems like those cited above). In ASPIC+, there
is a clear separation between argument construction and argument evaluation.
ASPIC+ specifies how to construct arguments, and how to recognize conflicts
(attacks and defeats) between them. This results in an argumentation framework
of arguments and defeats which is then processed in exactly the same way as a
Dung abstract argumentation framework [13]. Thus ASPIC+ handles the above
example by constructing A1, A2 and A3, recognizing the conflict between A1 and
A3, and, with its restricted rebut, only recognizing the attack of A1 on A3. This
will result in A1 and its conclusion being justified, whereas A3 and its conclusion
are not (under any semantics).

In contrast, the consistency checking aspect of DeLP can be seen as a com-
bination of argument construction and evaluation. Since, like ASPIC+, DeLP
privileges strict information in the sense that it cannot be overturned by ar-
guments with a defeasible component, DeLP refuses to allow arguments that
(would) challenge this information to be brought into existence. In terms of the
fate of A3, this leaves ASPIC+ and DeLP drawing the same conclusion — A3

is not justified (in particular, in DeLP, because it would not even exist).
However, even though not included in Definition 4, this does not mean that

ASPIC+ ignores any notion of consistency within arguments. In [17] the authors
introduce a notion of c-consistency that accounts only for contradictories (and
not contraries); hence, it refers to “contradictory-consistency”.

Definition 23 (c-consistency). A set S ⊆ L is c-consistent if @φ ∈ L such
that S � φ,¬φ. Otherwise S is c-inconsistent.

Given the above definition, if S � φ, ψ, where ψ ∈ φ but φ /∈ ψ, then S can still
be c-consistent. Then, the authors of [17] characterize a special class of ASPIC+

arguments, whose premises are c-consistent.

Definition 24. An argument A built from an argumentation theory AT on
the basis of an argumentation system 〈L, ,R, n〉 and a knowledge base K is
c-consistent iff Prem(A) is c-consistent.

Note that a c-consistent argument is one with c-consistent premises. Thus c-
consistency prevents the construction of arguments where the foundations, the
premises, disagree amongst themselves by including a proposition and its con-
trary. In addition, because the premises are c-consistent, it is not possible to con-
struct strict arguments from those premises such that the conclusions of those
arguments contradict one another. Note that, an argument A with premise a
and conclusion ¬a may still be c-consistent, as long as there are no strict rules
leading to derive contradictory conclusions, starting from the premise a. Indeed,
c-consistency does not exclude the construction of an argument that contradicts
something in the set of axioms (the strict part of the knowledge base). Thus,
it is perfectly reasonable in ASPIC+ to have a in the set of axioms and also
have a strict argument for ¬a. Such an argument would not be permitted in
DeLP, because the conclusion conflicts with the strict premise a. As an exam-
ple of this, take Example 8 and make the defeasible rule strict. In such a case,
argument A′

3 = [A2 → ¬a] would still be c-consistent since it is not possible to
obtain strict arguments with contradictory conclusions such that their premises
are taken from {b}; specifically, even though the set {b} makes it possible to
obtain the strict argument A′

3, it is not possible to build A1 (the strict argument
whose conclusion contradicts Conc(A′

3) such that its premises are taken from the
set {b}. Then, because of the definition of attack in ASPIC+, since the conclu-
sion of A1 is an axiom and TopRule(A′

3) is strict, neither of the two arguments
will attack the other, and so both a and ¬a would be in the set of justified
conclusions. This is exactly why such a theory is not well-defined [17], which is a
requirement for the theory to obey the rationality postulates [7] (which require
justified conclusions to be consistent).

Finally, we can conclude that the notion of c-consistency in ASPIC+ is some-
how complementary to the consistency check made in DeLP’s argument con-
struction process. On the one hand, DeLP avoids building an argument whose
set of (defeasible) rules, together with the strict knowledge of a de.l.p., leads
to the derivation of complementary literals. On the other hand, in a setting
where only c-consistent arguments are allowed, ASPIC+ prevents the construc-
tion of an argument whose set of premises, together with other strict knowledge
in the theory, leads to the construction of strict arguments with contradictory
conclusions.

To summarize, both DeLP and ASPIC+ perform some kind of consistency
check on the arguments against the strict knowledge of the program/argumentation
theory: the former by considering the defeasible rules of an argument, and the
latter by considering the premises of an argument. In both cases, the check is
not of the consistency of the argument itself, but of the consistency of things
that can be derived from it.

4.3 Attacks and Defeats

In this section we will start by contrasting the ways in which DeLP and ASPIC+

account for the existence of conflicts between arguments. Then, we will turn

to analyze the mechanism in which they resolve those conflicts, leading to the
existence of defeats.

As we briefly mentioned in Section 3, there are some differences in the char-
acterization of attacks in DeLP and in ASPIC+. The main difference relies on
the fact that ASPIC+ distinguishes between undermining, rebutting and un-
dercutting attacks. In contrast, DeLP defines a general notion of attack, which
accounts for all the possible situations in which two arguments are considered
to be conflicting. This difference becomes evident when looking at the attack
relation in Examples 1 and 2; moreover, this can be easily observed when con-
trasting Figures 1(a) and 2(a). In the following, we will discuss the three kinds of
attack from ASPIC+, and study ways in which they can be realized in DeLP.

Recall that undermining attacks in ASPIC+ are aimed at attacking the
ordinary premises of an argument. On the other hand, even though undermining
attacks are not explicitly accounted as such, they are contemplated within the
DeLP’s general notion of attack . As discussed in Section 4.1, ordinary premises
in DeLP are represented in the form of presumptions. Then, when considering
Definition 21, if the attacked sub-argument 〈A, h〉 is such that its conclusion
corresponds to a presumption “h —< ”, then the attack would be an undermining
attack. To illustrate this, let us consider again Examples 1 and 2. In particular,
the undermining attacks from C to B′

1, B′
2 and B, and the undermining attack

from B′
1 to C in ASPIC+ still occur in DeLP.

Let us now consider rebutting attacks. To start with, even though DeLP does
not explicitly distinguish between different kinds of attack, the general notion
proposed in Definition 21 accounts for the situation in which rebutting attacks
occur; that is, where the conclusion of the attacking argument is in conflict with
the conclusion of a sub-argument of the attacked argument. However, there are
several differences between the consideration of rebutting attacks in Definitions 5
and 21. On the one hand, rebutting attacks in ASPIC+ are restricted in the
sense that an argument cannot be attacked at the conclusion of a sub-argument
whose TopRule is strict. In contrast, DeLP allows arguments to be attacked on
the conclusions of strict rules, as long as the attacked sub-arguments make use
of defeasible knowledge as well. In other words, once defeasibility is introduced
within an argument, DeLP allows an attack at any literal whose derivation goes
beyond the consideration of strict knowledge. This difference is evidenced in
Examples 1 and 2, where ASPIC+ only accounts for an attack from argument
B to argument A2, whereas in DeLP the arguments 〈A2, b〉 and 〈B,¬b〉 attack
each other.

Note that restricted rebut was introduced [7] to ensure that the rationality
postulate of closure (under strict rules) holds and one way to view what it does
is to prioritize the conclusions obtained through the use of strict rules. (In the
context of closure, if you prioritize the conclusions of strict rules, then inferences
drawn from justified conclusions using strict rules will also be justified conclu-
sions, and closure holds.) The idea of prioritization of strict rules is somehow
accounted for in DeLP by imposing restrictions on the construction of argu-
ments. Specifically, no argument in DeLP can be such that, when considered

together with the strict knowledge of a de.l.p. allows to derive complemen-
tary literals. Then, we could say that DeLP also prioritizes the consideration of
strict over defeasible knowledge. Nevertheless, we should remark that the notion
of attack in DeLP can be easily modified in order to restrict rebut, similarly to
ASPIC+.

Another difference between the characterization of rebutting attack in ASPIC+

and the general notion of attack in DeLP regards the nature of the conflict be-
tween the conclusions of the attacking argument and the attacked sub-argument.
In DeLP, the existence of an attack depends on the condition that the conclu-
sions of these two arguments disagree (i.e. when considering the two literals
together with the strict knowledge of the corresponding DeLP program, com-
plementary literals can be derived). On the other hand, ASPIC+ identifies the
existence of a conflict if the conclusion of the attacking argument is a contrary
of the conclusion of the attacked sub-argument. Then, we can clearly identify
two differences. First, ASPIC+’s notion of conflict is more general, in the sense
that it allows for non-symmetric attacks. That is, it can be the case that there
exists an argument A that rebuts another argument B on B′, but neither B nor
B′ rebut A, even in the case where TopRule(A) is defeasible. In contrast, since
attacks in DeLP rely on the notion of disagreement, which is inherently symmet-
ric (i.e. if literal L1 disagrees with literal L2, then L2 also disagrees with L1), if
argument 〈A1, L1〉 attacks argument 〈A2, L2〉 on the sub-argument 〈A, h〉, then
it holds that 〈A, h〉 also attacks 〈A1, L1〉. Second, in ASPIC+, the conflict be-
tween the conclusion of the attacking argument and the attacked sub-argument
is always direct, as the former is a contrary of the latter. However, in DeLP, in
cases where the conclusions of the attacking and the attacked sub-argument are
not complementary, the conflict between them would not be direct. As a result,
there might be arguments considered to be conflicting in ASPIC+ (leading to
the existence of a rebutting attack) which are not accounted as such in DeLP
and, conversely, there might be arguments considered to be in conflict in DeLP
(leading to the existence of an attack) but not in ASPIC+. To illustrate this,
let us consider the following example:

Example 9. Consider the argumentation system AS9 = 〈L9, ,R9, n〉, where
L9 = {a, b, c, d, e, f,¬a,¬b,¬c,¬d,¬e,¬f}, the contrariness function is such
that a ∈ f , and R9 = {a → c; b → ¬c; d ⇒ a; e ⇒ b; e ⇒ f}. Then, if we
add the knowledge base K9 = Kn9

= {d, e}, we get the argumentation theory
AT9 = 〈AS9,K9〉. From this theory, we can build the following arguments:

D = [d]; E = [e]; A = [D ⇒ a]; B = [E ⇒ b];
F = [E ⇒ f] C = [A→ c]; C ′ = [B → ¬c]

Note that the only attack that arises from the consideration of these arguments
is the rebutting attack from A to F (because a ∈ f). In contrast, even though C
and C ′ have contradictory conclusions, both arguments have a strict TopRule,
so neither of them rebuts the other.

If we want to represent the knowledge within the argumentation theory AT9
in DeLP, because the strong negation “¬” is symmetric, we will not be able

to model that a is a contrary of f . So, we have two alternatives: ignore the
conflict between a and f , or represent the conflict through the use of a rule like
¬f —< a, which leads the literals a and f to disagree (thus, the conflict between
them to become symmetric). As the second alternative loses the intuition behind
the notion of contrary in ASPIC+, we will adopt the first one and define the
de.l.p. P9 = (Π9, ∆9):

Π9 = {d, e, (c ← a), (¬c ← b)} ∆9 = {(a —< d), (b —< e), (f —< e)}

From this DeLP program, we can build the following arguments: 〈D, d〉 and
〈E, e〉, with D = E = ∅; 〈A, a〉 and 〈A, c〉, with A = {a —< d}; 〈B, b〉 and 〈B,¬c〉,
with B = {b —< e}; and 〈F, f〉, with F = {f —< e}. Note that arguments 〈A, c〉
and 〈B,¬c〉 would correspond to arguments C and C ′ in ASPIC+; in particular,
the sets of defeasible rules of the two DeLP arguments coincide with the sets of
defeasible rules of the two corresponding ASPIC+ arguments. However, unlike
the two ASPIC+ arguments, the two DeLP arguments will attack each other.
On the other hand, since the conflict between a and f in ASPIC+ is not captured
within P9, argument 〈A, a〉 will not attack argument 〈F, f〉.

Regarding the nature of conflicts in ASPIC+ and in DeLP, more specifi-
cally, the existence of contraries, it is worth to note the following. As mentioned
in [17], the notion of contrary is somehow associated with the notion of nega-
tion as failure. Then, that a is a contrary of f (and not a contradictory) can
be interpreted as f = not(a), where “not” represents negation as failure. On
the other hand, in [14] the authors discuss an extension of DeLP that accounts
for this kind of negation (i.e. negation as failure). As a result, ASPIC+’s con-
traries could be represented in the extended version of DeLP by making use of
negation as failure. In particular, it would be possible to represent that a ∈ f in
P9: the literal “f” would have to be replaced with “not(a)” and the defeasible
rule “f —< e” would be replaced with “not(a) —< e”. Moreover, in such a case,
argument 〈F ′, not(a)〉, with F ′ = {not(a) —< e} would be attacked by argument
〈A, a〉.

Let us now focus on undercutting attacks. As introduced in Section 2, ASPIC+

includes a naming function for defeasible rules within the characterization of an
argumentation system. Then, by having the names of defeasible rules in the log-
ical language L, it is possible to have contraries and contradictories for them,
leading to the existence of undercutting attacks. In contrast, the formalization of
DeLP given in [14] does not account for the existence of undercutting attacks.
Notwithstanding this, there exists an extension of DeLP that incorporates un-
dercut as a type of attack between arguments [10, 11]. In [11] the set of atoms in
a program includes a set of labels, and each defeasible rule has an associated label
with the restriction that no pair of defeasible rules within a program shares the
same label. Then, by allowing labels (and their negations with respect to “¬”)
to appear in the head of other defeasible rules, it is possible to express reasons
for and against the use of the corresponding defeasible rules. As a result, an ar-
gument whose conclusion is “¬l”, with “l” being the label of a defeasible rule R,
would undercut every other argument including the rule R. A different approach

is taken in [9]. This incorporates backing and undercutting rules as meta-rules,
allowing to express reasons for and against the use of defeasible rules, respec-
tively. Then, undercutting rules are used for building undercutting arguments,
which lead to the existence of undercutting attacks.

Finally, having compared the types of attack accounted for (either explicitly
or implicitly) in DeLP and ASPIC+, let us turn our attention to the way in
which the they determine the success of attacks, leading to the existence of
defeats. Since it was shown that DeLP does not consider undercutting attacks,
we will leave those out of the discussion. When contrasting Definitions 8 and 22,
we see that both ASPIC+ and DeLP make use of a preference ordering or
a comparison criterion between arguments. Furthermore, even though DeLP
distinguishes between two kinds of defeat (namely, proper and blocking defeat)
whereas ASPIC+ does not, they both consider the existence of a defeat if and
only if the attacked sub-argument is not better than the attacking argument
(under the adopted preference ordering or comparison criterion). As a result, we
can conclude that DeLP and ASPIC+ handle the resolution of undermining
and rebutting attacks into defeats equivalently.

4.4 Acceptance of Arguments and Justification of Conclusions

This section will focus on contrasting the ways in which DeLP and ASPIC+

select the accepted arguments and the justified conclusions, thus determining
the inferences of the system.

As briefly introduced in sections 2 and 3, ASPIC+ and DeLP adopt different
approaches for this purpose. ASPIC+ first constructs a Dung-like argumenta-
tion framework [13] consisting of the arguments and defeats obtained from a
given argumentation theory. Then, by applying any of the existing semantics
for Dung’s abstract argumentation frameworks (see [2]) ASPIC+ identifies the
extensions of the framework, which correspond to collectively acceptable sets of
arguments. The justified conclusions of the original theory can then be identi-
fied. In contrast, DeLP defines its own semantics based on a dialectical process
that involves the construction and marking of dialectical trees. As a result, the
accepted arguments built from a de.l.p. will be those marked as “undefeated”
in their dialectical trees. Again, the conclusions can then be established from
the arguments that are computed to be accepted.

One major difference that we identify between the two approaches is that
ASPIC+’s approach is oriented at determining the acceptance/justification sta-
tus of every argument, and hence conclusion, in the argumentation theory. In
contrast, as expressed in [14], DeLP is conceived as a query-answering tool, and
its dialectical process is aimed at determining the warrant status of a queried
literal “l”; hence, it only requires to consider (and analyze the acceptance status
of) the arguments belonging to the dialectical tree rooted in arguments of the
form 〈A, l〉 or 〈A,¬l〉. Of course, in DeLP it is also possible to determine the
acceptance status of every argument built from a de.l.p. and, consequently,
the warrant status of every literal in that program. Specifically, the accepted ar-

guments will be those that are marked as “undefeated” in their dialectical trees,
and the warranted literals will be the accepted arguments’ conclusions.

Another difference is that, given a query for a literal “l” in a program, DeLP
will unequivocally provide an answer (i.e. the answer will always be the same):
YES if “l” is warranted from the corresponding DeLP program, NO if the literal
“¬l” is warranted instead, UNDECIDED if neither “l” nor “¬l are warranted,
or UNKNOWN if “l” is not in the language of the program (i.e. neither “l”
nor “¬l” appear in the facts or rules of the de.l.p.). In particular, the answer
UNDECIDED will correspond to situations in which there are no accepted ar-
guments for the literals “l” and “¬l”; an example of this situation would be
the case where there exist two arguments 〈A, l〉 and 〈B,¬l〉 that are blocking
defeaters of each other, and none of them has any other defeater. Thus, we can
consider DeLP’s dialectical process to be cautious. On the other hand, since
ASPIC+ allows the use of any semantics defined for Dung’s AFs, it can be
the case that the adopted semantics (e.g. preferred semantics) makes it possible
to obtain multiple extensions and thus allows for multiple answers to a query
about a given literal. For instance, in a situation like the one described above,
ASPIC+ would obtain the preferred extensions {A′} and {B′}, where A′ and B′

would be the ASPIC+ counterpart of the DeLP arguments 〈A, l〉 and 〈B,¬l〉.
Thus, one can think of the preferred semantics as offering a choice between the
alternative of accepting one argument or the other and, consequently, justifying
one conclusion or the other. Note that, given the existence of multiple extensions
under the adopted semantics, it is possible to make use of the credulous or the
skeptical (or cautious) acceptance of arguments: an argument will be skeptically
accepted under a semantics iff it belongs to every extension obtained under that
semantics, whereas it will be credulously accepted under that semantics iff it be-
longs to some (but not every) extension. Nevertheless, some semantics that can
be used with ASPIC+, like the grounded semantics, do not allow for multiple
extensions, and thus, they can be considered to be cautious as well9.

To illustrate the way in which ASPIC+ and DeLP determine the accepted
arguments and the justified conclusions of the system, let us consider the argu-
ments and defeats from Examples 1 and 2.

Example 10. The arguments and defeats identified in Example 1, depicted in
Figure 1(b), define the abstract argumentation framework 〈{A1, A2, A3, B1, B2, B

′
1,

B′
2, B,C}, {(A3, B), (A3, B2), (B,A2), (B′

1, C)}〉. For instance, if we consider the
grounded semantics, the only grounded extension will be {A1, A2, A3, B1, B

′
1, B

′
2};

in particular, the grounded semantics accepts all arguments having no defeaters
(in this case, A1, A3, B1, B′

1 and B′
2), leaves out arguments that are defeated

by the undefeated arguments (here, B, B2 and C), and includes the arguments
that are defended by those already included in the extension (A2). Therefore,
the set of ASPIC+ justified conclusions will be {a, b,¬nd,¬c, e, f}.

Let us now consider the arguments and defeats identified in Example 2 for
DeLP, depicted in Figure 2(b). There, the only arguments having defeaters are

9 In the labelling approach [2], the grounded labelling is the one that maximizes the
undec labels, and so, in a sense, is the most cautious of the possible semantics.

〈A2, b〉 (whose defeater is 〈B,¬b〉) and 〈C,¬e〉 (whose defeater is 〈B′, e〉). There-
fore, every argument except those two will be marked as “undefeated” in their
dialectical trees, whereas 〈A2, b〉 and 〈B,¬b〉 will be marked as “defeated”. As a
result, the set of accepted arguments will be {〈A1, a〉, 〈A3,¬nd〉, 〈B1,¬c〉, 〈B2, d〉,
〈B′

1, e〉, 〈B′
2, f〉, 〈B,¬b〉}, and the set of warranted literals from the de.l.p. pro-

gram specified in Example 2 will be {a,¬d, c, d, e, f,¬b}.
It can be noted that the accepted arguments and the justified/warranted

conclusions in DeLP and ASPIC+ differ. In particular, the difference in this
case relies on the consideration of undercutting attacks. Since A3 undercuts
B2 and B in ASPIC+, argument A2 is defended by A3 and, as a result, can
be accepted. Furthermore, arguments B and B2 are not accepted. In contrast,
since DeLP does not account for undercutting attacks, arguments 〈A3,¬nd〉,
〈B2, d〉 and 〈B,¬b〉 will be accepted together. This difference is also observed
when considering the sets of justified/warranted conclusions: whereas ASPIC+

justifies “b”, DeLP warrants “¬b”.

It should be noted that, even though the difference in the results obtained by
DeLP and ASPIC+ in the previous example is related to the existence of under-
cutting attacks/defeats in ASPIC+ (which do not occur in DeLP), it can also
be the case that an ASPIC+ theory and a de.l.p. have the same set of argu-
ments and defeats but different justified/warranted conclusions. An example of
such a situation would be the one described in the paragraph before Example 10,
where DeLP would have no accepted arguments and no warranted conclusions
(literals), whereas ASPIC+ (under the preferred semantics) will consider the
arguments A′ and B′ to be credulously accepted, and their conclusions to be
credulously justified.

Finally, notwithstanding the above discussed differences in the acceptance or
justification process adopted by DeLP and ASPIC+, as well as the difference
in their consideration of attacks and defeats, there are cases in which the two
systems behave alike and their outcomes coincide. This is illustrated by the
following example:

Example 11. Consider the argumentation system AS11 = 〈L11, ,R11, n〉, where
L11 = {a, b, c, d, f, g, h, k,¬a,¬b,¬c,¬d,¬f,¬g,¬h,¬k} and R11 = {b, d → a;
h→ f ;h, c→ ¬k; g → d;¬f ⇒ b; c, k ⇒ ¬b; g ⇒ k; d⇒ h}. Then, if we add the
knowledge base K11 = Kn11 ∪Kp11 , with Kn11 = {g, c} and Kp11 = {¬f}, we get
the argumentation theory AT11 = 〈AS11,K11〉. From this theory, we can build
the following arguments:

F ′ = [¬f]; B = [F ′ ⇒ b]; G = [g]; D = [G→ d];
A = [B,D → a]; C = [c]; K = [G⇒ k]; B′ = [C,K ⇒ ¬b];
H = [D ⇒ h]; K ′ = [H,C → ¬k]; F = [H → f]

The DeLP counterpart of the argumentation theory AT11 would be the de.l.p.
P11 = (Π11, ∆11):

Π11 =

g a ← b, d
c f ← h

¬k ← h, c
d ← g

 ∆11 =

b —< ¬f
¬b —< c, k
k —< g
h —< d
¬f —<

from which we can build the following arguments:

〈F ′,¬f〉, with F ′ = {¬f —< };
〈B, b〉, with B = {(b —< ¬f), (¬f —<)};
〈G, g〉, with G = ∅;
〈D, d〉, with D = ∅;
〈A, a〉, with A = {(b —< ¬f), (¬f —<)};
〈C, c〉, with C = ∅;
〈K, k〉, with K = {k —< g};
〈B′,¬b〉, with B′ = {(¬b —< c, k), (k —< g)};
〈H,h〉, with H = {h —< d};
〈K ′,¬k〉, with K ′ = {h —< d};
〈F, f〉, with F = {h —< d}

Recall that, unlike arguments in ASPIC+, arguments in DeLP only include the
defeasible component of the argument (i.e. defeasible rules, including presump-
tions). As a result, there exist different arguments, with different conclusions,
that have the same associated set of rules. Nevertheless, without loss of gener-
ality, we can identify each of the argument structures listed above through the
name of its associated set of rules and presumptions; hence, we can refer to them
as F ′, B, G, . . ., H, K ′, F , respectively.

The attacks between the arguments obtained from the argumentation theory
AT11 are depicted in Figure 3(a), whereas the attacks between the arguments
built from the de.l.p. P11 are illustrated in Figure 3(b). Note that the difference
between the two relies on the fact that ASPIC+ considers restricted rebut, and
so some rebutting attacks that are symmetrical in DeLP are not symmetrical
in ASPIC+.

Suppose now that we consider a preference criterion or ordering on argu-
ments such that: B ≺ B′, K ≺ K ′ and F ′ ≺ F . Then, as shown in Fig-
ure 4, the defeats between arguments built from the argumentation theory
AT11 and the de.l.p. P11 coincide. Furthermore, if we consider the grounded,
preferred or stable semantics (in the case of ASPIC+) and DeLP’s dialecti-
cal process, we obtain the same outcome: the set of accepted arguments is
{D,G,C,H, F,K ′, B} and the set of warranted (DeLP) and justified (ASPIC+)
conclusions is {d, g, c, h, f,¬k, b}.

5 Conclusion

This chapter has examined the relationship between DeLP and ASPIC+. While
the analysis has been largely informal, we hope that it is still clear that the two

(a) ASPIC+ attacks (b) DeLP attacks

Fig. 3. Attacks between arguments from Example 11 in (a) ASPIC+ and (b) DeLP.

Fig. 4. Defeats between arguments built from AT11 and P11.

approaches are very similar in many regards. Indeed, they are perhaps more
similar than they are dissimilar. In our view there is certainly enough similarity
to justify a more formal analysis that looks to find out, precisely where the
approaches overlap, and where they differ, especially in terms of what conclusions
they draw from a given knowledge base. This is work we hope to carry out in
the near future.

Acknowledgment This research was partially supported by the UK Engineer-
ing & Physical Sciences Research Council (EPSRC) under grant #EP/P010105/1.
In addition, both the authors acknowledge a considerable debt to Guillermo
Simari.

SP: As someone who hasn’t worked directly with Guillermo, I am very grate-
ful for the fact that he introduced me to two people who have become valued col-
laborators: Andrea Cohen, my co-author here, and Gerardo Simari, with whom
I have worked on a number of topics over the years. I particularly value the fact
that in both cases Guillermo presented the opportunity for me to work with An-
drea and Gerardo as an instance of me doing him a favour, when in fact it was
him who did me the favour. However, I think that my greatest debt to Guillermo
is in the example that he sets. I have always found him to be among the most
thoughtful and gracious people that I have met in my research career. In that

respect I think he embodies qualities that I strive (but regularly fail) to achieve
myself, and I thank him for the ongoing example.

AC: I will always be grateful to Guillermo for being a wonderful teacher,
supervisor and mentor. Every since I started my research career he was there
for me, giving me advice and helping me (and everyone in our group) in every
step of the way. Also, I am grateful to him for always pushing me to achieve
great things, giving me the opportunity to live wonderful experiences such as
my research stay in Brooklyn College-CUNY, where I had the pleasure to meet
and start working with Simon Parsons. Last but not least, I will always cherish
the thoughtful and kind words he had towards me, especially in moments when
I felt I was not cut out for this. For all this, I feel lucky to have been able to
grow and work with him. Thank you, Guillermo, for being our role-model.

References

1. L. Amgoud and C. Cayrol. A reasoning model based on the production of accept-
able arguments. Annals of Mathematics and Artifical Intelligence, 34(3):197–215,
2002.

2. Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. An introduction to
argumentation semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

3. P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial
Intelligence, 128:203–235, 2001.

4. M. Caminada, S. Modgil, and N. Oren. Preferences and unrestricted rebut. Compu-
tational Models of Argument: Proceedings of COMMA 2014, pages 209–220, 2014.

5. M. W. A. Caminada. On the issue of reinstatement in argumentation. In Pro-
ceedings of the 10th European Conference on Logic in Artificial Intelligence, pages
111–123, Liverpool, UK, 2006.

6. M. W. A. Caminada. An algorithm for computing semi-stable semantics. In Pro-
ceedings of the 9th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, pages 222–234, Verona, Italy, 2007.

7. M. W. A. Caminada and L. Amgoud. On the evaluation of argumentation for-
malisms. Artificial Intelligence, 171(5–6):286–310, 2007.

8. C. I. Chesñevar, A. G. Maguitman, and R. P. Loui. Logical models of argument.
ACM Computing Surveys, 32(4):337–383, 2000.

9. Andrea Cohen, Alejandro J. Garćıa, and Guillermo R. Simari. Backing and under-
cutting in defeasible logic programming. In 11th European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, pages 50–61, 2011.

10. Andrea Cohen, Alejandro J. Garćıa, and Guillermo R. Simari. Backing and un-
dercutting in abstract argumentation frameworks. In 7th International Symposium
on Foundations of Information and Knowledge Systems, pages 107–123, 2012.

11. Andrea Cohen, Alejandro Javier Garćıa, and Guillermo Ricardo Simari. Extending
delp with attack and support for defeasible rules. In IBERAMIA, volume 6433 of
Lecture Notes in Computer Science, pages 90–99. Springer, 2010.

12. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning and logic programming. In Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence, Chambéry, France, 1993.

13. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77:321–357, 1995.

14. A. J. Garćıa and G. Simari. Defeasible logic programming: an argumentative
approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.

15. Z. Li, A. Cohen, and S. Parsons. Two forms of minimality in aspic+. In 15th
European Conference on Multi-Agent System, Évry, France, 2017.

16. Zimi Li and Simon Parsons. On argumentation with purely defeasible rules. In Scal-
able Uncertainty Management - 9th International Conference, SUM 2015, Québec
City, QC, Canada, September 16-18, 2015. Proceedings, pages 330–343, 2015.

17. S. Modgil and H. Prakken. A general account of argumentation with preferences.
Artificial Intelligence, 195:361–397, 2013.

18. Donald Nute. Defeasible reasoning: a philosophical analysis in prolog. In J. H.
Fetzer, editor, Aspects of Artificial Intelligence, pages 251–288. Kluwer Academic
Pub., 1988.

19. J. L. Pollock. Defeasible reasoning. Cognitive Science, 11:481–518, 1987.
20. H. Prakken. An abstract framework for argumentation with structured arguments.

Argument and Computation, 1:93–124, 2010.
21. G. R. Simari. A Mathematical Treatment of Defeasible Reasoning and its Imple-

mentation. PhD thesis, Department of Computer Science, Washington University
in St Louis, 1989.

22. G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning
and its implementation. Artificial Intelligence, 53:125–157, 1992.

23. B. Verheij. A labeling approach to the computation of credulous acceptance in
argumentation. In Proceedings of the 20th International Joint Conference on Ari-
tificial Intelligence, pages 623–628, Hyderabad, India, 2007.

24. G. Vreeswijk. An algorithm to compute minimally grounded and admissible defence
sets in argument systems. In Proceedings of the First International Conference on
Computational Models of Argument, pages 109–120, Liverpool, UK, 2006.

