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Abstract The issue of dealing with trade-offs in qualitative prob-
abilistic networks has been addressed before by several
Qualitative probabilistic networks have been de- researchers. S. Parsons has introduced, for example, the
signed for probabilistic reasoning in a qualita- concept of categorical influences. A categorical influence
tive way. Due to their coarse level of represen- is either an influence that serves to increase a probability
tation detail, qualitative probabilistic networks to 1 or an influence that decreases a probability toe-
do not provide for resolving trade-offs and typ- gardless of any other influences, and thereby resolves any
ica”y y|e|d ambiguous results upon inference. trade-off in which it is involved [Parsons, 1995] C.-L. Liu
We present an algorithm for computing more in- and M.P. Wellman have designed a method for resolving
sightful results for unresolved trade-offs. The al- trade-offs based upon the idea of reverting to numerical
gorithm builds upon the idea of using pivots to prObabi”tieS whenever necessary [L|U & Wellman, 1998]
zoom in on the trade-offs and |dent|fy|ng the in- S. RenOOij and L.C. van der Gaag have enhanced the ba-
formation that would serve to resolve them. sic formalism of qualitative probabilistic networks by dis

tinguishing between strong and weak influences. Trade-

off resolution during inference is then based on the idea
1 INTRODUCTION that strong influences dominate over conflicting weak ones

[Renooij & Van der Gaag, 1999]. These approaches to
Quialitative probabilistic networks were introduced in the trade-off resolution are all based on a refinement of the rep-
early 1990s for probabilistic reasoning with uncertaimty i resentation used in the basic formalism.
a qyghtanve way [Wellman, 1.9901' A gualitative pr.o'b-' In this paper, we present a new algorithm for dealing with
abilistic network encodes variables and the probabilistiG e g qualitative probabilistic networks. Rathgn
relationships between them in a directed acyclic graphresolving trade-offs by providing for a finer level of rep-

The encoded relationships basically represent influentes Yesentation detail, our algorithm identifies the inforroati

propabll|ty d|str|but!on§. Ea}ch 9f thesg |nf|uenges IS SUM3pat would serve to resolve the trade-offs presentin aguali
marised by a qualitative sign indicating the direction of

e ) A ; ... . tative probabilistic network. From this information, a reor
shift in one variable’s distribution occasioned by a shift i b

another variable’s distribution. For probabilistic iréece insightful result than ambigity is constructed.

with qualitative networks, an elegant algorithm based uporOur algorithm for dealing with trade-offs builds upon the

the idea of propagating and combining signs is availablédea of zooming in on the part of a qualitative probabilis-

[Druzdzel & Henrion, 1993a]. tic network where the actual trade-offs reside. After a new

litati babilisti work ture the relatia observation has been entered into the network, probabilis-
Qualitative probabilistic networks capture the relatiops . tic inference will provide the sign of the influence of this

between their variables at a coarse level of representatiofy ... ation on the variable of interest given previously e

detail. AS. a consequence, t_hese networ_ks.do not prov'df:éred observations. If this sign is ambiguous, then thexe ar
for resolving trade-offs, that' 1S, }‘or establishing the'net trade-offs present in the network. In fact, a trade-off must
Su“bObe;’.\:o g.r t”?g”f. Confllf'itmg |nf#1ences on a vatr;;b'les reside along the reasoning chains between the observation
pro I'? tl'l y 'ch ukl(iﬂ. rabe;.)r St ar.efrepresen.l ia and the variable of interest. Our algorithm isolates these
qualitative network, then probabilistic inference willy reasoning chains to constitute the part of the network that

ﬁa”};l yield e:jrrllalguo%s r<tasults£ ??ﬁe ant amngty gr:csesls relevant for addressing the trade-offs present. From thi
It will spread throughout most ot the network upon Infer- o 4 ¢ part, an informative result is constructed for the

gnmcki,gﬁ\éig if only a very small part of the network is truly variable of interest in terms of values for the variables in-



volved and the relative strengths of the influences betweeS;;, and a zero qualitative influence, denot$l, are de-
them. fined analogously. If the influence of nodeon nodeB

We believe that qualitative probabilistic networks carypla Is not mo?otonlc or unknown, we say that iEsbiguous

. : : o denotedS;, (A4, B).
an important role in the construction of quantitative proba
bilistic networks for real-life application domains, aslive The set of influences of a qualitative probabilistic net-
as for explanation of their reasoning processes. The corwork exhibits various properties [Wellman, 1990]. The
struction of a probabilistic network typically sets outhvit property ofsymmetrystates that, if the network includes
the construction of the network’s digraph. As the assessthe influenceS% (A, B), then it also includes? (B, A),
ment of the various probabilities required is a far harders € {+, —,0,?}. The property ofransitivity asserts that
task, it is performed only when the network’s digraph is qualitative influences along a simple chain that specifies at
considered robust. Now, by assessing signs for the influmost one incoming arc for each node, combine into a single
ences modelled in the digraph, a qualitative network is obinfluence with thex-operator from Table 1. The property
tained that can be exploited for studying the projectedprobof compositiorasserts that multiple influences between two
abilistic network’s reasoning behaviour prior to the asses nodes along parallel chains combine into a single influence
ment of its probabilities. For this purpose, algorithms arewith the &-operator.
required that serve to derive as much information as possi-
ble from a qualitative probabilistic network. We look upon Table 1: Thex- and@-operators.
our algorithm as a first step to this end.

_ . . |+ — 0 7 e+ — 0 7
The paper is organised as follows. In Section 2, we pro- ++ — 0 7 ++ 7 + 7
vide some preliminaries concerning qualitative probabili - |- + 0 7 -7 = = Z
tic networks. In Section 3, we introduce our algorithm for g g g 8 g g j N g °

zooming in on trade-offs informally, by means of an ex-
ample. The algorithm is discussed in further detail in Sec- - . o A
. . . ._~In addition to influences, a qualitative probabilistic net-
tion 4. The paper ends with some concluding observations ) :
. . work includes synergiesthat express how the value
in Section 5. . S

of one node influences the probabilities of the values

of another node in view of a value for a third node
2 PRELIMINARIES [Druzdzel & Henrion, 1993b]. A negatiyeroduct synergy

of nodeA on nodeB (and vice versa) given the valedor
A qualitative probabilistic networlencodes the statistical their common successdt, denotedX, ({4, B},c), ex-
variables from a domain of application and the probabilis-presses that, given higher values forl render higher val-
tic relationships between them in a directed acyclic graphyes forB less likely. Positive, zero, and ambiguous prod-
G = (V(G),A(G)). Each node in the sat(G) repre-  uct synergies are defined analogously. A product synergy
sents a statistical variable. Each arc in the) can be  induces a qualitative influence between the predecessors of
looked upon as expressing a causal influence from the nodgnode upon observation of that node; the induced influence
at the tail of the arc on the node at the arc’s head. More foris coined arintercausal influencen this paper, we assume
mally, the set of arcs captures probabilistic independencghat induced intercausal influences are added to a qualita-

among the represented variables. We say that a chain bgve probabilistic network’s graph as undirected edges.
tween two nodes is blocked if it includes either an observed

node with at least one outgoing arc or an unobserved node  procedure PropagateSigifitom,to,message

with two incoming arcs and no observed descendants. If signto] «— sigr{to] & message

all chains between two nodes are blocked, then these nodes  for each (induced) neighbou; of to

are said to bel-separatedand the corresponding variables do linksign «- sign of (induced) influence
are considered conditionally independent given the edtere betweerto andV:;

observations [Pearl, 1988]. {Pevfsﬁﬁmsgﬂt% ? lénkt(:é?\r}ed

A qualitative probabilisti_c ngtwgrk associates with its _di thgﬂcé’fggprgggtrs?é%,‘%],ri?eg]seasgs)gge

graphG a setA of qualitative influences and synergies

[Wellman, 1990]. Aqualitative influencebetween two Figure 1: The Sign-propagation Algorithm.

nodes expresses how the values of one node influence the

probabilities of the values of the other node. A positiveFor probabilistic inference with a qualitative probabilis
qualitative influence of nodé on its successaB expresses tic network, an elegant algorithm is available from
that observing higher values far makes higher values for M.J. Druzdzel and M. Henrion (1993a); this algorithm is
B more likely, regardless of any other direct influences onsummarised in pseudocode in Figure 1. The basic idea of
B; the influence is denotes}, (4, B), where ‘+' is the in-  the algorithm is to trace the effect of observing a node’s
fluence’'ssign A negative qualitative influence, denoted value on the other nodes in a network by message-passing



between neighbouring nodes. For each nodegde sign
is determined, indicating the direction of change in the
node’s probability distribution occasioned by the new ob-
servation given all previously observed node values. Ini-
tially, all node signs equal ‘0’. For the newly observed
node, an appropriate sign is entered, that is, either a ‘+’
for the observed valugue or a ‘-’ for the valuefalse
by calling PropagateSigopserved node, observed node, $ign
Each node receiving a message updates its sign and sub-
sequently sends a message to each neighbour that is not
d-separated from the observed node and to every node on
which it exerts an induced intercausal influence. The sign
of this message is the-product of the node’s (new) sign
and the sign of the influence it traverses. This process is re-
peated throughout the network, building on the properties —
of symmetry, transitivity, and composition of influences. . ) o
The process repeatedly visits each node that needs a change':Igure 3: The Result of Propagating *+' for Nod#.
of sign. Since a node can change sign at most twice, once
from 0 to + or —, and then only t&, each node is visited has been observed for the noffleand that we are inter-
at most twice. The process is therefore guaranteed to haltested in its influence on the probability distribution of sod
A. Tracing the influence of the node sigh’for node H,

3 OUTLINE OF THE ALGORITHM indicating its obse.rved value, on every node's distrih'lutio
by means of the sign-propagation algorithm, results in the
I I node signs shown in Figure 3. These signs reveal that at
\I/]:/i‘l’jll t?/:?clgﬁgvﬁeﬁ)(;o;gEligsl;“cfugerg;ﬁﬁ(sng?;ftﬁgr?czﬁﬁith least one trade-off must reside along the reasoning chains
he sian- tion algorithm. From Table 1. we hav between the observed nod{a_and the node of interest.
:hgts\:\?r?eﬁrec\)/%?gtsvo con?licting influences on a, node areThese chalnstogether.constltute the part of the netvyotktha

. . . : . 9s relevant for addressing the trade-offs that have givem ri
combined with th@-operatqr, an gmblguous sign will re- 0 the ambiguous result for nodé& we term this part the
sult. Once an ambiguous sign is mtroduced,. it wil Sp.rea.({elevant networkFor the example, the relevant network is
throughout most of the network and an ambiguous sign Fhown in Figure 4 below the dashed line. Our algorithm

likely to result for the node of interest. By zooming in on now isolates this relevant network for further investigati

the part O.f t.he network whgre the actual trade-offs re5|der0 this end, it deletes from the network all nodes and arcs
and identifying the information that would serve to resolvethat are connected to, but no part of the reasoning chains

these trade-offs, a more insightful result can be constdict from H to A
We illustrate the basic idea of our algorithm to this end. '

A relevant network for addressing trade-offs typically in-
cludes many nodes with ambiguous node signs. Often,
however, only a small number of these nodes are actually
involved in the trade-offs that have given rise to the am-
biguous result for the node of interest. Figures 3 and 4,
for example, reveal that, while the nodésB, andC have
ambiguous node signs, the influences between them are not
conflicting. In fact,every possibleinambiguous node sign
sign[C] for nodeC would result in the unambiguous sign
sign[C] @ ((+ ® —) & —) = sign[C] @ — for nodeA. For
addressing the trade-offs involved, therefore, the pathef
relevant network between nodeand noded can be dis-
regarded. Nodé€' in fact separates the part of the relevant
network that contains trade-offs from the part that does not
We call nodeC thepivot nodefor the node of interest.

In general, the pivot node in a relevant network is a node
Figure 2: The Example Qualitative Probabilistic Network. with an ambiguous sign for which every possible unam-
biguous sign would uniquely determine an unambiguous
As our running example, we consider the qualitative probasign for the node of interest; in addition, no other node hav-
bilistic network from Figure 2. Suppose that the valluge  ing this property resides on an unblocked chain from the



Figure 5: The Construction of a Sign for Node

network, the nodes from the resolution frontier exert two
separate influences on the pivot n@dethe influence from
node! via nodeD on C and the influence froniz on C.
For the sign of the influence of nodé via nodeD on C
and for the sigry’ of the influence of7 on C, we find that

0 = sign[I] ® 6 ® 3 §' = sign|[G] ® 4
Figure 4: The Relevant Network, below the Dashed Line. = sign[I] ® + = sign|G] ® —

whered;, i = 1, 3,4, are as in Figure 5. For the node sign

observed node to the pivot node, that is, the pivot node ig; .1 of the pivot node, the algorithm now constructs the
the node with this property “closest” to the observed nOdefoIIowing result:

Note that every network includes such a node. Our algo-
rithm now selects from the relevant network the pivot node

: ! - _ - s/,
for the node of interest. if |6] > |d'|, then sign[C] = 6, else sign[C] = ¢';

From the definition of pivot node, it can be shown that therewhere|d| denotes the strength of the signSo, if the two
must be two or more different reasoning chains in the relinfluences on nod€ have opposite signs, then their rela-
evant network from the observed node to the pivot nodetive strengths will determine the sign for no@e The sign
the net influences along these reasoning chains, moreovest the node of interest then follows directly from the node
must be conflicting or ambiguous. To resolve the ambiguitysign of C..

at the pivot node, the relative strengths of the various-influ

ences as well as the signs of some of the nodes involved

need be known. From Figures 3 and 4, for example, wét  SPLITTING UP AND CONSTRUCTING
have that nodé lies at the basis of the ambiguous signfor ~ SIGNS

the pivot node”. Note that it receives an ambiguous node

sign itself as a result of two conflicting (non-ambiguous)|n this section we detail some of the issues involved in our
influences. An unambiguous node sign for nddeould  a|gorithm for pivotal pruning of trade-offs. In doing so, we
not suffice to fix an unambiguous sign for nofle Even  assume that a qualitative probabilistic network does not in
knowledge of the relative strengths of the two conflictingclude any ambiguous influences, that is, ambiguous node
influences from nodé on the pivot node would not suf- signs upon inference result from unresolved trade-offs. We
fice for this purpose, however: a positive node sign forfyrther assume that observations are entered into the net-
node, for example, would still cause nod&, residing  work one at a time. We also assume that sign propagation
on one of the reasoning chains fraftto C, to receive an  resulted in an ambiguous sign for the network’s node of in-

ambiguous node sign, which in turn gives rise to an am+erest. For ease of reference, Figure 6 summarises the zoom
biguous influence o’. NodeG therefore also lies at the z|gorithm in pseudocode.

basis of the ambiguity at the pivot node. Now, every com-

bination of unambiguous node signs for the no@eand procedure PivotalPruningQ):

I would render the separate influences on the pivot node Q1 + ComputeRelevantNetwori);
unambiguous. Knowledge of the relative strengths of these pivot < ComputePivotQ,..);
influences would suffice to determine an unambiguous sign ConstructResultgf,.;,pivot)

for the pivot node. We call a minimal set of nodes having

this property theesolution frontierfor the pivot node. Figure 6: The Basic Algorithm.

In terms of signs for the nodes from the resolution frontier,In detailing the algorithm, we focus attention on identify-
our algorithm now constructs a (conditional) sign for theing the relevant part of a qualitative probabilistic netiwor
pivot node by comparing the relative strengths of the vari-along with its pivot node and on constructing from these an
ous influences exerted on it upon inference. In the examplaaformative result for the node of interest.



4.1 IDENTIFYING THE RELEVANT NETWORK computationally nor dynamically relevant to the node of

interestA.
Our algorithm identifies from a qualitative probabilistic

network the relevant part for addressing the trade-offs thal € concept of dynamic relevance was introduced to de-
have resulted in an ambiguous sign for the node of internote the nodes constituting the reasoning chains between a
est. We begin by formally defining the concept of relevant"€Wly observed node and a node of interest in a probabilis-
network. tic network [Druzdzel & Suermondt, 1994]. The set of all

nodes that are dynamically relevant to the node of interest
Definition 1 LetQ = (G, A) be a qualitative probabilistic ~ / and the newly observed nodg given the previously ob-
network as defined in Section 2. L@the the set of previ- served nOde@, can in fact be shown to induce the relevant
ously observed nodesdp, let E be the node for which new network for £ andI givenO, as defined in Definition 1.
evidence has become available, andlldte the network’s
node of interest. Theeslevant networkkor E and I given
O is the qualitative probabilistic networ®,..; = (G', A")
such that

From a qualitative probabilistic network, the set of dy-
namically relevant nodes can be established by first deter-
mining all nodes that are computationally relevant to the
node of interes! and then removing the nodes that are not
on any reasoning chain from the newly observed nade
e V(G') consists of all nodes that occur on a chainfrom to 7. For computing the set of all computationally rele-
E to I that is not blocked by); vant nodes, the efficieBayes-Ballalgorithm is available
n o , , . from R.D. Shachter (1998). The algorithm takes for its in-
* AE) = (V(E) x V() N A(G); and put a probabilistic network, the set of all observed nodes
o A’ consists of all qualitative influences and synergiesO U {E£}, and the node of interedt it returns the sets
from A that involve nodes fror@’ only. of nodes that are computationally relevant, requisite
to I. From the set of computationally relevant nodes, all

The concept of relevance has been introduced before, mogpdes that are not on any reasoning chain from the newly
notably for quantitative probabilistic networks (see far e OPServed nodet to the node of interest need be iden-
ample [Druzdzel & Suermondt, 1994, Shachter, 1998]). Infified; these nodes are termedisance nodetor £ and
fact, for quantitative and qualitative probabilistic netks I. An eff_|C|ent algorithm is available for |_dent|fy|ng thege
various different concepts of relevance have been distin?0des [Lin & Druzdzel, 1997]. The algorithm takes for its
guished. For a node of interet previously observed NPUta computationally relevant network, the set of previ-

nodes0D, and a newly observed nodg& we say that a node ously observed node&3, the newly observed nodg, and
Nis the node of interesi; it returns the set of nuisance nodes

for £ andI. The algorithm for computing the relevant

« structurally relevanto 7, if N is not d-separated from part of a qualitative probabilistic network is summarised

1 givenO U {E}; in pseudocode in Figure 7.

o computationally relevanto I, if the (conditional) function ComputeRelevantNetworgl): Q.
probabilities for N are required for computing the requisites— BayesBallG, O U {E}, I);
posterior probability distribution fof given the ob- V(G) « (V(G) \ requisiteg U {E};

A(G) « (V(G) x V(G)) N A(G);
nuisances— ComputeNuisanceNode&sy;
e dynamically relevanto I andE, if N partakes in the X((g)) : YV((GC%)\; L"}S(Eg)c)eg A(G);

impact of E on I in the presence of the observations A « {allinfluences and synergiés fromin GY;

for O. return Q. = (G, A)

servations foO U {E'}; and

In our example qualitative network, nodgis structurally
relevant, computationally relevant, and dynamically +ele
vant to the node of interest. NodeF is structurally rele-
vantto noded yet neither computationally nor dynamically
relevant. NodeJ is structurally irrelevant to the observed 4.2 |IDENTIEYING THE PIVOT NODE

nodeH, as is also evidenced by its node sign ‘0’ upon in-

ference; it is both structurally and computationally relety  After establishing the relevant part of a qualitative proba
to the node of interestl, yet dynamically irrelevant. The bilistic network for addressing the trade-offs present, ou
newly observed nodél is d-separated froml by its be-  algorithm identifies the pivot node. The pivot node serves
ing observed. It therefore is not structurally relevantito  to separate the part of the relevant network that contains
it is computationally as well as dynamically relevant4p  the trade-offs that have given rise to the ambiguous sign
however. NodeV/, to conclude, is neither structurally nor for the node of interest, from the part that does not con-

Figure 7: The Algorithm for Computing the Relevant Net-
work.



tain these trade-offs. The pivot node will allow for further Theorem 2 Let @ = (G,A) be a relevant qualitative
focusing. We recall that the pivot node is a node with anprobabilistic network; letE and I be as before. The pivot
ambiguous node sign, for which every possible unambigunode forl and E is unique.

ous sign would uniquely determine an unambiguous sign

for the node of interest. We define the concept of pivotProof (sketch). From Definition 1 we have that the rele-
node more formally. vant network consists of only nodes that reside on an un-

blocked chain from the newly observed nddé¢o the node
Definition 2 Let Q = (G, A) be a relevant qualitative of interestl. From the definition of articulation node, we
probabilistic network; letO be the set of previously ob- further have that every such chain mustinclude all articula
served nodes, |ef be the newly observed node, andlet tion nodes in the relevant network. In fact, every reasoning
be the network’s node of interest, as before. ffivet node  chain fromE to I visits the articulation nodes in the same

for I and E is a nodeP € V (G) such that order. From Definition 2 we have that no two pivot nodes
can reside on the same unblocked chain to the node of in-
e SL(E,P) € Awith§ =7 terest. We conclude that the pivot node is unidue.
o S5(P,I) € Awithd # “7; and From the proof of Theorem 2 we have that the articula-

tion nodes in a relevant network allow a total ordering. We
e there does not exist a nod& with the above prop- number the articulation nodes, together with the node of in-
erties that resides on a chain frofi to P thatis not  terestl, from 1, for the node closest to the newly observed
blocked byO. node, tom, for the node of interest. The pivot node now
is the node with the lowest ordering number for which an
The pivot node in a relevant qualitative probabilistic net-unambiguous sign would uniquely determine an unambigu-
work has various convenient properties. Before discussingus sign for the node of interest. To identify the pivot node,
these properties, we briefly review the concept ofaan  our algorithm starts with investigating the articulaticrde
ticulation nodefrom graph theory. In a digraph, an ar- closest to the node of interest; this node is numberedl.
ticulation node is a node that upon removal along withThe algorithm investigates whether an unambiguous sign
its incident arcs, makes the digraph fall apart into vari-for this candidate pivot node would result in an unambigu-
ous separate components. In the digraph of our exampleus sign for the node of interest upon sign propagation. By
network, as shown in Figure 2, the articulation nodes argpropagating a+’ from the candidate pivot node to the node
the node<”, D, H, I, andL; for the relevant network, de- of interestl, the node sign resulting fdris the sign of the
picted in Figure 4, nod€’ is the only articulation node, netinfluence of the candidate pivot nodelonf this sign is
however. Articulation nodes are identified using a depth-ambiguous, then the node of interest itself is the pivot node
first search algorithm; for details, we refer the reader toOtherwise, the algorithm proceeds by investigating the ar-
[Cormenet al, 1990]. Theorems 1 and 2 now state impor-ticulation node numberea — 2, and so on. The algorithm
tant properties of a pivot node that allow for its identifica- is summarised in pseudocode in Figure 8.

tion. ] . _
function ComputePivotQ): pivot

Theorem 1 Let Q = (G,A) be a relevant qualitative candidates— {I} U FindArticulationNodesF);
probabilistic network; letE be the newly observed node order the nodes frorandidatesrom 1 to m;
and let be the node of interest. The pivot node foand return FindPivotgn — 1);
E is either the node of interegtor an articulation node in i o _
G. function FindPivot¢): pivot
PropagateSign(nodenodes,‘ +)

Proof (sketch). By definition we have that every possible  if sigrinodei + 1] =7’
unambiguous node sign for the pivot node determines an  (hen return nodei + 1;

. . . . elseFindPivotf — 1)
unambiguous sign for the node of interéstit will be ev-
ident that noded itself satisfies this property. Either the Figure 8: The Algorithm for Computing the Pivot Node.
node of interesf or another node on an unblocked chain
from E to I, therefore, is the pivot node. Now, suppose4.3 CONSTRUCTING RESULTS
that nodel is not the pivot node. As a sign for the pivot
node uniquely determines the sign fgrwe conclude that From its definition, we have that there must be two or more
all influences exerted upahmust traverse the pivot node. different reasoning chains in the relevant network from the
Every unblocked chain frorfd to I, therefore, mustinclude newly observed node to the pivot node; the net influences
the pivot node. As a consequence, removing the pivot nodalong these reasoning chains are conflicting or ambiguous.
along with its incident arcs from the relevant network will Our algorithm focuses on the ambiguity at the pivot node
cause the network to fall apart into separate componentand identifies the information that would serve to resolve
We conclude that the pivot node is an articulation nade. it. For this purpose, the algorithm zooms in on the part



of the relevant network between the newly observed nodevhere|j| once again is used to denote the strength of the
and the pivot node; we call this part tipeuned relevant signdé. We would like to note that as, in general, the resolu-
network Note that the pruned relevant network is readily tion frontier includes a small number of nodes, the number
computed by exploiting the property that the pivot node isof signs to be computed for the pivot node is limited. In ad-
an articulation node. From the pruned relevant network, thelition, we note that the process of constructing inforneativ
algorithm first selects the so-calledndidate resolvers results can be repeated recursively for the nodes in theé pivo
node’s resolution frontier, until the newly observed nagle i
Definition 3 Let @ = (G,A) be a relevant qualitative reached. The basic algorithm is summarised in pseudocode
probabilistic network; letE be the newly observed node in Figure 9.
and let] be the network’s node of interest. LBtbe the

pivot node for/ and E. Now, letQ,,, = (G', A’) be the procedure ConstructResultsg,pivot):
pruned relevant network faP. A candidate resolvefor P Qpru < ComputePrunedNetwortdpivot);
is anodeR; € V(G"), R; # P, such that candidates— ComputeCandidate@(. ,pivot);

output ComputeResult§X,.. ,pivot,candidate}

° Ri=E,or function ComputeResult§},.. ,pivot,candidatek

e signR; ] = ‘?"and in-degre¢R; | > 2. front|i|er<— ComputeFrontiefivot, &J,candidatey
for all R; € frontier

. . o do determines?, j > 1;
The candidate resolvers for the pivot node are easily iden- forall R, € frénf]ie?andsigr{Ri] -y

tified from the pruned relevant network. do return inequality (1);

From among the candidate resolvers in the pruned relevant
network, our algorithm now constructs the resolution fron-
tier. We recall that the resolution frontier is a minimal gkt
nodes for which unambiguous node signs would uniquely on a reasoning chain fro
determine the signs of the separate influences on the pivot doif V; € candidates

node. then frontier < frontier U {V;}
elseComputeFrontiei(; frontier,candidate}

function ComputeFrontiegivotfrontier,
candidate¥ frontier

for all V; such that(V;, pivot) or (pivot, V;)

Definition 4 Let@ = (G, A) be a pruned relevant quali-
tative probabilistic network; leff and I be as before. Let

P be the pivot node fof and E, and letR be the set of T conclude, we would like to note that for computing in-
candidate resolvers foP, as defined in Definition 3. The formative results for a relevant network’s pivot node, the
resolution frontiet” for P is the maximal subset @ such  pruned network can be even further restricted. To this end,
that for each candidate resolve; € F there exists at g so-callecboundary nodean be identified for the newly
least one unblocked chain frofvia R; to P such thatno  gpserved node. The boundary node is the articulation node
nodeR; € R resides on the subchain frof to P. closest to the node of interest that has an unambiguous node

) ) _sign after propagation of the observation entered. Con-
The resolution frontier can be constructed by recurswelystructmg results can then focus on the part of the relevant

traversing the various reasoning chains from the pivot Nod@etwork between the pivot node and the boundary node.
back to the observed node and checking whether the \oreover, if the thus pruned network includes many artic-
nodes visited are candidate resolvers. ulation nodes, it may very well be that trade-offs exist be-
Once the resolution frontier has been identified from theween the articulation nodes numbeted 1 andk, but not
pruned relevant network, the algorithm constructs a (conPetweenk andk + 1. Distinguishing between these com-
ditional) sign for the pivot node in terms of signs for the Ponents is straightforward and allows for further focusing
nodes from the frontier. LeF" be the resolution frontier ©n the actual trade-offs involved in inference.

for the pivot nodeP. For each resolveR; € F, let s},

j > 1, denote the signs of the various different reasoning5  CONCLUSIONS

chains fromR; to the pivot node. For each combination of

node signsignR;], R; € F, the sign of the pivot node is  Wwe have presented a new algorithm for dealing with trade-

Figure 9: The Algorithm for Constructing Results.

computed to be offs in qualitative probabilistic networks. Rather than re
' solve trade-offs by providing for a finer level of representa

if ‘ Dsign(rilosi)=+ (sign[Ri] @ s5)| > tion detail, our algorithm identifies from a qualitative pro
abilistic network the information that would serve to re-

‘ ® (sign[Ril@st)— (sign[Ri] ® 53)‘ (1)  solvethe trade-offs present. For this purpose, the atyurit

zooms in on the part of the network where the actual trade-
then sign[P] = +, else sign[P] = — offs reside and identifies the pivot node for the node of in-



terest. The sign of the pivot node uniquely determines the Conference on Uncertainty in Artificial Intelligence
sign of the node of interest. For the pivot node, a more pp. 338 — 345.

informative result than ambiguity is constructed in terms . .
of values for the node’s resolvers and the relative strengthlParsons, 1995] S. Parsons (1995). Refining reasoning in

of the influences upon it. This process of constructing in- qualitative probabilistic networkﬁ’.roce.edingfs.of the
formative results can be repeated recursively for the pivot ~ Eléventh Conference on Uncertainty in Artificial In-

node’s resolvers. telligence pp. 427 — 434.

As we have already mentioned in our introduction, we be{Pearl, 1988] J. Pearl (1988probabilistic Reasoning in
lieve that qualitative probabilistic networks can play am i Intelligent Systems: Networks of Plausible Inference.
portant role in the construction of quantitative networds f Morgan Kaufmann Publishers, Palo Alto.

real-life application domains, as well as for explanatién o
their reasoning processes. For the purpose of explanatio
qualitative probabilistic networks have been proposed be-
fore. The concept of pivot node for zooming in on trade-

offs and constructing insightful results for a network’sleo

of interest is a very powerful concept to enable explanatiofshachter, 1998] R.D. Shachter (1998). Bayes-Ball: the
of complex reasoning processes in quantitative probabilis  rational pastime (for determining irrelevance and reg-

LRenooij & Van der Gaag, 1999] S. Renooij and L.C. van
" der Gaag (1999). Enhancing QPNs for trade-off res-

olution. Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligencepp. 559 — 566.

tic networks. uisite information in belief networks and influence di-
agrams).Proceedings of the Fourteenth Conference
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