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Abstract. The work presented here investigates the impact of certain
environmental parameters on the performance of a multi-robot team
conducting exploration tasks. Experiments were conducted with phys-
ical robots and simulated robots, and a diverse set of metrics was com-
puted. The experiments were structured to highlight several factors: (a)
single-robot versus multi-robot tasks; (b) independent versus dependent
(or “constrained”) tasks; and (c) static versus dynamic task allocation
modes. Four different task allocation mechanisms were compared, in two
different exploration scenarios, with two different starting configurations
for the robot team. The results highlight the distinctions between param-
eterised environments (characterised by the factors above, the robots’
starting positions and the exploration scenario) and the effectiveness of
each task allocation mechanism, illustrating that some mechanisms per-
form statistically better in particular environment parameterisations.
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1 Introduction

A future is envisioned in which autonomous mobile robots work together across
a wide range of scenarios, from disaster response to humanitarian de-mining to
factory maintenance. As the set of possible environments expands, so do the
demands for multi-robot teamwork, requiring robots to operate in increasingly
complex and challenging settings. A key requirement for deployment of such
teams is a comprehensive understanding of the factors that contribute to these
challenges. For example, is it important that the team knows what tasks it will
be asked to complete beforehand? Do dependencies between tasks contribute
to the efficacy of a task allocation? If some tasks require two robots to work
together, how does that impact the organisation of the team? These questions
form an open area of research, which falls under the heading of multi-robot task
allocation: given a mission composed of a number of tasks, what is the best
way to assign tasks to robots so that the mission is executed in an efficient way
according to some performance metric(s) (e.g., minimising distance travelled)?



There are various approaches to multi-robot task allocation, ranging from
centralised and fully connected (where a single controller talks to and coordi-
nates all robots) to distributed and partially connected (where communication
is limited [2]). Market-based approaches, which use estimates of cost or utility to
distribute tasks, as goods are priced and distributed in an economic market, fall
somewhere in the middle of this range. Auctions are a popular form of market
for task allocation. Tasks are advertised to team members, who then bid on them
using private valuation functions. Many different auction mechanisms (i.e., the
rules and procedures that describe how, when and to whom tasks are advertised,
bid upon and awarded) have been studied [3].

Most of the existing work studies environments in which tasks are known
ahead of time, are independent, can be completed in any order, and require
only one robot. Existing taxonomies [6, 16] suggest three task dimensions, la-
belling well-studied environments as single-robot (SR), independent (IT ) and
static (SA). In our work, we are investigating task allocation in more complex en-
vironments using several auction-based mechanisms found in the literature. Our
earlier work evaluated static versus dynamic task allocation factors, comparing
situations where tasks were all known ahead of time and were allocated before
execution of any task commenced (SR-IT-SA [21, 24]) and situations where tasks
appeared during execution, meaning that allocation occurred dynamically, after
some tasks had commenced (SR-IT-DA [25]). Here, we consider two additional
confounding factors: multi-robot (MR) tasks, where more than one robot is re-
quired (e.g., moving a heavy object); and constrained (CT ) tasks, where a task
may be dependent on others to be completed before it can be executed (e.g.,
clearing debris from a doorway before being able to enter a room).

Our long term goal is to develop a comprehensive understanding of the fac-
tors that contribute to multi-robot team performance in varied environments.
Here, we test two hypotheses. The first hypothesis is that within a single environ-
ment, the different mechanisms evaluated here produce statistically significantly
different results, according to particular performance metrics. Thus, for any one
point in the environment landscape, we can identify one task allocation mecha-
nism that reliably performs the best for a given metric. The second hypothesis is
that across multiple environments, there is no definitive or consistent ranking of
mechanisms across the metrics. Thus, across all points in the environment land-
scape, none of the task allocation mechanisms evaluated performs the best for
a given metric. As shown here, we have proven both these hypotheses through
empirical results obtained on physical robots, backed up with results obtained
in simulation experiments.

2 Related work

The use of market mechanisms in distributed computing can be considered
to have begun with Smith’s contract net protocol [27], and this was followed
by Wellman and Wurman’s market-aware agents [29]. A primary strength of
market-based approaches is their reliance only on local information and/or the



self-interest of agents to arrive at efficient solutions to large-scale, complex prob-
lems that are otherwise intractable [3]. The most common instantiations of mar-
ket mechanisms in multi-robot systems are auctions. Auctions are commonly
used for distribution tasks, where resources or roles are treated as commodities
and auctioned to agents. Existing work analyzes the effects of different auction
mechanisms [1, 3, 13, 30], bidding strategies [23], dynamic task re-allocation [7]
and levels of commitment to the contracts [18] on the overall solution quality.

In domains where there is a strong synergy between items, single-item auc-
tions can result in sub-optimal allocations [1]. In multi-robot exploration, studied
here, strong synergies may exist between tasks. Combinatorial auctions remedy
this limitation by allowing agents to bid on bundles of items, and minimise
the total travel distance because they take the synergies between tasks into ac-
count [10]. Combinatorial auctions suffer, however, from the computational costs
of bid generation and bundle valuation by the agents, and winner determination
by the auction mechanism itself, all of which are NP-hard [11]. As a result, a
body of work has grown up around the sequential single-item auction (ssi) [11],
which has been proven to create close to optimal allocations, handling synergies
while not suffering from the complexity issues of combinatorial auctions.

This paper is a further contribution to the body of work around ssi, ex-
tending the use of ssi and related mechanisms to task environments that are,
according to the taxonomies developed by Gerkey and Mataŕıc [6] and Landén et
al. [16]: multi-robot (MR), constrained (CT ) and dynamic (DA). Auction-based
approaches to task allocation have been proposed for tasks with precedence [17],
with temporal [8, 20] constraints, and for dynamic environments [25] with sin-
gle robot tasks. Environments that contain multi-robot tasks, with and without
constraints, are less well investigated than their single-robot counterparts [12].

Of all the literature on auctions in multi-robot teams, [19] and [26] are the
most closely related to our work. Both evaluate ssi in simulation and so one could
argue that their work evaluates the practical cost of solutions generated using
ssi. However, the focus of both [19] and [26] is on finding optimal mechanisms
for dynamic task reallocation during execution rather than being concerned with
the quality of team performance across a full set of tasks, which is our focus. In
addition, neither [19] nor [26] consider the range of metrics that we do and so are
unable, for example, to comment on the load balancing that our measurement of
“idle time” exposes or the amount of time one robot waits for another to arrive
at a joint location so they can execute a multi-robot task together.

3 Methodology

Formal description. We extend the notation of [11], where a set of n robots,
R = {r0, . . . , rn−1}, forms a team; a set of m tasks, T = {t0, . . . , tm−1}, com-
prises a mission; and T (ρ) is the set of tasks assigned to robots ρ ∈ R. We make
three extensions.

First, we specify dependencies between tasks in T . Following [16], Indepen-
dent Tasks (IT) can be executed in any order, whereas Constrained Tasks (CT)



have an implicit ordering. For example, suppose that tp is a task to clear debris
blocking the entrance to a passageway and tq is a task to collect sensor data in-
side that passageway: tp must be completed before tq can proceed. Formally: the
set of constrained tasks CT is a set of pairs of tasks (tp, tq), tp, tq ∈ T , such that
tp must be completed before tq can proceed. The set of relations (tp, tq) ∈ CT
defines a partial order over T .

Second, we specify the number of robots required to execute each task. Fol-
lowing [6], Single-Robot (SR) tasks need only be assigned to one robot, whereas
Multi-Robot (MR) tasks need more than one robot. Formally, each task, t, has
an associated value t.req defining the number of robots required to complete
that task; thus if t.req = 1, then t is an SR task. If t.req > 1, then t is an MR
task and t ∈ T (ρ) where ρ ⊆ R such that |ρ| = t.req.

Third, we specify the arrival time of each task. Each task t has an associ-
ated value t.arr which defines the time, τ , at which any of the robots ρ ⊆ R
become aware of t. Following [16], we distinguish between Static Allocation (SA)
environments, where every t.arr time is before the execution of any task begins,
and Dynamic Allocation (DA) environments, where t.arr values may occur after
the execution of at least one task begins. Each mission consists of an initial step
where tasks are announced; next, tasks are assigned to robots; and then, tasks
are executed. In an SA environment, the allocation of all tasks in the mission
occurs before any task is executed, whereas, in DA, the steps may overlap.

Previous work has experimentally evaluated auction-based mechanisms for
task allocation in SR-IT-SA [11] and SR-IT-DA [25] settings. Korsah et al. [12]
provide a comprehensive discussion of prior work in this domain, across a range
of task allocation methodologies (not just auction-based). In the work presented
here, we focus on dynamic allocation environments and present experimental
evaluations of MR-CT-DA, MR-IT-DA, SR-CT-DA and SR-IT-DA.

Metrics. To evaluate the performance of a team, we consider metrics that
measure the performance of both individual robots and the team as a whole. In
any work with robots, power consumption is the fundamental scarce resource
that a robot possesses. Robot batteries only last for a limited time, and so, all
other things being equal, we prefer task allocations and subsequent executions
that minimise battery usage. As in [10, 11, 14, 15, 28], therefore, we measure the
distance travelled by the robots in executing a set of tasks—both individually
and as a group—since this is a suitable proxy for power consumption.3

Time is also important, which we measure in several ways: run time is
the time between the start of an experiment and the point at which the last
robot on the team completes the tasks allocated to it; deliberation time is a
component of run time, the time that it takes for tasks to be allocated amongst
the robots; execution time is another component of run time, the time it takes
robots to complete tasks once they have been allocated; movement time is the

3 Note that we compute distance not by looking at the shortest distances between the
task locations, but is (as closely as we can establish) the actual distance travelled
by the robots during task execution. We collect frequent position updates, compute
the Euclidean distance between successive positions, and sum these.



(a) MR-CT-DA Scenario (b) The physical arena

Fig. 1. A MR-CT task scenario and lab in which physical experiments were conducted.
Bold lines indicate the walls of the arena. Task locations are shown as circles for single-
robot tasks or squares for two-robot tasks. A dashed line from task tp to task tq indicates
a precedence constraint (tp, tq). Arrival times for each task (t.arr) are also shown.

time robots spend actually moving, without interruption, toward task locations;
delay time is the amount of time robots spend avoiding collisions with each
other; waiting time is the amount of time robots wait for others to arrive at
MR task locations; and idle time is the amount of time that robots wait for
others to complete tasks, having completed their own.

Mechanisms. Our experiments employ four task allocation mechanisms:
(1) In round-robin (rr), tasks (T ) and robots (R) are placed in two ordered lists.
The first task, t0, is allocated to the first robot, r0. If ti.req > 1 (an MR task),
then it is also allocated to the next robot and so on until ti.req is reached. If
ti.req = 1 (an SR task), then the next task, ti+1, is allocated to the next robot.
(2) In ordered single-item auction (osi) [21], the tasks are placed in an ordered
list. Each task ti in turn is advertised to all the robots. Each robot makes a bid
for the task, where the bid value is the increase in the total path cost that the
robot estimates (using A*[9]) it would incur if it were to win that task. The task
is allocated to the ti.req-lowest bidding robots and the next task is auctioned.
(3) In sequential single-item auction (ssi) [11], unallocated tasks are presented
to all robots simultaneously. Each robot bids on the task with the lowest cost
(computed as in osi), and the task with the lowest bid is allocated to the robot
that made the bid. If the winning task, tw, has been completely allocated (to
tw.req robots), it is removed from the set of tasks to be advertised in the next
round and the process is repeated until all tasks have been allocated.
(4) In parallel single-item auction (psi) [11], allocation starts like ssi: all robots
bid on all tasks from their current locations. All the tasks are allocated in one
round, with each task ti going to the ti.req-lowest bidding robots that bid on it.



4 Experiments

We conducted a series of experiments comparing the task allocation mecha-
nisms described earlier in a structured set of 〈SR|MR〉〈IT |CT 〉〈SA|DA〉 envi-
ronments. Here we describe the system used to conduct these experiments, the
specific scenarios evaluated, and our results.

System Description. Task allocation is conducted by a central auction-
eer agent, which communicates the start of an auction and awards tasks to robot
controller agents.4 Each robot controller submits bids, the auctioneer determines
the winner(s) of the auction and allocates tasks accordingly. Robot controllers
then execute tasks autonomously. Our software architecture is agnostic about
whether the team executes its tasks on real robot hardware or in simulation.
Our physical platform is the Turtlebot2,5 which has a differential drive base and
a colour/depth-sensing Microsoft Kinect camera. The ROS [22] navigation stack
provides communication, localisation and path planning capabilities. Our simu-
lated robot (using Stage [5]) has the same properties as its physical counterpart.

The operating environment for our robots is an office-like setting with rooms
opening off a central hallway. The layout of this environment is shown in Fig-
ure 1(a), and a photograph is given in Figure 1(b). While this is a smaller envi-
ronment than that studied by some others (e.g., [11]), our setup allows us to run
parallel experiments on physical robots and—on a larger scale—in simulation,
which produces more statistically significant results.

Experimental Setup. An experimental condition is defined by the starting
locations of the robots and the task scenario (defined by task locations, task
arrival times, constraints and robot requirements). This work investigates rout-
ing tasks—a robot executes a task simply by driving to the task’s location. All
of the experiments reported here involve a team of n = 3 robots. We used two
sets of starting configurations for the robot team: one clustered the robots in
the “room” in the lower left corner of the arena, while the other distributed the
robots at three corners of the map. We examined four different parameterised
environments, all with dynamic allocation (DA), combining single-robot (SR)
vs. multi-robot (MR) and independent (IT) vs. constrained (CT) tasks: SR-IT-
DA, SR-CT-DA, MR-IT-DA and MR-CT-DA. We employed two different task
scenarios. Figure 1(a) shows a diagram of the first task scenario.

The aim in choosing this combination of parameterised environments was to
see how performance of the four task allocation mechanisms varied along the
MR/SR and CT/IT dimensions. In total, 192 physical and 960 simulation tri-
als were performed: 2 starting configurations × 4 parameterised environments ×
2 task scenarios×4 allocation mechanisms×{3 physical | 15 simulation} trials.
For each experiment, we recorded the metrics described in Section 3.

Results. Figures 2–3 and Table 1 contain representative results from the
experiments. Figure 2 shows the average distance travelled by the team in eight

4 Though bidding and winner determination are managed centrally, there is no cen-
tralised control in the usual sense. The auction could also be distributed among the
robots as in [4].

5 www.turtlebot.com
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(h) MR-CT-DA, distrib.

Fig. 2. Average distance (meters) travelled in physical experiments for variations of
the scenario shown in Figure 1(a). Mechanisms are ordered RR, OSI, SSI and PSI.

variations of the scenario shown in Figure 1(a). In each plot, average travel
distances resulting from allocations produced by rr, osi, ssi, and psi are shown
from left to right. Error bars indicate 95% confidence intervals. Figures 2(a) and
2(b) show how, in the SR-clustered conditions of this scenario, psi allocations
result in distances that are significantly shorter than those produced by the
other mechanisms. As we move to distributed-start conditions of the scenario
(Figures 2(c) and 2(d)), differences among three of the mechanisms diminish
but remain statistically significantly different, while rr continues to lead to
dramatically longer distances. This result is similar to those reported in [25],
where it was shown that a starting configuration that distributes team members
more evenly amongst tasks tends to lessen the advantages of mechanisms such
as ssi that exploit clustering properties of task locations. In MR conditions of
the same scenario, the results are somewhat different. For example, rr doesn’t
always result in the longest distances nor does psi always result in the shortest.
The relative rankings of the mechanisms are much less predictable than in the
SR conditions. Our second experimental task scenario produced similar results.

We can choose other of our performance metrics to examine individually.
But with nine metrics and a large number of combinations of environments and
experimental configurations, we want to make sense of the results as a whole.
Do any of the mechanisms produce the best performance across environments
or experimental configurations? Do clear patterns emerge? We address these
questions in the following section by examining the data in aggregate.

5 Analysis

Here, we focus on five different performance metrics. Deliberation time is a com-
ponent of overall run time and a good measure of how well an allocation mecha-



(a) MR-CT-DA, Delib. (b) MR-IT-DA, Delib. (c) SR-CT-DA, Delib. (d) SR-IT-DA, Delib.

(e) MR-CT-DA, Exec. (f) MR-IT-DA, Exec. (g) SR-CT-DA, Exec. (h) SR-IT-DA, Exec.
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(q) MR-CT-DA, Wait. (r) MR-IT-DA, Wait. (s) SR-CT-DA, Wait. (t) SR-IT-DA, Wait.

Fig. 3. Heat maps for the physical experiment data on each parameterised environ-
ment. Each heatmap shows the two different scenarios and two different experimental
conditions. For a given scenario/condition pair (row) the colour of the squares indi-
cates the rank order of the mechanism (column). The darkest square indicates the
lowest value of the metric (best mechanism), the lightest square indicates the highest
value (worst mechanism). (a)–(d) show deliberation time, (e)–(h) show execution time,
(i)–(l) show distance, (m)–(p) show idle time, and (q)–(t) show waiting time.



Physical Simulation
(a) Deliberation time

F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p
MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 83.96 0.010 cl-s1 71.77 0.010 cl-s1 28709.89 0.010 cl-s1 241.51 0.010
di-s1 158.13 0.010 di-s1 43.87 0.010 di-s1 54561.93 0.010 di-s1 213.79 0.010
cl-s2 3901.58 0.010 cl-s2 1766.23 0.010 cl-s2 18630.69 0.010 cl-s2 30977.14 0.010
di-s2 3080.90 0.010 di-s2 3708.91 0.010 di-s2 22404.35 0.010 di-s2 21734.58 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 93.79 0.010 cl-s1 5038.94 0.010 cl-s1 24591.32 0.010 cl-s1 174.05 0.010
di-s1 1150.34 0.010 di-s1 45.53 0.010 di-s1 44307.68 0.010 di-s1 2089.02 0.010
cl-s2 5124.26 0.010 cl-s2 37639.65 0.010 cl-s2 15842.79 0.010 cl-s2 23317.28 0.010
di-s2 5364.80 0.010 di-s2 146.10 0.010 di-s2 44591.27 0.010 di-s2 27112.49 0.010

(b) Execution time
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 1.39 0.950 cl-s1 19.70 0.010 cl-s1 30.43 0.010 cl-s1 60.39 0.010
di-s1 9.58 0.010 di-s1 3.27 0.950 di-s1 5.94 0.010 di-s1 22.79 0.010
cl-s2 5.49 0.050 cl-s2 19.72 0.010 cl-s2 24.02 0.010 cl-s2 19.82 0.010
di-s2 3.19 0.950 di-s2 24.63 0.010 di-s2 9.88 0.010 di-s2 39.51 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 2.82 0.950 cl-s1 18.58 0.010 cl-s1 36.39 0.010 cl-s1 33.09 0.010
di-s1 1.54 0.950 di-s1 11.17 0.010 di-s1 9.53 0.010 di-s1 14.14 0.010
cl-s2 3.92 0.950 cl-s2 9.93 0.010 cl-s2 6.62 0.010 cl-s2 28.28 0.010
di-s2 0.77 0.950 di-s2 79.93 0.010 di-s2 5.10 0.010 di-s2 15.93 0.010

(c) Distance travelled
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 7.76 0.010 cl-s1 30.83 0.010 cl-s1 35.88 0.010 cl-s1 312.84 0.010
di-s1 13.04 0.010 di-s1 784.63 0.010 di-s1 4817.66 0.010 di-s1 75593.00 0.010
cl-s2 12.90 0.010 cl-s2 7.70 0.010 cl-s2 33.75 0.010 cl-s2 60.12 0.010
di-s2 9.39 0.010 di-s2 996.79 0.010 di-s2 132.54 0.010 di-s2 1395.83 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 10.38 0.010 cl-s1 6.01 0.050 cl-s1 390.48 0.010 cl-s1 436.66 0.010
di-s1 68.46 0.010 di-s1 173.25 0.010 di-s1 3121.61 0.010 di-s1 98521.39 0.010
cl-s2 13.30 0.010 cl-s2 29.16 0.010 cl-s2 122.99 0.010 cl-s2 231.39 0.010
di-s2 10.21 0.010 di-s2 2823.98 0.010 di-s2 527.39 0.010 di-s2 3676.25 0.010

(d) Total idle time
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 0.72 0.950 cl-s1 8.44 0.010 cl-s1 40.63 0.010 cl-s1 40.08 0.010
di-s1 2.17 0.950 di-s1 4.33 0.050 di-s1 36.85 0.010 di-s1 34.25 0.010
cl-s2 8.28 0.010 cl-s2 6.23 0.050 cl-s2 112.31 0.010 cl-s2 7.00 0.010
di-s2 4.30 0.050 di-s2 29.89 0.010 di-s2 70.23 0.010 di-s2 29.02 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 111.22 0.010 cl-s1 2.19 0.950 cl-s1 117.09 0.010 cl-s1 14.87 0.010
di-s1 7.90 0.010 di-s1 6.69 0.050 di-s1 40.33 0.010 di-s1 52.47 0.010
cl-s2 20.62 0.010 cl-s2 4.12 0.050 cl-s2 99.37 0.010 cl-s2 12.82 0.010
di-s2 16.53 0.010 di-s2 90.31 0.010 di-s2 16.58 0.010 di-s2 8.40 0.010

(e) Total waiting time
F (3, 8) p F (3, 8) p F (3, 56) p F (3, 56) p

MR-CT-DA- SR-CT-DA- MR-CT-DA- SR-CT-DA-
cl-s1 26.38 0.010 cl-s1 100.07 0.010 cl-s1 10.02 0.010 cl-s1 1260.61 0.010
di-s1 1.28 0.950 di-s1 9.19 0.010 di-s1 30.23 0.010 di-s1 100.39 0.010
cl-s2 0.15 0.950 cl-s2 6.01 0.050 cl-s2 16.90 0.010 cl-s2 38.08 0.010
di-s2 8.92 0.010 di-s2 22.55 0.010 di-s2 20.93 0.010 di-s2 6.94 0.010
MR-IT-DA- SR-IT-DA- MR-IT-DA- SR-IT-DA-
cl-s1 4.21 0.050 cl-s1 0.25 0.950 cl-s1 28.44 0.010 cl-s1 0.63 0.950
di-s1 0.26 0.950 di-s1 0.42 0.950 di-s1 23.39 0.010 di-s1 0.64 0.950
cl-s2 0.30 0.950 cl-s2 2.49 0.950 cl-s2 14.05 0.010 cl-s2 0.00 0.950
di-s2 1.00 0.950 di-s2 1.69 0.950 di-s2 8.03 0.010 di-s2 1.32 0.950

Table 1. F-ratios for 5 different metrics



nism scales with the number of tasks and the size of the team. Execution time is
another component of run time and one of the main measures we would like to
minimise, the other being distance. We also look at idle time as a measure of how
well balanced the task load is among the team. Finally, we look at waiting time.
This is a feature specific to the MR and CT environments. A key contribution
of our work is extending experimental results, particularly with physical robots,
into MR and CT environments.

One of our long term goals is to develop task allocation mechanisms, or
methods of choosing mechanisms, that perform well in different environments.
Underlying this is the assumption that some mechanisms lead to better perfor-
mance outcomes in some environments than others, and that there may not be
a single mechanism that is best suited for all environments. We suggest two re-
search hypotheses to evaluate this assumption and use the results of experiments
discussed here to provide evidence for them.

The first hypothesis is that within a single 〈sc, pe, ts〉 tuple (where sc =starting
configuration, pe =parameterised environment, and ts =task scenario), the four
mechanisms examined here produce statistically significantly different results,
according to our performance metrics. It is important to show that performance
differences between mechanisms exist in the first place before examining the ef-
fects of varying environments. To evaluate this first hypothesis, we apply analysis
of variance (ANOVA) to determine if there are significant differences between
the different mechanisms. We ran ANOVA on the four samples—one for each
mechanism in each 〈sc, pe, ts〉 tuple. If the null hypothesis were true and the
differences among the four samples were due to chance, then the likelihood of
producing the F-ratio would be less than p%. The F-ratios of samples from
both physical and simulation experiments are shown in Table 1. These F-ratios
(p-value = 0.01) indicate a significant performance difference between the popu-
lations (mechanisms). For example, in the case of deliberation time (Table 1(a)),
very large F-ratio values are the result of comparing RR, a simple mechanism
that runs very quickly, with the others. In contrast, F-ratios for distance trav-
elled (Table 1(c)) are lower but still above the critical value for the significance
level and degrees of freedom tested. This supports our first hypothesis.

The second hypothesis is that across multiple 〈sc, pe, ts〉 tuples, there is no
definitive ranking amongst the metrics for each mechanism. Figure 3 shows per-
formance rankings obtained from physical experiments in the form of heat maps.
Each row of heat maps in the figure corresponds to one of the five metrics dis-
cussed above. Within each heat map, the four columns correspond to the four
task allocation mechanisms (rr, osi, ssi, psi, from left to right). The rows of
each heat map are labelled with a variation of a particular scenario. For ex-
ample, cl-s1 indicates clustered, scenario 1. The shading of a cell indicates its
rank: darker shades indicate lower values for that metric. While the ANOVA
results mentioned in support of the first hypothesis don’t directly measure the
degree to which any pair of mechanisms differed in performance, they do pro-
vide evidence that the rankings shown in the heat maps are based on statistically
significant differences. The heat maps for deliberation time (Figure 3(a)–3(d))



reveal some consistency when comparing environments and experimental condi-
tions (rows within a single heat map, and across heat maps in the same row of
the figure). rr is always the quickest to run, followed by psi, while osi and ssi
trade ranks depending on the experimental condition. Apart from deliberation
time, this type of performance ranking does not hold in a consistent way for
the other metrics when comparing across environments and experimental con-
ditions. This supports our second hypothesis. Our next steps involve looking at
more environments and experimental conditions that vary in systematic ways,
to help discover correspondences between parameters of environments and the
performance characteristics of different task allocation mechanisms. The type of
analysis presented here is likely to be a useful tool for this future endeavour.

6 Summary

The work presented here tests two hypotheses: (1) within a single parameterised
environment, a given task allocation mechanism can be proven to consistently
outperform others for certain metrics; and (2) across a varied set of parameterised
environments, no single task allocation mechanism will consistently outperform
others for any metrics. We conducted experiments with physical robots, as well
as simulated robots in an environment that parallels our physical setup. Our
empirical results support both of these hypotheses.

Future work will involve exploration of more complex scenarios in simulation,
with larger teams and more tasks, as well as additional experiments with physical
robots. In addition, we will be assessing how task duration affects the metrics
presented here, by varying the time it takes to complete different tasks. Our long
term goal is to identify the features of parameterised environments and/or task
scenarios that influence the performance of the different mechanisms, so that the
differences in rankings highlighted here can be attributed to particular features
of a given experimental environment.
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