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Abstract. In this paper we investigate the links between instantiated argumen-
tation systems and the axioms for non-monotonic reasoning described in [15]
with the aim of characterising the nature of argument based reasoning. In do-
ing so, we consider two possible interpretations of the consequence relation, and
describe which axioms are met by ASPIC™ under each of these interpretations.
We then consider the links between these axioms and the rationality postulates.
Our results indicate that argument based reasoning as characterised by ASPIC is
— according to the axioms of [15] — non-cumulative and non-monotonic, and
therefore weaker than the weakest non-monotonic reasoning systems considered
possible. This weakness underpins ASPIC™’s success in modelling other reason-
ing systems. We conclude by considering the relationship between AsPICTand
other weak logical systems.

1 Introduction

The rationality postulates proposed by Caminada and Amgoud [4] have been influen-
tial in the development of instantiated argumentation systems. These postulates identify
desirable properties for the conclusions drawn from an argument based reasoning pro-
cess, and focus on the effects of non-defeasible rules within an argumentation system.
However, these postulates provide no desiderata with regards to the conclusions drawn
from the defeasible rules found within an argumentation system. This latter type of rule
is critical to argumentation, and identifying postulates for such rules is therefore im-
portant. At the same time, a large body of work exists which deals with non-monotonic
reasoning (NMR). Such NMR systems (exemplified by approaches such as circumscrip-
tion [18], default logic [23] and auto-epistemic logic [21]) introduce various approaches
to handling defeasible reasoning, and axioms have been proposed to categorise such
systems [15].

In this paper we seek to combine the rich existing body of work on NMR with
structured argumentation systems. We aim to identify what axioms structured argument
systems, exemplified by ASPICT[19] meet*. In doing so, we also wish to investigate

4 ASPICT was selected for this study due to its popularity, and its ability to model a variety of
other structured systems [20].



the links between NMR axioms and the rationality postulates. This latter strand of work
will, in the future, potentially allow us to identify additional rationality postulates which
have not been considered to date.

2 The ASPICT Argumentation Framework

ASPICT [19] is a widely used formalism for structured argumentation, which satisfies
the rationality postulates of [4]°. Arguments within ASPICT are constructed by chain-
ing two types of inference rules, beginning with elements of a knowledge base. The
first type of inference rule is referred to as a strict rule, and represents rules whose
conclusion can be unconditionally drawn from a set of premises. This is in contrast
to defeasible inference rules, which allow for a conclusion to be drawn from a set of
premises as long as no exceptions or contrary conclusions exist.

Definition 1. An argumentation system is a triple AS = (L, R, n) where:

— Lis alogical language.

— ~is a function from L to 2~ such that:
o ¢isacontrary of Yifp €Y, & ¢
o ¢ is a contradictory of v (denoted by ‘¢ = —1’), if p € 1, ) €
o cach ¢ € L has at least one contradictory.

— R =RsUR, is aset of strict (R s) and defeasible (R 4) inference rules of the form
O1y.. s Op — pand @1, ..., ¢, = ¢ respectively (where ¢;, ¢ are meta-variables
ranging over wffin L), and Rs N Ry = 0.

- n:Rgq — L is a naming convention for defeasible rules.

We write ¢1, . .., ¢, ~ ¢ if R contains a (strict or defeasible) rule of the form ¢, . .., ¢, —

POr 1,y P = &

Definition 2. A knowledge base in an argumentation system (L, R, n) is a set K C L
consisting of two disjoint subsets IC,, (the axioms) and ICy, (the ordinary premises).

An argumentation theory consists of an argumentation system and knowledge base.

Definition 3. An argumentation theory AT is a pair (AS, K), where AS is an argu-
mentation system AS and K is a knowledge base.

An argumentation theory is strict iff R4 = () and K,, = 0, and is defeasible otherwise.

To ensure that reasoning meets norms for rational reasoning according to the ratio-
nality postulates of [4], an ASPICT argumentation system’s strict rules must be closed
under transposition. That is, given a strict rule with premises ¢ = {¢1,...,¢,} and
conclusion ¢ (written ¢ — ¢), a set of n additional rules of the following form must be
present in the system: {¢} U ¢\{#;} — ¢; forall 1 < i < n.

Arguments are defined recursively in terms of sub-arguments and through the use
of several functions: Prem(A) returns all the premises of argument A; Conc(A) returns
A’s conclusion, and TopRule(A) returns the last rule used within the argument. Sub(A)
returns all of A’s sub-arguments. Given this, arguments are defined as follows.

3 While additional rationality postulates have been proposed [24], we do not consider them in
this paper.



Definition 4. An argument A on the basis of an argumentation theory AT = ((L, R, n), K)
is:

1. ¢ if € K with: Prem(A) = {¢}; Conc(A) = {¢},; Sub(A4) = {A},; TopRule(A) =
undefined.

2. Ay,... A, — | = ¢ if A; are arguments such that there respectively exists a
strict/defeasible rule Conc(Ay),...,Conc(A,) = / = ¢pin Rs/Rq4. Prem(A) =
Prem(A;)U...UPrem(A,);Conc(A) = ¢; Sub(A4) = Sub(4;)U...USub(A4,)U
{A}; TopRule(A) = Conc(4;),...,Conc(A,) = /= ¢.

We write A(AT) to denote the set of arguments on the basis of the theory AT, and
given a set of arguments A, we write Concs(A) to denote the conclusions of those

arguments, that is:
Concs(A) = {Conc(A)|A € A}

Like other argumentation systems, ASPIC™ utilises conflict between arguments — rep-
resented through attacks — to determine what conclusions are justified.

An argument can be attacked in three ways: on its ordinary premises, on its con-
clusion, or on its inference rules. These three kinds of attack are called undermining,
rebutting and undercutting attacks, respectively.

Definition 5. An argument A attacks an argument B iff A undermines, rebuts or un-
dercuts B, where:

— A undermines B (on B') iff Conc(A) = ¢ for some B' = ¢ € Prem(B) and
¢ € Kp. _

— Avrebuts B (on B') iff Conc(A) = ¢ for some B’ € Sub(B) of the form By, ..., By =
¢.

— A undercuts B (on B') iff Conc(A) = n(r) for some B’ € Sub(B) such that
TopRule(B) is a defeasible rule r of the form ¢1, ..., ¢, = ¢.

Note that, in ASPIC™ rebutting is restricted: an argument with a strict TopRule can rebut
an argument with a defeasible TopRule, but not vice versa. ([5] and [16] introduce the
ASPIC- and ASPICJB systems which use unrestricted rebut). Finally, a set of arguments
is said to be consistent iff there is no attack between any arguments in the set.

Attacks can be distinguished by whether they are preference-dependent (rebutting
and undermining) or preference-independent (undercutting). The former succeed only
when the attacker is preferred. The latter succeed whether or not the attacker is pre-
ferred. Within ASPIC™ preferences over defeasible rules and ordinary premises are com-
bined to obtain a preference ordering over arguments [19]. Here, we are not concerned
about the means of combination, but, following [19], we only consider reasonable or-
derings. For our purposes, a reasonable ordering is one such that adding a strict rule or
axiom to an argument will neither increase nor decrease its preference level.

Definition 6. A preference ordering = is a binary relation over arguments, i.e., = C
A x A, where A is the set of all arguments constructed from the knowledge base in an
argumentation system.

Combining these elements results in the following.



Definition 7. A structured argumentation framework is a triple (A, att, <), where A
is the set of all arguments constructed from the argumentation system, att is the attack
relation, and < is a preference ordering on A.

Preferences over arguments interact with attacks such that preference-dependent attacks
succeed when the attacking argument is preferred. In contrast preference-independent
attacks always succeed. Attacks that succeed are called defeats. Using Definition 4 and
the notion of defeat, we can instantiate an abstract argumentation framework from a
structured argumentation framework.

Definition 8. An (abstract) argumentation framework AF corresponding to a struc-
tured argumentation framework SAF = (A, att, <) is a pair (A, Defeats) such that
Defeats is the defeat relation on A determined by SAF.

This abstract argumentation framework can be evaluated using standard argumentation
semantics [8], defining the notion of an extension:

Definition 9. Ler AF = (A, Defeats) be an abstract argumentation framework, let
A€ Aand E C A. E is said to be conflict-free iff there do not exista B, C € E such
that B defeats C. E is said to defend A iff for every B € A such that B defeats A,
there exists a C' € E such that C defeats B. The characteristic function F : 24 — 24
is defined as F(E) = {A € A|E defends A}. E is called (1) an admissible set iff
is conflict-free and E C F(FE); (2) a complete extension iff E is conflict-free and E =
F(E); (3) a grounded extension iff E is the minimal complete extension; (4) a preferred
extension iff E is a maximal complete extension, where minimality and maximality are
w.r.t. set inclusion; and (5) a stable extension iff F is a preferred extension which attacks
all arguments in A — E.

We note in passing that other extensions have been defined and refer the reader to [1]
for further details.
The status of an argument is as follows:

— An argument is credulously accepted if it is a member of at least one preferred
extension.

— An argument is sceptically accepted if it is a member of every preferred extension.

— If neither of the above hold, then the argument is rejected.

Furthermore, [6] describes the difference between sceptical, credulous and universal
acceptance of a conclusion:

Definition 10. For T € {admissible, complete, preferred, grounded, stable}, if AF =
(A, Defeats) is an abstract argumentation framework. we say that:

— ¢ isa T credulously justified conclusion of AF iff there exists an argument A and
a T extension E such that A € E and Conc(A) = ¢.

— ¢ is a T sceptical justified conclusion of AF iff for every T extension E, there
exists an argument A € E such that Conc(A) = ¢.

— ¢ is a T universal justified conclusion of AF iff there exists an argument A for
every T extension E, such that A € E and Conc(A) = ¢.



Abbr. Axiom Name
Ref al~a Reflexivity
LLE Fa=p Ay e Logical Equivalence
B~y
RW EFEa—=p 7~ a Right Weakening
v~ B
Cut ahBi~y alv B Cut
al~y
cM al~p alpy Cautious Monotonicity
anf vy
M EFEa=g Bl Monotonicity
al~y
T al~p Bl Transitivity
al~y
CP M Contraposition
B o

Table 1. The axioms from [15] that we will consider.

3 Axiomatic Reasoning and ASPICt

Kraus et al. [15], building on earlier work by Gabbay [11], identified a set of axioms
which characterise non-monotonic inference in logical systems, and studied the rela-
tionships between sets of these axioms. Their goal was to characterise different kinds
of reasoning; to pin down what it means for a logical system to be monotonic or non-
monotonic; and — in particular — to be able to distinguish between the two. Table 1
presents the axioms of [15], which we will use to characterise reasoning in ASPIC™. The
symbol |~ encodes a consequence relation, while |= identifies the statements obtainable
from the underlying theory. We have altered some of the symbols used in [15] to avoid
confusion with the notation of ASPIC™. Equivalence is denoted = (rather than <), and
— (rather than —) denotes the existence of a strict or defeasible rule.

Consequence relations that satisfy Ref, LLE, RW, Cut and CM are said to be cumu-
lative, and [15] describes them as being the weakest interesting logical system. Cumu-
lative consequence relations which also satisfy CP are monotonic, while consequence
relations that are cumulative and satisfy M are called cumulative monotonic. Such rela-
tions are stronger than cumulative but not monotonic in the usual sense.

To determine which axioms ASPIC™ does or does not comply with, we must decide
how different aspects of the axioms should be interpreted. We interpret the consequence
relation |~ in two ways that are natural in the context of ASPICT— describing these in
detail later — and which fit with the high level meaning of “if « is in the knowledge
base, then /3 follows”, or “( is a consequence of «”.



Assuming such an interpretation of « |~ 8 we can consider the meaning of the
axioms. Some axioms are clear. For example, axiom T says that if 3 is a consequence
of «, and -y is a consequence of 3, then + is a consequence of «. Other axioms are more
ambiguous. Does & A 8 |~ v in Cut mean that  is a consequence of the conjunction
a A B, or a consequence of « and [ together? In other words is A a feature of the
language underlying the reasoning system, or a feature of the meta-language in which
the properties are written? Similarly, given the distinction between strict and defeasible
rules, is @ < f3 a strict rule in ASPICT, a defeasible rule, or some statement in the
property meta-language?

We interpret the symbols found in the axioms as follows:

— E « means that « is an element of the relevant knowledge base.

— a A B means both « and 3, in particular in Cut and CM, A means that both v and
[ are in the knowledge base.

— o = [ is taken — as usual — to abbreviate the formula (o < 5) A (8 — «). We
assume o — 3 and 8 — « have the same interpretation, i.e., both or neither are
strict.

— a — [ has two interpretations. We have the strict interpretation in which oo —
denotes a strict rule @ — 3 in ASPIC™, and the defeasible interpretation in which
«a — [3 denotes either a strict or defeasible rule. We denote the latter interpretation
by writing o ~ 5.

4 Axioms and Consequences in ASPICT

In this section we examine which of the axioms ASPIC™T satisfies. Before doing so
however, we must further pin down some aspects of ASPIC™T rules.

4.1 Preliminaries

To evaluate ASPIC™, we have to be a bit more precise about exactly what we are eval-
uating. We start by saying that we assume an arbitrary ASPICT argumentation theory
AT = ({(L,R,n), K), in the sense that we say nothing about the contents of the knowl-
edge base, or what domain-specific rules it contains. However, we distinguish between
two classes of theory, with respect to the base logic that the theory contains.

The idea we capture by this is that in addition to domain specific rules — rules, for
example, about birds and penguins flying — an ASPICT theory might also contain rules
for reasoning in some logic. For example, we might equip an ASPIC™ theory with the
axioms and inference rules of classical logic. Such a theory would be able to construct
arguments using all the rules of classical logic, as well as all the domain-specific rules
in the theory. The two base logics that we consider are classical logic, and what we
call the “empty” base logic, where the ASPIC™ theory only contains domain-specific
rules. (We make some observations about other base logics — intuitionistic logic and
defeasible logic [2], but show no formal results for them.)

For each of the base logics, we consider the two different interpretations of the non-
monotonic consequence relation |~ described above, identifying which axioms each



interpretation satisfies. For our theory AT, we write AT, to denote an extension of this
augmentation theory also containing proposition z: AT, = ((L,R,n),K U {z}). An
argument present in the latter, but not former, theory is denoted A”.

4.2 Argument Construction

We begin by considering the consequence relation as representing argument construc-
tion. In other words, we interpret o |~ [ as meaning that if « is in the axioms or
ordinary premises of a theory, we can construct an argument for 3. More precisely:

Definition 11. We write « |~®7a B, if for every ASPICT argumentation theory AT =
({L, R, n), K) with the empty base logic such that & Concs(A(AT)), it is the case
that B € Concs(A(ATy)).

Definition 12. We write « |~C7a B, if for every ASPIC argumentation theory AT =
({L,R,n), K) with the classical base logic such that 3 ¢ Concs(A(AT)), it is the
case that 3 € Concs(A(AT,))

Proposition 1. The consequence relation |~  is cumulative for both strict and defea-
sible theories.

Proof. Consider an arbitrary theory AT = ((L, R, n), ).
[Ref] Given a theory AT,, we have an argument A* = [a], so Ref holds for |~y ,.
[LLE] Since a |~@’a v, AT, contains a chain of arguments A{, AS, ..., AS with
A% = [a] and Conc(A%) = ~. Given = o = 3, we have that both o ~ 3 and 8 ~ «
are in the theory AT, so are in the theory ATg. Within ATg, we obtain a chain of
arguments BY) = [B], BY = Bl ~ o], A5, ..., AB. That is 8 I~0.a - Therefore, both
strict and defeasible versions of LLE hold for |~@7a. [RW] Since )’y |N(D,a « in theory
AT, there is a chain of arguments A}, A3, ..., A} with A] = [v] and Conc(A}) = o
Given = o < f3, theory AT must contain o ~ 3, as must AT,. In AT, we have a
chain of arguments A, ..., A}, A} = [A) = B]. Thus, v |~y , B, and both strict
and defeasible versions of RW hold for ‘Ne),a- [Cut] Since a N\ 3 |~®7a v, there is
a chain of arguments AS® AYP . A%B with AP = [a], AS? = [B] in theory
AT, g, and Conc(A%P) = ~. In theory AT,, since a g B there is a chain of
arguments B, BS', ..., BY with Bf = [a] and Conc(Bf.,) = . There is also a chain
of arguments By, Bs', ..., B%,AS, ..., A% That is « |~®7a ~v. Therefore, cut holds for
g o [CM] Since o |~y , v AT, has a chain of arguments AY, ..., A7 with AT =
[a] and Conc(A%) = ~. AT, s has a similar chain of arguments AS? ... A%, so
a A By, v CM thus holds for [~ .

Since all of the above axioms hold, |~®,a is cumulative for both strict and defeasible
theories.

Proposition 2. The consequence relation |~ , satisfies M and T for both strict and
defeasible theories.

Proof. Consider an arbitrary theory AT = ((L, R, n), K).
[M] Since |~@’a 7, in the theory ATg, there is a chain of arguments A[f, Ag, o, AB



with A? = [B] and Conc(AB) = ~. Given |= a — (3, we have o ~ 3 in the
theory AT, and also in the theory AT,. In the latter, there is a chain of arguments
B§ = [o], Bf = [B§ ~ B],4%,..., Aa That is « |~y , 7. Therefore, both strict
and defeasible versions of M hold for \rv@ .- [T] Since 3 |~ v, in ATpg, there is a
chain of arguments BY | B ... BS with B? = [B] and Conc(Bfn) = . Similarly,
since a |~y , B, in ATa, there isa cham of arguments A, A, ..., A% with AY = [o]

and Conc(Aa) B. Combined with By*, Bs', ..., B, we obtain a chain of arguments
AY A, A BS ... B Thatis o |~y , . Therefore, T holds for |~ ,

Thus |~@ ., 18 cumulative monotonic for all theories. It is not, however, monotonic.

Proposition 3. |~ , does not satisfy axiom CP.

Proof. Consider this counter-example. K = {c}, Ry = {a, ¢ = d;a,d — ¢;¢,d —
ada — e — a,d,e — B;d,8 — € fB,e > d}Wehavea |~@a6butn0t

B \N @. Therefore, CP does not hold for \N

Havmg characterised \N , we consider |~ Clearly this will satisfy all the properties
that are satisfied by |~ , since it includes all the inference rules of |~ . In addition,
we have the following.

Proposition 4. The consequence relation |~ , satisfies CP for strict theories.

Proof. Any strict ASPICT theory with a classical base logic will generate the same set
of consequences as classical logic. Furthermore, we know that CP is satisfied under
classical logic. Therefore, the consequence relation |~  satisfies CP for any strict
theory.

c,a
Thus |~ , is monotonic for strict theories.

4.3 Justified Conclusions

Next we interpret « |~ [ as meaning that if «v is in a theory, we can construct an argu-
ment for 3 such that 3 is in the set of justified conclusions (regardless of preferences).
In the following, we will consider an arbitrary extension containing the justified conclu-
sions, these following results are therefore applicable to any extension based semantics.

Definition 13. For T € {admissible, complete, preferred, grounded, stable}, S €
{credulous, sceptical, universal}, let AF = (A, Defeats) be an abstract argumen-
tation framework, we define

Just rs(A(AT)) = {¢|¢is a S-T justified conclusion}

Definition 14. We write o |~@’j B, if for every ASPICT argumentation theory AT =
({L, R, n), ) with the empty base logic such that 8 & Justs(A(AT)), it is the case
that B € Justrs(A(AT,)).

Definition 15. We write o |~C7j B, if for every ASPIC argumentation theory AT =
({L, R, n), K) with classical base logic such that § & Just1s(A(AT)), it is the case
that B € Justg(A(AT,)).



It is worth noting the following result.
Proposition 5. If o |~®’j B then o |~@,a 8

Proof. Follows immediately from the definitions — for [ to be a justified conclusion,
there must first be an argument with 3 as a conclusion.

Since there are, in general, less justified conclusions of a theory than there are argu-
ments, |~ ; is a more restrictive notion of consequence than |~ . It is therefore no
surprise to find that fewer of the axioms from [15] hold. We have the following.

Proposition 6. The consequence relation |~@’ j does not satisfy reflexivity, or the defea-
sible versions of LLE and RW.

Proof. [Ref] Counterexample: consider an ASPICT theory that contains: K, = {a}
and R = (. Here, we have an argument A = [@]. If a is in the knowledge base Kp, we
have another argument B = [a]. However, B is defeated by A, but not vice versa. So
B is not in any extension, and Ref does not hold for |~®7 i [LLE (defeasible version)]
Counter-example: consider an ASPIC™ theory that contains KC,, = {c} and R = {a =
bib = asa = ric — Wi} where n(b = a) = m. Here, a |~y ; 7, but, b |£y ;

r. Therefore, the defeasible version of LLE does not hold for |~ .. e [RW (defeastble

version)] Consider any ASPICT theory that contains (3 in its axioms. For such a theory,
B will not appear in any justified conclusions. Therefore, the defeasible version of RW
does not hold for |~ ..

Proposition 7. |~®7 j satisfies the strict version of LLE and RW, Cut and CM for strict
or defeasible theories.

Proof. Consider an arbitrary theory AT = ((L, R, n), ).
[RW (strict version)] Consider the extension E. in AT, containing an argument A7
with Conc(AY) = a. Since = « ~» [, under the strict interpretation, we know
that o« — [ is in AT,. Therefore, we can construct an argument B7 = [A7 — f.
Since A7V is in the extension E., we can not undermine BYS. Since « — Bis a
strict rule, B" can not be directly undercut or rebutted. With the fact that AV is not
defeated, B" can not be undercut or rebutted. Overall, BY can not be defeated. So
B7 is in E,. Therefore the strict version of RW holds for |~®7j. [LLE (strict ver-
sion)]] Since = o = f, under the strict interpretation, the rule 5 — « is in AT,
AT, and ATg. Since o |~@’ ;) we know that there is an extension E, containing
¥ AS, . AS with AT = [a] and Conc(AS) = ~. Furthermore, there is no at-
tack’ between A; (i = 1...n) and B®, where B® is an argument in E,. In addi-
tion, there is no argument with conclusion B in E, since A is in E, and there is
a strict rule o — (3. Now consider theory ATg, which has a chain of arguments

AL = [B), A? = [A5 — o), AS, ..., AR, where Conc(AB) = ~. There is an extension

6 Since A” and B” have the same premises.
7 Note that since I~g ; considers any preference ordering, attacks and defeats here are equivalent.

8 Due to closure under strict rules, which this consequence relation must satisfy (see Section
5.1).



Ez={AD, ... APYU(E, —{A%,..., A%}) in AT under the same semantic. There-
ore strict LLE holds for |~ ;. [Cut] Since a \ B |~y ; v, we know that there is an ex-
0,5 0.5

tension Eq, g of AT, g containing B*P, AP .| A%P with ASP = [a], B*# = [3]
and Conc(A%P) = ~. Now consider the theory AT Since o |~ B, there is an ex-
tension E, containing B, B ..., BS with By = [o] and Conc(]Ba = f. The set

E, U (Ea 5 — {B*P}) is an extension in AT, (c.f., LLE above). Therefore cut holds
for \N . [CM] Since « |~ B, AT, and AT, g contain similar arguments. Since
o |~y 7 there is an extension E, in AT, containing A§,..., AS with A} = [q]
and Conc(A%) = ~. E, is also an extension in AT, o, 3> Since AT and AT, g contain
similar arguments. Therefore CM holds for |~ 0.4

Proposition 8. The consequence relation |~ j does not satisfy M, T or CP for defea-
sible theories.

Proof. We will give counter-examples.

[M] Consider the ASPICY theory that includes K, = {a} and R = {a — b;b —
a;b = v} Thus, b |~y ; 7, however, a |/ . ~y. Therefore, M does not hold for |~ ;
[T] Consider the ASPIC™ theory which includes K = () and R = {a = b;b = ¢;c =
rya = i} where n(c = r) = ny. Thus, a |~y band b |~y 1, but a |7¢®
Therefore, T does not hold for |~ . [CP] Since contraposition does not hold for |~ o
by Proposition 3 it cannot hold for |~

If we consider only strict theories, the following holds.
Proposition 9. The consequence relation |~ ; satisfies Ref, M and T for strict theories.
Proof. If the theory is strict, then for any argumentation theory, all conclusions are

Justified. Therefore for any strict theory, ifa |y, B, then o |~ 8. We know that
|~w’a ~0.) holdsfor Ref, M and T in a strict theory.

Thus |~ 0.5 is cumulative monotonic for strict theories. As before, using a classical base
logic pushes strict theories into montonicity.

Proposition 10. The consequence relation |~ . satisfies CP for strict theories.
Proof. As above, |~ , satisfies CP for strict theories. Since the strict part of the the-

ory is always consistent, any conclusions from the argument construction are justified.
Therefore, the consequence relation |~ ; satisfies CP for strict theories.

4.4 Summary

The results for the two forms of consequence and the two base logics are summarized
in Table 2.
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Table 2. Summary of axioms satisfied by the argumentation-based consequence relations. Table
(a) holds results for theories with only axioms and strict rules; Table (b) holds results for theories
with strict and defeasible elements. Y indicates that the axiom holds; [Y] that the strict version
of the axiom holds in a theory of strict and defeasible rules (i.e., the rule mentioned in LLE, RW
and M has to be strict, and the premise « in the case of Ref and M, but arguments may contain
defeasible rules); and N that the axiom does not hold for any theory. The left-hand set of axioms
in (a) and (b) are those required for cumulativity.

Ref LLE RW Cut CM|M T CP Ref LLE RW Cut CM|M T CP
\NmyaYYYYYYYN |~0’aYYYYYYYN
Mo Y Y Y Y Y|IYYY Meo Y Y Y Y Y|YYN
‘N(B,j Y Y Y Y Y|YYN |~07j [Y] [Y] [Y] Y YI[YINN
b, Y OY Y Y YYYY oo, IYTIYIIYL Y Y [[YIN N

(a) Strict theories (b) Defeasible theories

4.5 Discussion

What light do the results in Table 2 shine on ASPICT and argumentation-based rea-
soning in general? Considering |~®7a, it is no surprise that the relation is cumulative
monotonic and satisfies the axiom M which captures a form of monotonicity. It is clear
from the detail of ASPIC™, and indeed any argumentation system, that the number of
arguments grows over time, and that once introduced, arguments do not disappear. How-
ever, the fact that ‘NQ),G, is not monotonic in the same strict sense as classical logic, and
so is strictly weaker, as a result of not satisfying CP, is a bit more interesting. This is,
of course, because arguments are not subject to the law of the excluded middle — it is
perfectly possible for there to be arguments for o and @ from the same theory.

Turning to \NQ, ;» this is perhaps a more reasonable notion of consequence for ASPICT
than |N®, o o |~®7 j 5, then there is an argument for S which holds despite any attacks
(in the scenario we have considered, where all attacks may be defeats for some prefer-
ence ordering — and therefore succeed — there can still be attacks on the argument for
5, but the attacking arguments must themselves be defeated). This is quite a restrictive
notion of consequence in a representation that allows for conflicting information, and
~,; is arelatively weak notion of consequence. It obeys less of
the axioms and thus sanctions less conclusions than the non-monotonic logics analysed
in [15], for example. For defeasible theories \N . is not cumulative, and only satisfies
LLE and RW if the rules applied in those ax10ms are strict. As we pointed out above,
at the time that [15] was published, cumulativity was considered the minimum require-
ment of a useful logic’. Whether or not one accepts this, it is clear that ASPIC™T is weak.
But is it too weak? To answer this, we should consider the cause of the weakness, which
as Table 2 shows is due to LLE, RW and Ref.

LLE and RW only hold if the axioms are applied to strict rules. In both cases, the
effect of the axiom is to extend an existing argument, either switching one premise
for another (LLE), or adding a rule to the conclusion of an argument (RW). While

® This position was doubtless a side-effect of the fact that at that time there were no logics
that did not obey cumulativity. The subsequent discovery of logics of causality that are not
cumulative suggests that this view should be revised.
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having these axioms hold for defeasible rules would allow |~®7 ; to be cumulative for
defeasible theories, this is not reasonable. Using LLE or RW to extend arguments with
defeasible rules by definition means that the new arguments can be defeated. Thus their
conclusions may not be justified, and ‘N(/), ; must not be cumulative for defeasible rules.

This weakness raises the question of whether reasoning in ASPIC™ can be strength-
ened. When we add classical logic as a base logic, we get CP, and monotonicity for
.- but only if all elements are strict. For theories with defeasible elements, |~ ,
can’t guarantee that CP will hold for arbitrary o and $3, and, as above, LLE and RW
will only hold for strict rules. Adding a base logic that is weaker than classical logic
does not help in strengthening conclusions. If we add intuitionistic logic, for example,
we don’t get CP, because intuitionistic logic explicitly rejects this pattern of reason-
ing. Similarly, since defeasible logic [2] only satisfies Ref, Cut and CM, taking this as
a base logic won’t provide any more inferential power. A similar argument applies to
Ref. Proposition 9 tells us that Ref holds for |~@’ ; for strict theories, meaning that c has

|N

to be an axiom!?. If Ref were to hold for defeasible theories, o could be a premise. But
premises can be defeated, again by definition, so it is not appropriate to directly con-
clude that any premise is a justified conclusion (it is necessary to go through the whole
process of constructing arguments and establishing extensions to determine this).

From this we conclude that though |NV), ; is not cumulative, and hence ASPIC™ is,
in some sense, weaker than non-monotonic logics like circumscription [18] and default
logic [23], it is not clear that it is too weak. That is strengthening |~@’ ; S0 that it is
cumulative for defeasible theories would allow conclusions that make no sense from
the point of view of argumentation-based reasoning. Whether there are other ways to
strengthen ASPIC™ that do make sense is an open question, and one we will investigate.

Note that in the case of |~m_’ ; and ‘Na ;» we are effectively considering three forms
of justified consequence, corresponding to credulously, sceptically and universally jus-
tified conclusions. We do not distinguish between them because while the notion of
universally justified consequence is weaker (in the sense of sanctioning less conclu-
sions) than sceptically justified conclusions, which is weaker than credulously justified
conclusions, all of these are strong enough to satisfy Cut and CM (and Ref for axiom
premises), and all are too weak to satisfy LLE or RW for defeasible rules.

S The Rationality Postulates

Finally, we consider the three postulates of [4] (which ASPICT complies with), namely
(1) closure under strict rules; and (2) direct and (3) indirect consistency. We ask whether
the axioms discussed in this paper are equivalent to any of these postulates. In what
follows, we assume that strict rules are consistent.

5.1 Closure under strict rules

Proposition 11. An argumentation framework meets closure under strict rules if and
only if the consequence relation for strict rules complies with right weakening (RW)
with regards to justified conclusions.

10 This is exactly how defeasible logic [2] satisfies Ref.
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Proof. Given an argumentation framework AF, assume that « is in the justified con-
clusions. Therefore T |~ ; @ and assume that there is a strict rule E a — B. Using
RW, we obtain T |~ j 5. Therefore RW implies closure under strict rules. Furthermore,
having ~ |~j a, as well as a strict rule o — (3 results in -y |~j B, i.e., the strict form of
RW.

5.2 Direct consistency

Direct consistency with regards to |~ ; requires that no extension contains inconsistent
arguments (and therefore inconsistent conclusions). This is equivalent to the following
axiom, unobtainable from the axioms discussed previously.

O‘|Njﬁ
o, B

5.3 Indirect Consistency

Proposition 12. Assume we have direct consistency, and that strict rules are consistent.
Any system which satisfies monotonicity under strict rules will satisfy indirect consis-
tency, and vice-versa.

Proof. From [4, Prop. 7], direct consistency and closure yield indirect consistency. We
assume direct consistency, and monotonicity gives closure.

In this section we have shown that the rationality postulates described in [4] can
be described using axioms from classical logic and non-monotonic reasoning. In future
work, we intend to determine whether these axioms can help identify additional ratio-
nality postulates. In addition, we will investigate whether these axioms can represent
the additional rationality postulates described in [24].

6 Related Work

There are several papers describing work that is similar in some respects to what we
report here. Billington [2] describes Defeasible Logic, a logic that, as its name implies,
differs from classical logic in that it deals with defeasible reasoning. In addition to in-
troducing the logic, [2] shows that defeasible logic satisfies the axioms of reflexivity,
cut and cautious monotonicity suggested in [11], thus satisfying what [11] describes
as the basic requirements for a non-monotonic system (such a system is equivalent to
a cumulative system in [15]). [13] subsequently established significant links between
reasoning in defeasible logic and argumentation-based reasoning. To do this, [13] pro-
vides an argumentation system that makes use of defeasible logic as its underlying
logic, and shows that the system is compatible with Dung’s semantics [8]. Given De-
feasible Logic’s close relation to Prolog [22], this line of work is closely related to
Defeasible Logic Programming (DeLP) [12], a formalism combining results of Logic
Programming and Defeasible Argumentation. As a rule-based argumentation system,
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DeLP also has strict/defeasible rules and a set of facts. DeLP differs from ASPICT in
the types of attack relation it permits (no undermining) and in the way that it computes
conclusions (it does not implement Dung’s semantics).

[17] first introduce an argument system, containing two kinds of inference rules,
namely, monotonic inference rules and non-monotonic inference rules. They show that
most well-known non-monotonic systems, such as default logic, autoepistemic logic,
negation as failure and circumscription, can be formulated as instances of their argu-
ment system. [3] continues this line of work, presenting an abstract framework for
default reasoning which includes Theorist, default logic, logic programming, autoepis-
temic logic, non-monotonic modal logics, and certain instances of circumscription as
special cases. [13] subsequently established significant links between reasoning in de-
feasible logic and argumentation-based reasoning. To do this, [13] provides an argu-
mentation system that makes use of defeasible logic as its underlying logic, and shows
that the system is compatible with Dung’s semantics[8]. Similar to the current work,
[14] investigates various consequence relations of deductive argumentation and their
satisfaction of various properties. However, [14] focuses entirely on argument construc-
tion and says nothing about justified conclusions.

Also related are [9] and [10], which investigate cumulativity of ASPIC-like struc-
tured argumentation frameworks. Finally, [7] analyzes cautious monotonicity and cu-
mulative transitivity with respect to Assumption-Based Argumentation.

7 Conclusions

In this paper we considered which of the axioms of [15] ASPICT meets based on two
different interpretations of the consequence relation. We demonstrated that, in terms of
those axioms, the most natural forms of consequence in ASPIC™T are rather weak. This
is the case even when we assume ASPIC™T theories contain all the inference rules of
classical logic. However, as we discuss, strengthening the consequence relation (to, for
example, be cumulative) neither makes sense in terms of argumentation-based reason-
ing, nor can easily be achieved by adding additional inference rules to ASPIC™T theories.
We also investigated the relationship between the axioms of [15] and the rationality
postulates, and suggested an alternative, axiom based formulation of the latter.

As mentioned above, in the future we will investigate whether additional axioms can
encode the rationality postulates described in [24]. We will also examine the properties
of different interpretations of the logical symbols. For example, we assumed that =
encodes the presence of two rules, but says nothing about their preferences or defeaters.
Finally, we may consider other interpretations of the consequence relation. This paper
therefore opens up several significant avenues of future investigation.
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