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Abstract

We present a novel method for automatically ac-
quiring strategies for the double-auction by com-
bining evolutionary optimization together with
a principled game-theoretic analysis. Previous
studies in this domain have used standard co-
evolutionary algorithms, often with the goal of
searching for the “best” trading strategy. However,
we argue that such algorithms are often ineffective
for this type of game because they fail to embody an
appropriate game-theoretic solution-concept, and it
is unclear, what, if anything, they are optimizing.
In this paper, we adopt a more appropriate criterion
for success from evolutionary game-theory based
on the likely adoption-rate of a given strategy in a
large population of traders, and accordingly we are
able to demonstrate that our evolved strategy per-
forms well.

1 Introduction

The automatic discovery of game-playing strategies has long
been considered a central problem in Artificial Intelligence.
The standard technique in Evolutionary Computing for dis-
covering new strategies is co-evolution, in which the fitness
of each individual in an evolving population of strategies is
assessed relative to other individuals in that population by
computing the payoffs obtained when the selected individuals
interact. Co-evolution can sometimes result in arms-races, in
which the complexity and robustness of strategies in the pop-
ulation increases as they counter-adapt to adaptations in their
opponents.

Often, however, co-evolutionary learning can fail to con-
verge on robust strategies. The reasons for this are many and
varied; for example, the population may enter a limit cycle if
strategies learnt in earlier generations are able to exploit cur-
rent opponents and current opponents have “forgotten” how
to beat the revived living fossil. Whilst many effective tech-
niques have been to developed to overcome these problems,
there remains, however, a deeper problem which is only be-
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player A is likely to beat player C. Since the dominance rela-
tionship is transitive, we can build meaningful rating systems
for objectively ranking players in terms of ability, and the use
of such ranking systems can be used to assess the “external”
fitness of strategies evolved using a co-evolutionary process
and ensure that the population is evolving toward better and
better strategies. In many other games, however, the dom-
inance graph is highly intransitive, making it impossible to
rank strategies on a single scale. In such games, it makes
little sense to talk about “best”, or even “good”, strategies
since even if a given strategy beats a large number of oppo-
nent strategies there will always be many opponents that are
able to beat it. The best strategy to play in such a game is al-
ways dependent on the strategies adopted by one’s opponents.

Game theory provides us with a powerful concept for rea-
soning about the best strategy to adopt in such circumstances:
the notion of a Nash equilibrium. A set of strategies for a
given game is a Nash equilibrium if, and only if, no player
can improve their payoff by unilaterally switching to an alter-
native strategy.

If there is no dominant strategy' for the game, then we
should play the strategy that gives us the best payoff based on
what we believe our opponents will play. If we assume our
opponents are payoff maximisers, then we know that they will
play a Nash strategy set by reductio ad absurdum; if they did
not play Nash then by definition at least one of them could do
better by changing their strategy, and hence they would not be
maximising their payoff. This is very powerful concept, since
although not every game has a dominant strategy, every finite
game posseses at least one equilibrium solution [Nash, 1950].
Additionally, if we know the entire set of strategies and pay-
offs, we can deterministically compute the Nash strategies. If
only a single equilibrium exists for a given game, this means
that, in theory at least, we can always compute the “appropri-
ate” strategy for a given game.

Note, however, that the Nash strategy is not always the best
strategy to play in all circumstances. For 2-player zero-sum
games, one can show that the Nash strategy is not exploitable.
However, if our opponents do not play their Nash strategy,
then there may be other non-Nash strategies that are better at
exploiting off-equilibrium players. Additionally, many equi-

ginning to be addressed successfully. In some games, such as
Chess, we can safely bet that if player A consistently beats
player B, and player B consistently beats player C, then

'A strategy which is always the best one to adopt no matter what
any opponent does.



libria may exist and in n-player non-constant-sum games it
may be necessary for agents to coordinate on the same equi-
librium if their strategy is to remain secure against exploita-
tion; if we were to play a Nash strategy from one equilibrium
whilst our opponents play a strategy from an alternative equi-
librium we may well find that our payoff is significantly lower
than if we had coordinated on the same equilibrium as our op-
ponents.

2 Beyond Nash equilibrium

Standard game theory does not tell us which of the many pos-
sible Nash strategies our opponents are likely to play. Evo-
lutionary game theory [Smith, 1982] and its variants attack
this problem by positing that, rather than computing the Nash
strategies for a game using brute-force and then selecting one
of these to play, our opponents are more likely to gradually
adjust their strategy over time in response to to repeated ob-
servations of their own and others’ payoffs. One approach to
evolutionary game-theory uses the replicator dynamics equa-
tion to specify the frequency with which different pure strate-
gies should be played depending on our opponent’s strategy:

iy = [ulej, m) —u(m,m)]m; (D)

where 1 is a mixed-strategy vector, u (1, 771) is the mean
payoff when all players play 171, and u(ej, 12) is the average
payoff to pure strategy j when all players play i, and 12 is
the first derivative of m; with respect to time. Strategies that
gain above-average payoff become more likely to be played,
and this equation models a simple co-evolutionary process of
mimicry learning, in which agents switch to strategies that
appear to be more successful.

For any initial mixed-strategy we can find the eventual out-
come from this co-evolutionary process by solving 7; = 0
for all 5 to find the final mixed-strategy of the converged pop-
ulation. This model has the attractive properties that: (i) all
Nash equilibria of the game are stationary points under the
replicator dynamics; and (ii) all attractors of the replicator
dynamics are Nash equilibria of the evolutionary game.

Thus the Nash equilibrium solutions are embedded in the
stationary points of the direction field of the dynamics spec-
ified by equation 1. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning
on the equilibria we can see which solutions are more likely
to be discovered by boundedly-rational agents. Those Nash
equilibria that are stationary points at which a larger range of
initial states will end up, are equilibria that are more likely to
be reached (assuming an initial distribution that is uniform).

This is all well and good in theory, but the model is of lim-
ited practical use since many interesting real-world games are
multi-state’. Such games can be transformed into normal-
form games, but only by introducing an intractably large
number of pure strategies, making the payoff matrix impossi-
ble to compute.

But what if we were to approximate the replicator dynam-
ics by using an evolutionary search over the strategy space?

The payoff for a given move at any stage of the game depends
on the history of play.

Rather than considering an infinite population consisting of a
mixture of all possible pure strategies, we use a small finite
population of randomly sampled strategies to approximate the
game. By introducing mutation and cross-over, we can search
hitherto unexplored regions of the strategy space. Might such
a process converge to some kind of approximation of a true
Nash equilibrium? Indeed, this is one way of interpreting
existing co-evolutionary algorithms; fitness-proportionate se-
lection plays a similar role to the replicator dynamics equa-
tion in ensuring that successful strategies propagate, and ge-
netic operators allow them to search over novel sets of strate-
gies. There are a number of problems with such approaches
from a game-theoretic perspective, however, which we shall
discuss in turn.

Firstly, the proportion of the population playing different
strategies serves a dual role in a co-evolutionary algorithm
[Ficici and Pollack, 2003]. On the one hand, the propor-
tion of the population playing a given strategy represents the
probability of playing that pure strategy in a mixed-strategy
Nash equilibrium. On the other hand, evolutionary search
requires diversity in the population in order to be effective.
This suggests that if we are searching for Nash equilibria
involving mixed-strategies where one of the pure strategy
components has a high frequency, corresponding to a co-
evolutionary search where a high percentage of the popula-
tion is adopting the same strategy, then we may be in danger
of over-constraining our search as we approach a solution.

Secondly and relatedly, although the final set of strategies
in the converged population may be best responses to each
other, there is no guarantee that the final mix of strategies
cannot be invaded by other yet-to-be-countered strategies in
the search space, or strategies that became extinct in earlier
generations because they performed poorly against an earlier
strategy mix that differed from the final converged strategy
mix. Genetic operators such as mutation or cross-over will
be poor at searching for novel strategies that could poten-
tially invade the newly established equilibrium because of the
above problem. If these conditions hold, then the final mix of
strategies is implausible as a true Nash equilibrium or ESS,
since there will be unsearched strategies that could potentially
break the equilibrium by obtaining better payoffs for certain
players. We might, nevertheless, be satisfied with the final
mix of strategies as an approximation to a true Nash equilib-
rium on the grounds that if our co-evolutionary algorithm is
unable to find equilibrium-breaking strategies, then no other
algorithm will be able to do so. However, as discussed above,
we expect a priori that co-evolutionary algorithms will be
particularly poor at searching for novel strategies once they
have discovered a (partial) equilibrium.

Thirdly, in the case where there are multiple equilibria,
the particular one to which our population converges will be
highly sensitive to the initial configuration of the population,
that is the particular mix of random strategies that we start
with, and certain equilibrium solutions may only be obtain-
able if we start with a given mix of initial strategies. In
evolutionary game theory, we can simply take many sam-
ples of initial mixed-strategy vectors and for each of them
solve the replicator dynamics equation in order to find sta-
tionary points. However, such brute-force approaches require



the sampling of many thousands of initial mixed strategies in
order to accurately assess the population dynamics of a three-
strategy game. If we translate this into a co-evolutionary al-
gorithm with a large strategy space, it necessitates running
the co-evolutionary process hundreds of thousands of times
with different randomly initialised populations in order to dis-
cover robust equilibria, which is computationally impractical
in most cases.

Finally, co-evolutionary algorithms employ a number of
different selection methods, not all of which yield population
dynamics that converge on game-theoretic equilibria [Ficici
and Pollack, 2000].

These problems have led researchers in co-evolutionary
computing to design new algorithms employing game-
theoretic solution concepts [Ficici, 2004]. In particular, [Fi-
cici and Pollack, 2003] describe a game-theoretic search
technique for acquiring approximations of Nash strategies
in large symmetric 2-player constant-sum games with type-
independent payoffs. In this paper, we address n-player non-
constant-sum multi-state games with type-dependent payoffs.
In such games, playing our Nash strategy (or an approxima-
tion thereof) does not guarantee us security against exploita-
tion, thus if there are multiple equilibria, it may be more ap-
propriate to play a best-response to the strategies that we infer
are in play.

3 Heuristic-strategy approximation

[Walsh er al., 2002] obviate many of the problems of standard
co-evolutionary algorithms by restricting attention to a small
representative sample of “heuristic” strategies that are known
to be commonly played in a given multi-state game. For many
games, unsurprisingly none of the strategies commonly in use
is dominant over the others. Given the lack of a dominant
strategy, it is then natural to ask if there are mixtures of these
“pure” strategies that constitute game-theoretic equilibria.

For small numbers of players and heuristic strategies, we
can construct a relatively small normal-form payoff matrix
which is amenable to game-theoretic analysis. This heuristic
payoff matrix is calibrated by running many iterations of the
game; variations in payoffs due to different player-types (eg
black or white, buyer or seller) or stochastic environmental
factors (eg PRNG seed) are averaged over many samples of
type information resulting in a single mean payoff to each
player for each entry in the payoff matrix. Players’ types
are assumed to be drawn independently from the same dis-
tribution, and an agent’s choice of strategy is assumed to be
independent of its type, which allows the payoff matrix to be
further compressed, since we simply need to specify the num-
ber of agents playing each strategy to determine the expected
payoff to each agent. Thus for a game with k strategies, we
represent entries in the heuristic payoff matrix as vectors of
the form

—

7= (p1,.--Dk)

where p; specifies the number of agents who are playing the
ith strategy. Each entry p € P is mapped onto an outcome
vector ¢ € @ of the form

7= (q1,--q)

where ¢; specifies the expected payoff to the sth strategy. For
a game with n agents, the number of entries in the payoff
matrix is given by:
(n+k—1)!
n!(k —1)!

For small n and small & this results in payoff matrices of man-
ageable size; for k = 3 and n = 6, 8, and 10 we have s = 28,
45, and 66 respectively.

Once the payoff matrix has been computed we can subject
it to a rigorous game-theoretic analysis, search for Nash equi-
libria solutions and apply different models of learning and
evolution, such as the replicator dynamics model, in order to
analyse the dynamics of adjustment to equilibrium.

The equilibria solutions that are thus obtained are not rig-
orous Nash equilibria for the full multi-state game; there is
always the possibility that an unconsidered strategy could in-
vade the equilibrium. Nevertheless, heuristic-strategy equi-
libria are more plausible as models of real-world game play-
ing than those obtained using a co-evolutionary search’ pre-
cisely because they restrict attention to strategies that are
commonly known and are in common use. Assuming that
we have incorporated all commonly known strategies into our
analysis, we can be confident that no commonly known strat-
egy for the game at hand will break our equilibrium, and thus
the equilibrium stands at least some chance of persisting in
the short term future.

Of course, once an equilibrium is established, the designers
of a particular strategy may not be satisfied with their strat-
egy’s adoption-rate in the game-playing population at large.
As [Walsh er al., 2002] suggest, the designers of, for example,
a particular trading strategy in a market game may have finan-
cial incentives such as patent rights to increase their “market-
share” — that is, the proportion of players using their strat-
egy, or, in game-theoretic terms, the probability of their pure
strategy being played in a mixed-strategy equilibrium with
a large basin of attraction. They go on to propose a simple
methodology for performing such optimization using man-
ual design methods. A promising-looking candidate strategy
is chosen for perturbation analysis; a new, perturbed, ver-
sion of the original heuristic payoff matrix is computed in
which the payoffs of the candidate strategy are increased by a
small fixed percentage, thus modelling a hypothetical tweak
to the strategy that yields in a small increase in payoffs. The
replicator-dynamics direction field is then replotted to estab-
lish whether the hypothetically-optimized strategy is able to
to achieve a high adoption rate in the population. Strategy de-
signers can then concentrate their efforts on improving those
strategies that become strong attractors with a small increase
in payoffs.

In this paper, we extend this technique by using a genetic-
algorithm (GA) to automatically optimize candidate strate-
gies by searching for a hitherto-unknown best-response —
or, to use more appropriate nomenclature, a better-response
to an existing mix of heuristic strategies. Rather than
using a standard co-evolutionary algorithm to perform the

Note that we are not claiming that heuristic-strategy equilibria
are more plausible than equilibria obtained from a full (but unfeasi-
ble) game-theoretic analysis.




optimization, we use a single-population GA where the fit-
ness of an individual strategy is computed from the heuristic-
strategy payoff matrix according to its expected payoff when
it is played against the existing mixed strategy.

4 An HSA analysis of a double-auction

We apply our method to the acquisition of strategies for the
double-auction [Friedman and Rust, 1991]. The double-
auction is a generalisation of more commonly-known single-
sided auctions, such as the English ascending auction, which
involve a single seller trading with multiple buyers. In a
double-auction, we allow multiple traders on both sides of the
market; as well as soliciting offers to buy a good from buy-
ers, that is bids, we also solicit offers to sell a good from sell-
ers, so called asks. Variants of the double-auction are com-
monly used in many real-world market places such as stock
exchanges in scenarios where supply and demand are highly
dynamic. Whilst single-sided auctions are well-understood
from a game theoretic perspective, double-sided auctions re-
main intractable to a full game-theoretic analysis especially
when there are relatively few traders on each side of the mar-
ket. Thus much analysis of this game has focused on us-
ing agent-based computational economics (ACE) [ Tesfatsion,
2002] to explore viable bidding strategies.

[Phelps et al., 2004] used a heuristic-strategy analysis to
analyse two variants of the double-auction market mechanism
populated with a mix of heuristic strategies, and were able
to find approximate game-theoretic equilibrium solutions. In
this paper, we use the same basic framework, but we focus on
the clearing-house double-auction (CH) [Friedman and Rust,
1991] with uniform pricing, in which all agents are polled
for their offers before transactions take place, and all transac-
tions are then executed at the same market-clearing price. In
this preliminary work, we consider only the following three
heuristic-strategies:*

e The truth-telling strategy (TT), whereby agents submit
offers equal to their valuation for the resource being
traded (in a strategy-proof market, TT will be a domi-
nant strategy);

e The Roth-Erev strategy (RE) — a strategy based on
myopic reinforcement-learning in which agents increase
their propensity to bid at a particular markup based
on their profits earnt in the previous round, described
in [Nicolaisen et al., 2001] and calibrated as specified
therein; and

e The Gjerstad-Dickhaut strategy (GD) [Gjerstad and
Dickhaut, 1998], whereby agents estimate the probabil-
ity of any bid being accepted based on historical market
data and then bid to maximize expected profit.

Since all mixed-strategy vectors lie in the unit-simplex,
for k = 3 strategies we can project the unit-simplex onto a
two dimensional space and then plot the switching between
strategies that occurs under the dynamics of equation 1. Fig-
ure 1 shows the direction-field of the replicator-dynamics

“Future work will use a more representative (and larger) set of
heuristic-strategies to optimize against.
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Figure 1: The original replicator dynamics direction field for
a 12-agent clearing-house auction with the original unopti-
mized reinforcement-learning strategy (labeled RE).

equation for these three heuristic strategies, showing that we
have two equilibrium solutions. Firstly, we see that GD is
a best-response to itself, and hence is a pure-strategy equi-
librium. We also see it has a very large basin of attraction;
for any randomly-sampled initial configuration of the popula-
tion most of the flows end up in the bottom-right-hand-corner.
Additionally, there is a second mixed-strategy equilibria at
the coordinates (0.88, 0.12, 0) in the simplex corresponding
to an 88% mix of TT and a 12% mix of RE, however the
attractor for this equilibrium is much smaller than the pure-
strategy GD equilibrium; only 6% of random starts terminate
here vs 94% for pure GD. Hence, according to this analysis,
we expect most of the population of traders to adopt the GD
strategy.

How much confidence can we give to this analysis given
that the payoffs used to construct the direction-field plot were
estimated based on only 2000 samples of each game? One ap-
proach to answering this question is to conduct a sensitivity
analysis; we perturb the mean payoffs for each strategy in the
matrix by a small percentage to see if our equilibria analysis
is robust to errors in the payoff estimates. Figure 2 shows the
direction-field plot after we perform a perturbation where we
remove 2.5% of the payoffs from the TT and GD strategies
and assign +5% payoffs to the RE strategy. This results in
a qualitatively different set of equilibria; the RE strategy be-
comes a best-response to itself with a large basin of attraction
(61%), and thus we conclude that our equilibrium analysis is
sensitive to small errors in payoff estimates, and that our orig-
inal prediction of widespread adoption of GD may not occur
if we have underestimated the payoffs to RE.

If we observe a mixture of all three strategies in actual play,
however, the perturbation analysis also suggests that we could
bring about widespread defection to RE if were able to tweak
the strategy by improving its payoff slightly; the perturbation
analysis points to RE as a candidate for potential optimiza-
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Figure 2: Replicator dynamics direction field for a 12-agent
clearing-house auction perturbed with +5% payoffs to the
reinforcement-learning strategy (labeled RE’)

tion. In this paper, we describe a method for performing this
optimization automatically by using a genetic algorithm.

5 Optimizing RE

Our design goal is to bring about widespread defection to our
optimised strategy by increasing the size of its basin of attrac-
tion. This immediately suggests a possible fitness function;
we could estimate the size of the resulting basin for each strat-
egy by solving equation 1 for a given sample of initial random
mixed strategies. However, performing this computation with
sufficiently large sample size for accurate estimates is too ex-
pensive to be practical.

As an alternative, we use a heuristic metric. Our optimised
strategy will be able to win defectors from a given starting
point if it is able to obtain higher than average payoffs when
the mixed strategy represented by that point is being played,
and for each subsequent point (mixed strategy) along the re-
sulting trajectory. Under the following simplifying assump-
tions: (i) each starting point is equally likely, (ii) trajectories
do not overlap significantly, and (iii) the candidate strategy
is indeed an attractor, our goal of maximising our basin of
attraction corresponds to optimising payoffs to our candidate
strategy for every possible mixture of heuristic strategies.

Since we know that the solution to the payoff-
maximisation problem is likely to vary as we move around
the unit simplex (for example, the best strategy to play in re-
sponse to 100% truth-telling may vary from the best strat-
egy to play against 100% GD), we should treat this as a
multi-objective optimisation problem where each objective
corresponds to the payoff to the candidate strategy in re-
sponse to a given mixed strategy. More formally, given
the (very large) set S of all possible pure strategies, a set
H = {hy,...,hi} C S of heuristic strategies, the space of
possible mixed heuristic strategies m = (mq,...,mg) € A,
we can think of each m € A as an objective to optimize

where the fitness of a solution, j, with respect to a given ob-
jective, m, is given by the function ' : A x S — R where
F(m, j) = u(ej,m)

However, given that: we have an infinite number of ob-
jectives; there is unlikely to be a dominant strategy; and the
dominance graph is highly intransitive, we would expect the
pareto-frontier of this multi-objective problem to contain an
impractically large number of solutions®. We can combat this
complexity by turning it into a single-objective problem; we
weight each objective m equally, and define our fitness func-
tion as the average fitness across all objectives, viz. all mixed
strategies in /. This is formally equivalent to the expected
payoff given that each mixed strategy is equally likely. We
can simply express this as another mixed-strategy, since the
payoff under a mixed strategy depends only on the proba-
bilities expressed therein and the pure-strategy payoffs. As-
suming that every 71 € A has equal probability, this in turn
corresponds to the mixed strategy representing uniform prob-
ability over all pure strategies. Thus we want to find a strategy
s = argmax,cg F'(¢, j) where ¢ = (u,...,u;) and u; = %

Note that since we will be competing with the original un-
optimized version of the strategy we need to introduce an adi-
tional heuristic strategy into the mix, yielding k = 4 strate-
gies in total. Thus our fitness function is given by F(G, j)
where &= (1,1, 1, 1) over the strategies TT, RE, GD and j.

This assumes that each starting point in the simplex is
equally likely. If on the other hand, we had reason to be-
lieve that a particular mixed strategy was more likely to be
in play (for example, by inferring probabilities based on the
history of play in a manner akin to ficticious play), we might
reweight our objectives correspondingly and search for a best
response to a non-uniform mixed strategy.

5.1 Searching for a better-response

In order to optimize the RE strategy, we make its free param-
eters explicit and use this as our search space. One of param-
eters we consider is the choice of learning algorithm itself.
Thus we perform a search over several myopic reinforcement
learning algorithms and their associated free parameters.

The RE strategy uses reinforcement learning (RL) to
choose from n possible markups over the agent’s limit price
based on a reward signal computed as a function of profits
earned in the previous round of bidding. Agents bid or ask at
price p

p=I1+mo 2)
where [ is the agent’s limit price, o is the output from the
learning algorithm and m is a scaling parameter. The original
version of the RE strategy uses the Roth-Erev learning algo-
rithm [Erev and Roth, 1998] which has several free parame-
ters: the recency parameter r, the experimentation parameter
z, and an initialisation parameter s1.

In addition to the original Roth-Erev learning algorithm
(ORE), there are several other learning-algorithms that that
have successfully been used for RL strategies in ACE. We
search over three additional possibilities: stateless Q-learning

5[Noble and Watson, 2001] report on results of a similar MOO
approach for finding strategies for texas-holdem poker, in which the
pareto frontier becomes unmanagebly large.



(SQ), modifications to ORE used by [Nicolaisen er al., 2001]
(NPT) and a control algorithm which selects a uniformly ran-
dom action regardless of reward signal (DR). SQ has free pa-
rameters: the discount-rate g, epsilon e, and a learning-rate
D.

Individuals in the search space were represented as a 50-bit
genome, where:

e bits 1-8 coded for parameter m in the range (1, 10);

e bits 9-16 coded for the parameters e or x in the range
(0,1);
bits 17-24 coded for parameter n in the range (2, 258);

bits 25-32 coded for parameters g or r in the range (0, 1);

bits 33-40 coded for parameter sl in the range
(1,15000);

bits 41-42 coded for the choice of learning algorithm
amongst ORE, NPT, SQ or DR; and

e Bits 43-50 coded for parameter p in the range (0, 1).

This space was searched using a GA with a population size
of 100, with single-point cross-over, a cross-over rate of 1,
a mutation-rate of 10~* and fitness-proportionate selection.
The expected payoff to our candidate strategy was computed
from the heuristic-strategy payoff matrix according to the fit-
ness function F'(¢, j) where ¢ = (%, %, %, %) Since one of
our heuristic strategies is j, this necessitated recomputing all
entries in the payoff matrix in support of j for each individual
that was evaluated. We used a small number of samples of the
game in order to populate each entry in the payoff matrix in
the expectation that the GA would be robust to the additional
noise that this would introduce into the payoffs; the sample
size was increased as a function of the generation number:
10 + int(151n(g + 1)), thus allowing the GA to quickly find
high-fitness regions of the search-space in earlier generations
and reducing noise and allowing more refinement of solutions
in later generations.

6 Results

Figure 3 shows the mean fitness of the evolving population
per generation. By generation 50, the population’s mean fit-
ness had plateaued to 0.94 with a standard error of 10~ 3, and
the estimated fitness of the best individual was 0.95 (based
on 68 samples of the game). The best individual coded for a
strategy using the stateless Q-learning algorithm with param-
eters n = 54, m = 3.7421875, e = 0.0078125, g = 0.71875
and p = 0.21484375.

The goal of this exercise was to see if we could find a re-
placement strategy for RE that would likely be adopted un-
der replicator-dynamics learning given a population starting
near the centre of the simplex. Figure 4 shows the direction-
field of the replicator dynamics when we replace RE with our
optimized strategy OS using 4900 samples of the game for
each entry in the payoff matrix. As can be seen, our opti-
mized strategy is a pure strategy equilibrium, and captures
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Figure 3: Mean fitness of the GA population with one stan-
dard error

as the original strategy, but it is effective at exploiting high-
frequency TT populations, and thus is able to gain 100% de-
fection to the optimized strategy instead of settling at a mixed
TT/RE equilibrium®.

However, the fact the original strategy performs better than
the optimized strategy in this particular case implies that the
original strategy is not dominated by our new strategy, and
that it may be important to study the interaction between OS
and RE. For example, it might be the case that OS is parasitic
on RE, and is able to gain defectors by relying on RE to in-
vade pure TT, and then in turn OS is able to invade an RE/TT
mix. Work is underway to perform a full dynamic analysis of
the 4-strategy game.

7 Conclusion

In this paper we have applied a novel method combining evo-
lutionary search together with a principled game-theoretic
analysis in order to automatically acquire a trading strategy
for the double-auction market. We defined an appropriate
measure of success in this game based on evolutionary game-
theory, and we were able to demonstrate that our evolved
strategy performed robustly according to this criterion.
Much existing work in this domain has used co-evolution
to search for good all round strategies without regard to equi-
librium or best-response considerations. However, we have
argued that this is neither feasible nor desirable. Addition-
ally, there is existing work which formulates equilibrium
analysis as an optimization problem that can be solved us-
ing population-based search, for example, [Pavlidis et al.,
2005]. However, such approaches are applied to search-
ing over mixed-strategies of closed normal-form games with

®Note that neither is GD able to exploit pure TT (hence TT be-
comes a best-response with a small basin of attraction), which is
consistent with our original analysis. Note also, that in this case we

51% of trajectories, compared with 47% for GD, and 2% for
TT. Our new strategy is not as effective at invading pure TT

are using a sealed-bid mechanism which may explain the strength of
the truth-telling strategy.
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Figure 4: Replicator dynamics direction field for a 12-agent
clearing-house auction using the GA-optimized strategy (la-
beled OS)

small numbers of pure strategies, and do not address the prob-
lem of searching for hitherto unconsidered pure strategies. To
the best of our knowledge, our work is the first attempt to
combine evolutionary search together with a principled game-
theoretic analysis for acquisition of novel strategies in open-
ended’ n-player non-constant-sum multi-state games.

We recognize that much of this work is preliminary. In
future work we will: extend the number of heuristic strate-
gies that are analysed, incorporate the original strategy into
the final dynamic analysis, use a more principled approach
for calibrating the GA to deal with small sample sizes, search
for better-responses to various non-uniform mixed heuristic
strategies, use the technique iteratively to arrive at a more
comprehensive set of heuristic-strategies (and thus a more ac-
curate equilibrium analysis), and finally, we will use these
extended heuristic-strategy equilibria in conjunction with the
techniques in [Phelps et al., 2004] in order to analyse the
properties of different auctions from a mechanism design per-
spective.
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