Exploring auction mechanisms for role assignment in
teams of autonomous robots
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Abstract. We are exploring the use of auction mechanisms to assigewéthin
a team of agents operating in a dynamic environment. Depgrath the degree
of collaboration between the agents and the specific auptitinies employed,
we can obtain varying combinations of role assignmentsdhataffect both the
speed and the quality of task execution. In order to exantiiseeixtremely large
set of combinations, we have developed a theoretical frammeand an envi-
ronment in which to experiment and evaluate the variousaptin policies and
levels of collaboration. This paper describes our framé&ward experimental
environment. We present results from examining a set okesgmtative policies
within our test domain — a high-level simulation of the RolipCfour-legged
league soccer environment.

1 Introduction

Multi agent research has recently made significant progresenstructing teams of
agents that act autonomously in the pursuit of common gaalslh]. In a multi agent
team, each agent can function independently or can comiaterand collaborate with
its teammates. When collaborating, the notiorraé assignmenis used as a means
of distributing tasks amongst team members by associatirigin tasks with particular
roles. The assignment of roles can be determiediori or can change dynamically
during the course of team operation.

Collaboration enables a team of agents to work together doead problems of
greater complexity than those addressed by agents opmpnatieapendently. In general,
using multiple robots is often suggested to have severalragdges over using a single
robot[4, 7]. For example, [11] describes how a group of relsan perform a set of tasks
better than a single robot. Furthermore, a team of robot$otatize themselves better
when they share information about their environment [7] &allaboration in a team
of robots may also add undesirable delays through the conwation of information
between the agents.

We are exploring— within dynamic, multi-robot environmgnt the use of auction
mechanisms to assign roles to agents dynamically and tbet eff different approaches



to collaboration within the team. In order to evaluate thes, sve have developed a
theoretical framework and a simulation environment. Tteothtical framework helps
us to identify the space of possibilities, and the simutatimvironment helps us to
evaluate the various degrees of collaboration.

This paper begins by highlighting some background matenahuctions and the
use of auction mechanisms in multi agent systems. Then weidesour theoretical
framework. Next we detail our experimental environment —ighHevel simulation
of the RoboCup Four-Legged Soccer League. We then pressuitgef simulation
experiments evaluating both collaborative and non-collative models of information
sharing as well as various auction policies. Finally, weselwith a brief discussion and
directions for future work.

2 Auctions

Following Friedman [9], we can consider anctionto be a mechanism that regulates
how commodities are exchanged by agents operating in a agdtit environment. An
auction mechanisrdefines how the exchange takes place. It does this by layinwg do
rules about what the traders can do — whegssagethey can exchange in an interac-
tion — and rules for how the allocation of commodities is magilen the actions of
the traders. Auctions have been used in different environisrfer resource allocation,
such as electronic institutions [6], distributed plannéfgoutes [13] or assignment of
roles to a set of robots to complete a common task [10].

3 Theoretical framework

In our auction, there are two types of agents:dhetioneerand the trader — player
in the RoboCup soccer game. The player makesftar and the auctioneer’s job is to
coordinate the offers from all the players and perform ralgignment. There are five
main components to our model.

First, we defineR to be the set of possible roleR: = {PA,OS, DS}, wherePA
is a primary attacker)S is an offensive supporter, ands is a defensive supporter.
Note that the goalie is not considered a role to be assigrtbésimanner, since it cannot
change during the course of the game.

Next, we definéP to be a set of player attributeB: = {dpqi1, dgoais, dmates, dopps }
wheredy,;; contains the distance from the player (who is making therpféethe ball;
dgoa1s CONtains the distance from the player to each géal;.., contains the distance
from the player to each of its teammates; @dpgl,; contains the distance from the player
to each player on the opposing team.

Third, we definel" to be a set of functions which define the method for sharing per
ception information between agents. This information ddad shared with teammates,
the auctioneer, or both. Fourth, we defireto be amatching functionthe method used
by the auctioneer for clearing the auction, i.e., matchivgdffers with roles. In other
words, the matching function captures the coordinaticategyy. Finally, we define an
auction A, to be:A = (P,R, M, f) whereP C P andP # (); R C R andR # 0;

M C MandM # @;andf ¢ F.



Our work is systematically exploring the space of all pags#uctionsP x R x
M x F. B denotes the set of possible types of offers in a particulatian, A € A:
B = {r,w} where:r C R is a set of roles for which the player bids; is a set of
real-valued weights, one weight corresponding to eachefdkes inr (a weight of 0
means that the player is not interested in making an offettfercorresponding role);
andf(p), p C P, is the mechanism by which perceptual data is used to deteinaind
W.

To date, we have defined two different types of auctions withis framework —
a simpleauction [5] and acombinatorialauction [3]. We can define a simple auction
by € Bas:b, = {r,w}, where the role- andw are singletons(unique offer). And a
combinatorial auctionis defined asb; = {(rg,r1,72), (wo, w1, w2)} wherer; and
w; are singletons. Using different combinations of weightsved the agent to bid for
different combinations of roles, and this makes the auatambinatorial [1].

4 SimRob: our Simulated Approach to a RoboCup Game

We are using RePast[14] to implement our environment. Redtlsvs us to build
a simulation as a state machine in which all the changes tsttiie machine occur
through a schedule. In order to model a RoboCup soccer gaiReRast, we need to
define the agents, the environment and the state machin&#&Rast will execute at
each scheduletick, i.e., simulated time step.

4.1 Agent parameters

The RoboCup Four-Legged League environment has four SoBpDAbbots per team
and a bright orange ball. Each one of the robotic agents scaged with an array
containing the values that define their perception and iatadn:

(Ia Y, ¢7 dballa dgoalsa dopp57 dmatesa bball7 bgoalsa boppsa bmates) (1)

where(z, y) are the 2D coordinates of the robot on the field is the orientation of
the robot; dy.y; is the distance from the robot to the bai,.., is the distance from
the robot to each goal,,,s is an array containing the distance from the robot to each
opponent, and,,, ... iS an array containing the distance from the robot to eaaintea
mate. The boolean values in the second half of equation (igate if the ball has been
detected by the playeby,;), if each goal has been detected by the playgs.(s), if
each opponent has been detected nedihy) and if each teammate has been detected
nearby bmates)-

4.2 Simulation skeleton

We use RePast in order to simulate the development of a gathdhwei agents. At the
beginning of the simulation, we define four agents (per teand) a ball in the field.

! The field itself is broken down into the same discretized gnit we use for localization on
the AIBOs.
2 The 360 of orientation are divided into eight 85ections, numbered 0 through 7.



Each of the agents is defined as explained above, by meansanfanas in equation
(1). The simulation run in RePast can be divided into thefwihg steps:

(1a) Generation of the agent parametehs this first step, we obtain the parameters
of each of the agents in the field. The localization of the tab@xpressed with the
coordinategz, y) in a 2D field. We also obtain the distances to the Bgll;, to the
goaldgoqis and to the opponents,,,,,s.

(1b) Amount of information shared by the ageftse information shared by the agents
is: mingoal, a boolean variable that is true when the agent is the onestltsthe goal.
This variable can be defined when the agents share the vadahl, among them.
mazxopp IS a boolean variable that is true when the agent is fartheay drom the
opponents in the field. This variable can be defined when teatagharel,,,s. And
maxball is a boolean variable that is true when the agent is farthvesy &#om the ball.
This value can be defined when the variatyg; is shared among the agents.

(2a) Defining a bidding policy for the agentsor each simulation tick of the game
play, the agent’s bid will be the role associated by the gdbieing tested to the set of
perceptions gathered by the agent at that simulation tick.

(2b) Defining an auction policy for the auctionedhe auction is responsible for dis-
tributing the roles between the agents on the field. The aetr will go through the
different roles in the bid until one of the roles in the arrayassigned to the agent,
meaning that the bid is won.

(3) Game PlayOnce the agent-roles are defined, we have to actually sienthlatjoint
task to be developed by the agents. As stated before, oursaihai of simulating a
soccer game. The game model is very simple. Each role hageagstgph that will
output a certain behavior depending on the perceptionegadtby the agent:

— PA BEHAVIOR: If the agent sees the goal and the ball, then it kicks the btider-
wise it turns to look for the ball without losing track of theal.

— OS BEHAVIOR: If the ball is seen, the agent kicks it.

— DS BEHAVIOR: If the ball is seen, the agent follows it in order to prevambgent
from the opposing team scoring.

Finally, if a goal is scored, the robots are sent back to timiial positions and
the ball randomly changes location. Then, the three ste@ifpeter generation, auction
execution and game play) simulation is run again.

5 Experiments

This section describes our experimental work to date. We Istarted to explore the
range of possible auctions and their effect on the cooridinatf a team, as measured
by their performance in simulated games. We have experidenith four very sim-
ple types of coordination and describe policies that we hesesl for experimentation,
chosen somewhaid hoc In current work, we are learning policies [8].



Table 1. Example non-collaborative simple(S) and combinatoriglg@ctions

Ball seenOpponent seeMate seefRole(S Role(C)
0 DS |[0S,.7,DS,.2,PA,.1
DS |[0S,.7,DS,.2,PA,.1]
DS |[0S,.7,DS,.2,PA,.]
DS [[0S,.7,DS,.2,PA,.1
DS |[0S,.7,DS,.2,PA,.1]
DS |[0S,.7,DS,.2,PA,.1]
OSs |[0S,.7,DS,.2,PA,.1
0OS |[0S,.7,DS,.2,PA,.1
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5.1 Non-collaborative simple auction

This approach defines a team of agents that don't share angpiEm data. Hence,
each one relies on the information that it gathers indepathdef the others. The offers
made by the agents follow the policy in Table 1 column Role{®js shows that we
have defined the agent to offer to be OS when both ball and @up@ne seen. In any
other case, our agent will offer to be DS. We have chosen asimatching policy that
just associates a fixed role to each of the possible sets ofpigons.

5.2 Non-collaborative combinatorial auction

In this case there is still no sharing of perception, but tlterfow contains a vector
defining the agent’s role preferences For our experimerdgdave defined two differ-
ent bidding policies. Theffensivepolicy, defined in Table 1, column Role(C), repre-
sents a team with an attacking approach, always lookinghfergbal and aiming to
score. The other policy is more defensive. The offensivécpassigns the array of
roles [DS,.7,0S,.2,PA,.1] to each of the agents. The magakithe same as before.

5.3 Collaborative simple auction

In this case, the agents share all the perception data. Hehea defining the bids, we
can also share the three variables related to the minimurmam@mum distances to the
ball, opponents and goal. The table defining the biddinggddi huge. In Table 2, col-
umn Role(S), we show a few lines to give the sense of it, bstdeliberately similar to
the policy for the non-collaborative auction to give a raadue comparison. When no
elements are seen by any of the agents, the agent bids faléh®$. When everything
is seen and the distances are minimum, the agents bid to b&@$®natching policy is
also the same as for the non-collaborative examples.

5.4 Collaborative combinatorial auction

Here the bidding Table 2, column Role(C), is similar to theviwus one, but contains
a vector of bids and weights instead of only one role, andviisor is like that for the



Table 2. Collaborative simple(S) and combinatorial(C) auctions

Ball seenOpp seefMate seefMinGoal MaxOppMaxBall|Role(S Role(C)
0 0 0 0 0 0 [DS] [[0S,.7,DS,.2,PA,.1]
0 0 0 0 0 1 [DS] [[0S,.7.DS,.2,PA, 1]
1 1 1 1 1 1 [OS] [[0S,.7,DS,.2,PA, 1]

Table 3. Results

Number of goals scored after 2000 ticks.

unique not unique

offensivddefensivg offensivedefensive
bid bid bid bid
noncollab simple 16 - 16 -
noncollab comb 33 43 30 47
collab simple 40 - 67 -
collab comb 49 37 78 67

non-collaborative combinatorial auction. Again we ranexments with an attacking
bidding policy and a defensive bidding policy, and the maighable is the one used in
the previous examples.

5.5 Results

Teams using each of the types of coordination describedeatiosiuding separate of-
fensive and defensive techniques in the combinatoriai@rictvere run in simulation

against the same, simple, opponent in order to evaluateftbetieeness of the col-

laboration policy. The opposing team moved randomly aratnedfield, but was not

intended as serious opposition, rather it was intended asealihe against which all

mechanisms could be judged equally. For each coordinatechanism, we ran two

sets of experiments. In one, the “unique” experiments, wdenthe auctioneer assign
unique roles to agents. In the “not unique” experimentsatineioneer was allowed to
assign duplicate roles. The average number of goals scoreghth of the different

kinds of collaboration are given in Table 3, and plots of thalg scored over time for a
sample game are given in Figures 1.

In the non unique approach, collaborative teams score aldwmsle the number
of goals of the non-collaborative teams. In the unique rpjeraach, differences in the
score of the games between the collaborative and non-co#éibe approaches for both
simple and combinational auctions are not so marked. Thisiésto the fact that our
matching policy is very demanding and since we do not allgveated roles, the auc-
tioneer often ends up distributing roles randomly. In ordeprove this last assertion,
we defined a parameter calledccess ratidn the simulation. The success ratio is as-
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Fig. 1. Goals scored over the course of a game

sociated with the acceptance of the bids made by an agenthigher the ratio, the

more times its bid has been accepted. In the not uniqguengssigents, we obtained
very low ratios, meaning that the agents almost never wod gabid so, the roles were
distributed randomly.

6 Conclusions and Future work

This paper has described our preliminary work in explorimguse of auction mecha-
nisms to coordinate players on a RoboCup team. While thi& iganly just beginning,
we believe that the results demonstrate the potential ofpipeoach to capture a wide
range of types of coordination, and to be able to demonsdtrateeffectiveness through
simulation. In addition, this approach makes it simple tplese more complex, and po-
tentially more flexible, kinds of role allocation than haweeh previously used in the
legged-league, for example [2, 16].

Our longterm work is to build on this foundation and explomgide range of pos-
sible auctions through simulation and on real (physicdipts. We are currently using
learning techniques to automatically explore the spaceauofiens. We further intend
to implement the most effective bidding and matching pebaileveloped on our real
Legged-League team.
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