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Abstract

The availability of clinical data reposito-
ries presents new opportunities for improv-
ing health care quality and reducing costs.
However, their secondary nature as a research
tool presents challenges for longitudinal data
analysis. Rather than use patient sequences
directly, we extend the semiparametric clus-
tering framework to build probabilistic mod-
els, abstractions, of these sequences using
continuous-time Markov models. This pro-
vides a principled way of transforming arbi-
trarily sampled, irregular length clinical ob-
servations to serve as input for a nonpara-
metric Bayesian clustering method. Our re-
sults indicate over a 20% relative improve-
ment on a benchmark and recognizable dif-
ferences that can be visualized.

1. Motivation

The most significant issues facing the US health care
system in the coming years includes: major aging, the
massive growth of chronic diseases, and not enough
caregivers. Increasing health care costs and quality is-
sues already pose substantial issues and unless sustain-
able solutions can be developed our the US healthcare
system will become increasingly stressed.

One proposition for transforming healthcare is to make
it ‘data-driven’ and has resulted in numerous govern-
ment and private initiatives aiming to make meaning-
ful use of digital health data. Advocates hope that the
richness of available patient data contained in these
collections will enable a feedback loop of new knowl-
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edge discovery and translation to practice, supporting
the engineering of a better and better health care sys-
tem. There is an urgent need to demonstrate the cost-
benefit of maintaining petabytes of patient data, and
an important role for probabilistic learning algorithms
that can assist in the discovery new knowledge from
these noisy, heterogenous, fragmented data collections.

Here we provide one way to approach data-driven care.
Chronic disease dynamics can evolve at different rates
among patients, progressing over a periods of years.
In addition, digital health data is often irregularly
sampled, and variable in duration at the patient-level.
We develop an unsupervised temporal learning method
that extend current applications of the semiparamet-
ric clustering framework (Jebara et al., 2007) for learn-
ing patient and population level disease characteristics
from non-canonical time series data. Specifically, we
use continuous-time Markov models to abstract tem-
poral information from patient observations sequences,
and cluster the patient models using a nonparmetric
Bayesian method. We show results for two distinct
clinical data sets.

We describe the background for our work in Section 2.
Our contribution and methods are detailed in Sec-
tion 3. The rest of the paper describes our experi-
ments in Section 5, the key results in Section 6, and
conclusions for our work appear in Section 7.

2. Preliminaries

Clustering is a pervasive and natural human activity
that is used for a variety of tasks. Typically, we use
it to group similar objects together so that we can
assign characteristics that are useful for their defini-
tion. Computational clustering algorithms aim to di-
vide data into groups that are meaningful or useful,
and improving existing techniques has been the focus
of considerable research in machine learning. At the
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Figure 1. Semiparametric Clustering

minimal level, automated clustering can be viewed as
a preprocessing method, or as an exploratory analysis
technique that informs more targeted hypotheses.

2.1. Semiparametric Time Series Clustering

Temporal information provides critical context for di-
agnosis, prognosis and disease management, especially
in the case of chronic conditions that can evolve at dif-
ferent rates among patients, and persist for years. Al-
though clinically significant work applying exploratory
techniques for patient and population level disease
modeling has been demonstrated (Saria et al., 2010;
Marlin et al., 2012), it has focused on modeling physi-
ological signals observed in the critical care environ-
ment. In contrast, chronic disease progression can
take years to manifest and longer-term trends have
increased importance.

In the semiparametric clustering framework, a para-
metric model of the underlying dynamic process pro-
vides useful assumptions for abstracting temporal
measurement, and is paired with a nonparametric
method used to cluster the abstractions. Figure 1 pro-
vides an overview of this approach.

The first step entails temporal abstraction based on
a parametric model of the underlying phenomena
that is used to transform N patient time series se-
quences, X1, X2, ..., XN , into a more manageable form
for traditional multivariate clustering algorithms. For
Markov models, the an expectation maximization
(EM) (Dempster et al., 1977) method is typically used
to learn the N patient models, Q1, Q2, ..., QN .

The second step is to cluster the patient models us-
ing a nonparametric method. Recent work has shown
the advantages of paring spectral methods with model-
based abstraction (Jebara et al., 2007; Porikli, 2005).
One limitation of spectral methods it that it requires
determining the number of clusters, k, in advance. In
this work, we extend clustering to the nonparametric

Bayesian setting, allowing for the number of clusters to
be expressed as a function of the size and complexity
of the data, and no longer requires that k is indicated
a priori.

2.2. Continuous and Discrete-time Models

By default Markov models and their variants discretize
the time trajectory into uniform length contiguous seg-
ments that are assumed to be approximately Marko-
vian. This simplifying assumption enables tractable
inference, and is appropriate for many data sets. The
length of this segment is denoted by the smallest tem-
poral granularity among all sequences, ∆t, and a tem-
plate model is repeated at each time slice.

Although discrete-time models are suitable in many
cases, there are two key limitations that have been
noted in graphical modeling problems (Nodelman
et al., 2003) and we describe their relevance to mod-
eling EHR data. First, if the underlying health phe-
nomena progresses in individuals at different rates, one
granularity must be used to express time steps for the
entire system. Second, when data is unavailable, in-
tervening time slices must still be represented. When
data is sparse, this forces the assumption of many un-
known values. Also, in contrast to learning from the
sequence directly, parameters are reestimated at each
∆t, resulting in many more estimation steps based on
the assumed values, which may or may not be true.

When there are no natural time slices, continuous-
time BNs (CT-BNs) (Nodelman et al., 2003) can be
used to more directly reflect sequential dependencies,
and avoid discretizing the time intervals. In the field
of biostatistics, the limitations of discrete-time mod-
els has been noted and CT-BNs have been used for
modeling chronic disease dynamics at the population
level. Specifically, Multi-state models (MSMs), which
can be viewed as an instance of CT-BNs, were devel-
oped independently of work in computer science and
share their foundation in stochastic process theory.

MSMs have a set of rules that govern their design
and interpretation and have be used to model a va-
riety of diseases including cardiac disease, cancer, and
HIV (Jackson, 2011). In terms of structure, nodes rep-
resent disease states that are ordered progressively to
reflect stages in a disease trajectory. A patient with a
chronic disease may traverse these nodes as their dis-
ease progresses, and typical MSM states correspond
with ‘healthy’, ‘diseased’, and ‘diseased with compli-
cations’, or a similar acuity scale.
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3. Semiparametric Bayesian Clustering

Regardless of the temporal mining task, the first step
of an algorithm is to transform, or abstract, the raw
data into a more concise representation, preserving as
much of the information contained in the original se-
quence as possible.

3.1. Temporal Abstraction

As mentioned above, Markov models and BNs require
that time is represented as a series of uniform length
units equal to the smallest time granularity in any ob-
served sequence. When data is missing or otherwise
incomplete, information is still propagated through-
out the model for every time step. It has been shown
that when data is not missing at random, which often
the case in clinical data, discretizing the time interval
can lead to biased findings (Yeh et al., 2012).

A main distinguishing characteristic between DT and
CT Markov models is that in the discrete-time case,
the Markov process stays in a state i for a time dis-
tributed according to Fi(t) and in the continuous-time
case the holding time is exponentially distributed ac-
cording to Fi(t) = eqit where qi is the intensity of the
transitions, or the tendency to change state.

CT Markov models do not specifically address the is-
sues posed by selective sampling, but they provide a
more direct temporal representation for modelling dy-
namic changes that progress at different rates, and in
non-liner time. Also, when data is sparse, discrete time
models result in significantly more EM steps to learn
the model parameters.

3.1.1. Model Description

The specific class of CT Markov models we use for tem-
poral abstraction are adapted from multi-state models
(MSMs) described in Section 2. We extend existing ap-
plications (Jackson, 2011) by modeling each patient’s
chronic disease dynamics instead of producing one gen-
eral model for all patients, and use the models, instead
of the raw time series sequences, as the basis for clus-
tering.

A four state MSM is shown in Figure 2, with states
ordered by severity. The intensity matrix Q represents
the instantaneous behavior of the process X. At a
time t a patient is in the S(t) state. For each pair
of states, where z(t) is a model variable, the set of
transition intensities qr,s(t, z(t)) is dependent on t and
the instantaneous risk of transitioning from state r to
state s

qrs(t, z(t)) = lim
δt→+0

P (S(t+ δt) = s|S(t) = r)/δt

q1 q2

q3 q4

QX =


−q1,1 q1,2 q1,3 q1,4
q2,1 −q2,2 q2,3 q2,4
q3,1 q3,2 −q3,3 q3,4
q4,1 q4,2 q4,3 −q4,4


Figure 2. Multi-state Markov model with four discrete
states that correspond with disease severity or risk, and
the intensity matrix Q

In contrast to a discrete-time transition matrix, X
with a domain of of x1, x2, ..., xn, where n is the num-
ber of states, the intuition is that the intensity, qi, no
longer corresponds with the transition probability that
is constant for the length of a time slice, but rather an
‘instantaneous probability ’ of leaving state xi and the
intensity of qi,j gives the instantaneous probability of
transitioning from xi to xj .

In a CT Markov model, the rows in the matrix Q sum
to zero instead of one, with the sum of all transition
intensities qr,s in the rth row, where s 6= r, equal to
the absolute value of qr,r

qr,r = −
∑
s6=r

qr,s

and the probability of observing s immediately after
state r is qr,s/qr,r.

3.1.2. Model Estimation and Parameter
Learning

Ideally, expert knowledge is available to determine the
number of disease states and the initial probabilities
for the intensity matrix. For example, biomarkers may
have values that are associated with a patient’s dis-
ease status that can be directly represented as model
states. When there is no obvious translations of a mea-
surement’s value to discrete states, these features can
be learned. Non-parametric Bayesian methods are one
approach that has been applied to discover clinical fea-
tures from physiological data (Saria et al., 2010) and
we apply similar methods to identify discrete states for
disease modeling.

Specifically, for our hepatitis lab data, threshold values
were provided by clinicians to indicate ranges for ‘low’,
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‘normal’ and ‘high’ test values and directly translate
to the model’s state representation. However, for our
glucose monitoring data, which reflects the incidence
of physician ordered glucose tests over time, we learn
a mapping to identify discrete model states.

To obtain initial values for the intensity matrix, a naive
estimation was provided by counting the total number
of transition pairs, and estimating their probability of
occurrence. Although not every patient’s model was
learned by our method, this crude estimate for each
patient provided better converge than using a whole
population based naive initialization.

For parameter estimation, the Kolmogorov equations
are used to extend the forward-backward algorithm
to the continuous-time setting, and we use the BFGS
quasi-Newton optimization algorithm (Avriel, 1976)
for determining the maximum likelihood parameters
for each patient’s model.

3.2. Nonparametric Bayesian Clustering

A main challenge posed by many traditional clustering
algorithms is selecting the number of groups, k. Some
approaches used to estimate k are based on the spec-
tral gap, or predictive estimates. However, these are
heuristics, and do not guarantee the choice of k, and
more importantly, for many clustering problems k is
unrealistic to assume that k is fixed.

By defining the clustering problem as identifying the
components of infinite mixture, where k is random
variable in the model, nonparametric Bayesian ap-
proaches allow for the definition of more flexible clus-
tering models, and do not require that k is expressed
in advance. Also, nonparametric Bayesian clustering
more easily lends itself to interpretation by a domain
expert in the terms of a hierarchical Bayesian model.

The density function of a finite mixture model is de-
fined as:

p(x) =

K∑
k=1

πkp(x|θk)

where x is the data set, π is the mixing proportion,
and θk are the model parameters for the cluster k.

In the nonparametric Bayesian application setting, we
define the mixture model as that of one with infi-
nite components. We can define the discrete case in
the form of the integral p(x) =

∫
p(x|θ)G(θ)dθ, where

G = ΣKk=1πkδθk (Ferguson, 1973). For a model with
infinite components we extend the discrete case for a

potentially infinite value of k.

G =

∞∑
k=1

πkδθk

3.2.1. Dirichlet Process Mixture Models

One approach to nonparametric Bayesian cluster-
ing is Dirichlet process Gaussian mixture modeling
(DPGMM). A Dirichlet process (DP) is the prior over
the mixing distribution, G, and defines a measure on
measures. It is characterized by two parameters: a
base distribution G0, from which samples are drawn,
and on which the nonparametric distribution is cen-
tered. The second is a positive scaling parameter α,
sometimes referred to as a ‘splitting’ criteria, that is
associated with the probability of forming a new clus-
ter.

G ∼ DP (G0, α)

For a sample, G, drawn from the base distribution
G0, if G ∼ DP (G0, α), then for any set of partitions
A1 ∪A2 ∪ ...Ak of A:

(G(A1), ..., G(Ak)) ∼ Dir(αG0(A1), ..., αG0(Ak))

In the the Dirichlet process mixture model (DPMM),
the DP is used as nonparametric prior in a hierarchical
Bayesian model, where G is portioned according to the
prior.

Dirichlet Process Gaussian Mixture Modeling
(DPGMM) defines a DPMM by taking the limit of
the number of mixture components, k as a hierarchical
Gaussian mixture model approaches infinity. Two
methods used to specify the priors are Markov chain
Monte-Carlo (MCMC) and variational inference, the
later of which is described in the literature (Blei,
2004) and implemented for our clustering step.

4. Data Sets

We apply our clustering approach to two fully de-
identied clinical data sets. Each consists of arbitrar-
ily sampled clinical data in the low frequency setting,
spanning both short and multi-year patient observa-
tion durations, and subject to missing data. We de-
scribe the clustering application and the nature of the
data in this section.

4.1. Hepatitis B and C

Our first data set relates to liver disease. A liver biopsy
is the gold standard for the prognosis and treatment
of liver fibrosis and important for the health provider
and the patient to guide management and treatment of
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hepatitis B and C. In addition to the invasive nature of
liver biopsy, which involves extracting a tissue sample
of at least 23 cm in length, obtained with a 16-gauge
needle inserted between two of the patients ribs, it
is costly, and associated with complications that can
be potentially life-threatening. Also, it is subject to
diagnostic error. For these reasons, alternatives for
assessing the stage of liver fibrosis are in great demand
and the lack of alternative assessment methods has
been noted as a major limitation in both management
and research in liver diseases.

The first data set consists of blood inspection and uri-
nalysis laboratory data that was provided by the Chiba
University Hospital in Japan, and was used for the
ECML/PKDD-2003 and 2005 Discovery Challenges.
One objective of this shared task was to evaluate if
laboratory examinations can be used to estimate the
stage of liver fibrosis. The data set consists of recorded
data for 771 patients of type B and C, spanning the
years 1982 through 2001. For many of the test types,
values for low, normal and high values are indicated.

At the time of the challenge, medical research sug-
gested some lab tests such as platelet count (PLT)
were correlated at the time of biopsy; however, tem-
poral analysis of the PLT data was rarely performed
and limited by difficulties in time series comparison,
irregular sampling intervals, and variable sequence
lengths (Shoji & Shusaku, 2005). Using multivariate
lab data, trajectory mining (Hirano & Tsumoto, 2007)
has demonstrated that medically relevant time series
features associated with the progression of liver fibro-
sis could be learned from the patient records. Other
lab tests reported by challenge participants as informa-
tive for predicting fibrosis stage included: ZTT, ALB,
D-BIL and CHE.

4.2. Glucose Monitoring

Our second data set relates to glucose tests. It contains
patients admitted to New York Presbyterian Hospital
with at least one physician ordered glucose test indi-
cated in their EHR. Similar to the hepatitis patient
data, the glucose time series presents methodological
challenges in that it is irregularly sampled, and vari-
able in length. An additional complicating factor is an
increased probability of record incompleteness.

National estimates report a 8.3% prevalence of dia-
betes in the Unites States, with over seven million un-
diagnosed (CDC, 2011). The disease can result in var-
ious health complications such as kidney failure and
blindness. However, medical research shows that be-
havioral changes and other interventions can prevent
or delay diabetes onset showing how importance of

early diagnosis and treatment. Our glucose data set
is derived from administrative data and our cluster-
ing application seeks to identify high-level patterns
in physicians orders for glucose tests that corresponds
with blood glucose maintenance.

Glucose tests are commonly ordered by physicians for
hospitalized patients, and some hospitalises now sug-
gest an initial test during admission should be part of
standard care guidelines. A single order with out any
follow up on succeeding days may corresponds with an
one-day admission, or with a longer stay that does not
require ongoing glucose monitoring. For this reason, a
series of contiguous testing patterns for a patient sug-
gests that their blood-glucose levels are being actively
monitored by the attending physician.

For each patient that may or may not have diabetes,
the sequence begins with the first physician ordered
test on record and indicates the presence ‘1’ or ab-
sence ‘0’ of a physician’s orders for each successive
days, tracking multiple hospitalization and discharge
periods. A patent’s series ends when a censoring state
is encountered (i.e. death).

For our experiments we select patients with a time
series length in the range of 1000 to 1025 days, and
consist of 1024 patient 0/1 measurement sequences.
Our methods can be applied to larger subsets of the
data set, but these constraints help visually assess re-
sults. Other subsets we have experimented with but
are not reported in this work are random collections
or patients and those with that fall within a specific
visit range.

5. Experiments

We conducted two studies using patient data associ-
ated with chronic disease. The first experiment is de-
signed to group hepatitis patients with similar stages
of liver decline by modeling the dynamics of patient
lab result. The second uses administrative indicating
physicians orders for glucose tests during hospital stays
and aims to group patients that are at high and low
risk of diabetes associated hospitalizations.

5.1. Hepatitis Experiments

Using the data set described in Section 4, and given
threshold for low, normal and high observation val-
ues for each test, we constructed the model structure.
Based on an initial run using six lab tests that were
selected due to known associations with liver decline,
three, the PLT and ALB, and PLT results alone were
used for clustering.
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Figure 3. Comparison of semiparametric clustering with
trajectory mining (TM)

5.1.1. Extrinsic Validation

To validate the results of clustering platelet count val-
ues for the hepatitis data set, we used grading and
staging data from liver biopsies a gold standard. Also,
we compare our results of a previous method that
used a trajectory mining (TM) approach (Hirano &
Tsumoto, 2007) that used only patients with hepatitis
C and no indication of interferon therapy.

The results of semiparametric clustering (SP-B) are
reported for 94 of these patients based on clustering
PLT (platelet) and ALB (albumin) lab tests, and for
PLT only. The b-cubed metric (Bagga & Baldwin,
1998) satisfies formal constraints for evaluating clus-
tering results proposed by researchers and validated by
human assessors (Amigó et al., 2009). Also, it is re-
lated to sensitivity and specificity, common diagnostic
metrics used in clinical research. Although some en-
tropy based metrics also satisfy key formal constraints
for evaluating clusters, they can be difficult for clini-
cians to interpret.

Figure 3 shows average pointwise precision on the x-
axis, recall on the y-axis and the B-cubed value as a
gradient value. Detailed scores appear in Table 1.

Table 1. Validation scores for spectral (SC) and nonpara-
metric Bayes (Bayes) clustering on all hepatitis patients.

method k P R B-Cubed

TM 8 0.60 0.31 0.41
SP-B(PLT) 5 0.49 0.42 0.45
SP-B 4 0.47 0.55 0.51
SP-B 5 0.50 0.47 0.48
SP-B 6 0.48 0.54 0.51

Figure 4. B-cubed value for different methods and k values
for the hepatitis data set

Also, we apply our method to the entire data set, in-
cluding those on interferon therapy and patients with
hepatitis B, and compare it with an alternative non-
parametric method, spectral clustering. The results
appear in Figure 4 and are detailed in Table 2.

Table 2. B-cubed value for spectral (SP-SC) and nonpara-
metric Bayes (SP-B) clustering, all hepatitis patients.

method k P R B-Cubed

SP-SC 6 0.38 0.22 0.28
SP-SC 7 0.38 0.21 0.27
SP-B 4 0.35 0.62 0.45
SP-B 5 0.35 0.52 0.42
SP-B 6 0.36 0.46 0.40
SP-B 7 0.36 0.42 0.39

5.2. Diabetes Experiments

The glucose testing data was processed before state
estimation. Creating a new vector, we set the observa-
tion value to the number of days contiguous tests were
ordered. For example, and measurement sequence of
[1, 0, 0, 0, 1, 1, 1, 1] would consist of two observations, 1
and 4. We estimated n, the number of states for the
models using a non-parametric Bayesian density esti-
mator. Since the number of states and the continuous
nature of the model should not be too large, the upper-
bound on the number for density estimation was set
to a maximum of five.

5.2.1. Intrinsic Validation

When a gold standard is unavailable to evaluate clus-
tering performance, heuristics can be used to assess
the intrinsic quality of clusters. For each point in the
data set, the silhouette method is defined by the dif-
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Figure 5. Silhouettes by cluster for 4-state model.

ferent of average dissimilarity of a point to members
or its own cluster with that of the ‘neighboring’ cluster
over the max of these two dissimilarity measures.

Based on the results of applying our clustering ap-
proach to the glucose testing data, Figure 5 shows the
silhouette for the assignments and Table 3 shows clus-
ter averages including: number of members, total glu-
cose tests, number of hospital admissions, entropy of
the measurement sequence, and fraction of days mea-
sured.

Table 3. Time series statistics aggregated by cluster

k n Tests Stays Entropy Fraction

0 263 8.6 7.81 0.05 0.01
1 321 39.64 16.98 0.14 0.04
2 262 22.00 13.53 0.10 0.02
3 98 24.77 11.38 0.10 0.02
4 61 16.74 7.69 0.08 0.02
T 1005 24.08 12.57 0.10 0.02

6. Discussion

Using biopsy results as a gold standard for clustering,
our results indicate over a 20% relative improvement
on a benchmark (.41-.51 b-cubed) for detecting liver
fibrosis in a subset of hepatitis C patients from the
liver disease data. Relative to the results based on the
whole data set, better performance is achieved for the

hepatitis C patients without interferon therapy. This
is not surprising. Interferon therapy is physiologically
disruptive and the reason for the selection criteria in
the benchmark set. However, despite the introduction
of this noise, our method performs better on the group
of all patients than the benchmark performs on only
this subset of more predictable patients.

Of clinical relevance was an ‘extreme’ effect that could
be viewed among different clustering runs. The low-
est risk cluster, designated by the highest proportion
of patients with no or minor fibrosis, reported 80-94%
purity and was composed of 15-25 percent of the pa-
tients for a 4 < k < 6. This cluster represents patients
with very low risk of fibrosis, and may be good candi-
dates for delaying biopsy.

Additionally, for an inpatient population, we can de-
tect recognizable differences in the incidence of physi-
cians’ orders for glucose tests among discovered groups
that can be visualized. We also assess the performance
of pairing temporal abstraction with a non-parametric
Bayesian clustering. It conveniently eliminates the
need to estimate k, and performed better that spec-
tral clustering on the hepatitis data set.

The glucose test experiment demonstrates two distinct
groups with average silhouette value of .73 and .88 and
accounting for almost 60% of the population sampled.
These two groups show the most dramatic differences
in average sequence entropy (0.05-0.14), the fraction
of days measured (0.01-0.04) and the number of tests
(8.60-39.64). When the original sequence is viewed as
a heat map, a typical patient’s sequence in the low
risk group will consists of sparse signals, with only
the initial visit consisting of more that one contiguous
tests. However, patients in group have testing pat-
terns that are longer in duration, showing streaks of
contiguous testing, and suggesting they are more prone
to diabetes related morbidity. Patients in the remain-
ing clusters represent an intermediate between these
two groups and mixtures of testing patterns.

Since diabetes is undiagnosed in millions of Ameri-
cans, and preventative treatment can help avoid se-
rious effects and avoidable costs to providers, using
administrative data, such as glucose testing pattern,
may prove useful understanding the evolution of the
disease process, and diabetes-related risk. For exam-
ple, an insurance provider does not have access to
lab results, but they will have a signal for per pa-
tient tests, information on demographic risk factors,
and other billing diagnoses for patients. The ability
to leverage high level signals with additional demo-
graphic and other claims data to flag prediabetes or
undiagnosed diabetes could be useful for developing
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cost-savings strategies that improve health outcomes
in parallel.

7. Conclusions and Future Work

We describe a new method to model patient disease
dynamics with several key features. First, we ap-
ply continuous-time Markovian models for modeling
disease dynamics, which avoids some of the limita-
tions of discrete-time approaches when a dynamic pro-
cess evolves at different rates among patients, and
when observations are irregularly sampled. Second,
non-parametric Bayesian clustering methods avoid the
problem of identifying the number of clusters a priori,
inferring the appropriate number of mixture compo-
nent as a function of the sample size.

The limitations of this work are mainly attributed to
the temporal modeling steps. Continuous-time models
bring us closer to a natural representation, but they
are still inconsistent with the real-world. For exam-
ple, the in the model the instantaneous probability for
a state transition is the same for the entire duration of
occupation. Another issue is that not all patient mod-
els converged during the abstraction step. Although
this impacted only small fraction of the total patients,
it is a key limitation to the method.

Immediate next steps are to extend temporal abstrac-
tion to continuous-time HMMs. Also, we feel that
external validation metrics for cluster assessment are
fundamentally weak for many problems where clusters
are not categorical, and rather a graded interval. In
terms of intrinsic evaluation, heuristics such as the sil-
houettes are also limited. Instead of developing one
more metric, we propose a visualization tool to enable
the browsing of temporal clustering results and feel
this would be more useful for system development and
is another direction for our future work.
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