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Abstract. Typically, autonomous robot navigation relies on a detailed,
accurate map. The associated representations, however, do not readily
support human-friendly interaction. The approach reported here offers
an alternative: navigation with a spatial model and commonsense qual-
itative spatial reasoning. Both are based on research about how people
experience and represent space. The spatial model quickly develops as
the result of incremental learning during travel. In extensive empirical
testing, qualitative spatial reasoning principles that reference this model
support increasingly effective navigation in a variety of built spaces.
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1 Introduction

A person who travels without a map to multiple locations (targets) relies on
local perception to build a mental model that supports her goals. That model
is replete with spatial affordances, abstractions that remove perceived but irrel-
evant details [11] and support spatial reasoning. The thesis of our work is that,
despite sensor noise and actuator uncertainty, an autonomous robot can quickly
learn to travel effectively when it too relies on commonsense qualitative spatial
reasoning and models spatial affordances. This paper reports on SemaFORR,
a hierarchical architecture for autonomous robot navigation. SemaFORR both
makes navigation decisions and identifies spatial affordances. The principal re-
sults reported here are SemaFORR’s ability to learn a serviceable spatial mental
model from spatial affordances quickly, and to navigate with that model to a
sequence of targets with increasing effectiveness.

The robot begins from a corner of its environment and then tries to reach
a set of targets in a prespecified order as quickly as possible. Instead of a map,
the robot has limited local perception, that is, it senses obstructions in a few
directions and only in its immediate vicinity. Each time the robot finishes with a
target, SemaFORR analyzes the perceptual history from that trip to learn and
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refine a spatial mental model of the environment. The revised model then serves
as input for navigation to the next target.

Navigation is viewed here as a sequence of actions selected one at a time.
To select the robot’s next action, SemaFORR pragmatically capitalizes on the
synergy among commonsense spatial rationales. Each rationale is a reactive pro-
cedure whose input is the robot’s current percepts and spatial model. Some
rationales (e.g., “move to the target you perceive directly before you”) are ap-
plicable to any environment. Other rationales (e.g., “move through this exit”)
exploit affordances present in the model. The resultant system is transparent,
human-friendly, and could advance human-robot collaboration.

The environments investigated here are three small, built spaces with differ-
ent topologies, and a real-world indoor space of considerably greater complexity.
By construction, SemaFORR can operate either physical robots in our labora-
tory or simulated ones on our screens. The thorough and extensive empirical
work reported here, however, would have dramatically taxed our robot hard-
ware. It also would have required considerably more elapsed time to recharge
and recalibrate each robot periodically. The results reported here, therefore, are
in simulation, but with realistic actuators that may shift the robot somewhat
more or less than intended, as they do the physical robots.

The next section of this paper summarizes related work in intelligent archi-
tectures and robot navigation. Subsequent sections describe how SemaFORR
decides and learns, and provide the experimental design and results. The paper
closes with a discussion that considers the ramifications of our system decisions,
and outlines our current work.

2 Related Work

FORR (FOr the Right Reasons) is a general architecture for learning and prob-
lem solving [7]. A FORR-based program is built to learn quickly, adapt rapidly,
and restructure its own decision process. These properties provide robustness
in complex, unpredictable situations. FORR was confirmed as cognitively plau-
sible on human game players [29], and has since learned successfully in a vari-
ety of application domains, including game playing, constraint satisfaction, and
human-human dialogue.

Ariadne was an early FORR-based application for a simulated robot in a
grid [8, 9]. Ariadne’s task was idealized, however. The robot operated alone in a
static environment. Its sensors had no range limit and its actuators were noise-
free. The robot moved perfectly and only orthogonally. It had no physical foot-
print; instead it occupied an entire grid cell. Moreover, what Ariadne learned,
while intuitively appealing, was not based on what we now know about how peo-
ple represent and experience space. As a result, Ariadne fared best in random
environments without organizational principles or in environments with exten-
sive, centralized open space. Environments built for people (e.g., a set of offices)
proved considerably more difficult for Ariadne.
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In contrast, SemaFORR is intended for dynamic, partially observable envi-
ronments including complex office buildings, warehouses, and search and rescue.
In such environments, maps may be unreliable for path planning, and landmarks
may be obscured or obliterated. Communication may be sporadic and slow, sen-
sors and actuators noisy, and barriers or passageways unanticipated. Moreover,
a SemaFORR robot, while autonomous, is intended to work with others.

SemaFORR is part of the HRTeam (Human-Robot Team) project, where a
person collaborates with a set of heterogeneous, autonomous, low-end physical
robots. HRTeam’s long-term goal is to support the person as the team inves-
tigates environments presumed unsafe for people. The person contributes to
decision making but does not control it. This motivates our approach, in which
each robot uses commonsense qualitative spatial reasoning and a spatial mental
model to determine its actions. The HRTeam framework includes software to
assign targets, a central server for communication, a shared knowledge store for
the components of the spatial model, and a controller for each robot. Because
HRTeam’s software framework is built on Player/Stage [13], physical and simu-
lated robots use the same decision maker (which selects actions in the controller),
and the same driver (which sends commands from the controller to the robot’s
motors) (See [31] for further details on HRTeam.)

SemaFORR draws from research on how people experience, remember, and
move through space (e.g., [16]). Its spatial model is inspired by what researchers
now know about human spatial perception and navigation. Instead of an image-
like metric map, people rely on what appears to be a gradually acquired collage of
different kinds of knowledge [36]. Because metrically or topologically impossible
environments do not deter people [41], neurophysiologists have suggested that
human mental models remove perceived but irrelevant details [11]. For clarity,
additional related cognitive work is cited in the next section.

SemaFORR’s cognitive underpinnings have led to key differences from tradi-
tional approaches to robot navigation. The state-of-the-art approach to naviga-
tion in mobile robotics is to construct a detailed metric map using probabilistic
SLAM (simultaneous localization and mapping) [2, 6]. Once a map has been
constructed, the robot can localize (find its position there) and plan a path be-
tween any two points on the map. While the robot constructs the map, it also
localizes within the map segment it has constructed (hence “simultaneous”) and
can plan paths within that segment. Plans can also be constructed to points
outside the map segment, although unknown features may interfere with their
execution. This can be somewhat mitigated if path planning and execution are
combined with obstacle avoidance. SemaFORR has no map.

A purely reactive robot navigation architecture can support modular soft-
ware design and flexibility in an environment not specifically structured for it.
Such an architecture uses “if 〈sensor - value〉 then 〈action〉” rules to select
actions. To cover a variety of reactive behaviors, early approaches relied, for
example, on subsumption architectures [5] or potential fields [1]. Subsumption
architectures, however, require careful engineering to order all their applicable
rules, and neither subsumption nor potential fields learns spatial features in the
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environment. Instead, SemaFORR’s decision process integrates obvious correct
reactions (e.g., “don’t move into a wall”) with commonsense qualitative spa-
tial reasoning principles (e.g., “move in the direction of the target”). Many of
these responses reference SemaFORR’s mental model. Layered robot architec-
tures typically partition control based on functionality (e.g., with layers for reac-
tive feedback control, planning, and low-level action selection [12]). In contrast,
SemaFORR makes only low-level action decisions.

Traditional robot navigation architectures can afford to be reactive because
they rely on a plan, a sequence of waypoints the robot should go to on its way
to its target (e.g., [24]). The A* algorithm [18] produces optimal paths, but it
explores many alternatives and assumes full knowledge of a static environment.
Despite a reliable map, however, a realistic environment may include noisy ac-
tuators, dynamic map changes, and other moving agents, all of which may ne-
cessitate plan repair or replanning. Rather than cache all pairs of shortest paths
[4] or plan from previous searches [22], SemaFORR reacts to its local percep-
tions and its spatial model. In other work, HRTeam relies on a skeletal version
of SemaFORR with an A* path planner that uses a global (i.e., full) map of the
environment [10]. Here, however, we test the bounds of what a single robot can
achieve alone, without a map and without a human or robot partner.

Finally, semantic mapping seeks to abstract spatial representations con-
structed for robots so that they can also support communication with people [23].
Most semantic mapping commits first to SLAM and then tries to explain its re-
sults in more human-friendly terms, often by augmentation of metric maps with
objects (e.g., desks) or labels (e.g., “office”). Some work in semantic mapping
deliberately steers the robot (e.g., [27, 38]); SemaFORR’s robot is autonomous.
Other work in semantic mapping is restricted to extremely simple environments
with labeled training examples (e.g., [40]); SemaFORR’s environments can, as in
Section 5, be quite complex. In summary, semantic mapping performs inference
on metric maps derived from sensor data, while SemaFORR derives affordances
directly from sensor data. Thus, instead of recording obstructions, SemaFORR
learns ways to facilitate navigation. SLAM addresses “where am I?” while Se-
maFORR addresses “why should I chose this action?” This approach supports
more transparent reasoning and more natural communication with people.

3 SemaFORR

A SemaFORR robot’s task is to visit (come within ε of) each of a pre-sequenced
set of targets. To support this goal, SemaFORR learns a spatial model of its
environment that emerges as it explores and reasons about space. This section
explains SemaFORR’s decision context and how it learns a spatial model. Then
it describes how SemaFORR chooses an action and explains the individual com-
ponents of that reasoning mechanism with a unifying example.
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3.1 The Decision Context

At a decision point, SemaFORR selects the robot’s next action. The robot’s ac-
tion repertoire is its set of possible actions: forward linear moves (henceforth,
simply moves), clockwise and counterclockwise rotations (turns), and a pause (a
no-op). Although the robot could theoretically make a move or turn of any size,
SemaFORR restricts that choice to a discrete set of possibilities. The intensity
of an action is a qualitative representation of how far the robot is intended to
travel or turn. A move has intensity only between 1 and 5; a turn has intensity
between 1 and 4, either clockwise or counterclockwise. Intensities are ordinal la-
bels calibrated to correspond to a particular physical robot and its environment.
Thus there are 14 possible actions in the robot’s action repertoire.

The outcome of an action, however, is realistically non-deterministic. This
paper focuses on the Surveyor SRV-1 Blackfin, a small platform in our laboratory
with a webcam and 802.11g wireless. We have extensively observed and measured
the actuator noise on a set of Blackfins there, and model it probabilistically here.
As a result, when SemaFORR decides to act with intensity i, the robot acts with
intensity i ± δ, where δ is an increasing function of i.

For localization, the robot relies on a system of overhead cameras, simulated
here. The position of a robot is its location coordinates (x,y) and its orientation
θ on the true map (henceforth, the world). The location of a target is specified
with respect to the same coordinate system.

The robot’s knowledge store is a set of descriptives that capture its experi-
ence, goals, and behavior. A descriptive is a shared data object with functions
that determine how and when to update it. HRTeam’s DM (Descriptive Man-
ager) provides a shared knowledge store of descriptives for all team members.
The DM receives messages from HRTeam’s central server, extracts relevant data
from them, and provides the current value of any descriptive to the robot on de-
mand. Basic descriptives include the robot’s position, its agenda (list of target
locations to visit), its current target, and the history of its decisions made thus
far on its way to that target.

The robot’s percepts are represented as a descriptive called the wall regis-
ter. It simulates a set of limited-range measurements for the distance from the
robot to the nearest wall in 10 directions. From the robot’s heading of 0◦, these
measurements are taken on either side at 8.87◦, 17.5◦, 37.2◦, 74.5◦, and 195◦.
In the example in Figure 1(a), not every ray touches an obstacle; some halt at
their maximum range. Note that wall-register values are egocentric, while the
positions of the robot and its targets are allocentric. (The walls also have a buffer
that thickens them slightly for these measurements, to prevent unintended col-
lisions from noisy actuators.) SemaFORR builds and refines its spatial model
incrementally, from a history of its percepts and positions.

3.2 The Spatial Model

The components of SemaFORR’s spatial model are spatial affordances, ways
the environment provides opportunities to address a goal [14]. SemaFORR’s
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affordances support its reasoning and its explicit representation about two-
dimensional space (in the spirit, but without the finer granularity, of [20]). An
affordance is calculated from sensor data and the robot’s decision points; it de-
scribes spatial knowledge that supports effective navigation.

Instead of a map or a formal logic, SemaFORR’s affordances summarize what
it has experienced in its environmentas locations, lines, and areas. Each category
of affordance is represented as a separate descriptive. SemaFORR has three kinds
of affordances: trails with markers, regions with exits, and conveyors. Trails and
conveyors are learned only from successful travel (i.e., immediately after the
robot reaches its target); regions are learned whether or not travel succeeds.

A trail affords the ability to travel along a familiar, ordered sequence of lo-
cations. As the robot travels, the DM records its path as a sequence of decision
states: the robot’s position and the wall register values there. The trail-learning
algorithm is analogous to the way people compute return paths [17], but with
locations rather than landmarks or viewpoints. When the robot reaches its tar-
get, to derive the trail the algorithm processes a copy of that path backwards. At
each decision state, the algorithm uses the wall register to identify a better (i.e.,
more direct) choice. The result is a (typically shorter) sequence of decision points
that reduces the computational and physical effort required to travel between
the target and the robot’s starting point. An example appears in Figure 1(b).

The algorithm begins with a trail that is merely a copy s1, s2, . . . , sk of the
decision states that formed the path. Then, from sk, the algorithm looks for the
smallest i where the wall register at si perceived sk. If it can find such an si it
reduces the trail to s1, s2, . . . , , si,mk, where the trail marker mk is the location
of sk and the wall register values at sk. This process repeats for each decision
state along the trail, moving from the target backwards to the starting point. In
the worst case, learning time is quadratic in the path length. The resultant trail
is an ordered set of trail markers with line segments that connect them. Although
a trail is likely to be suboptimal, it is more direct and has fewer digressions than
the path from which it originates.

(a) (b) (c)

Fig. 1. (a) The robot’s position produces values for its wall register, which provides
its local view. The arrow represents the robot’s heading; the subtended circle is the
detected region. (b) A (dotted) path begun in the lower left room and the (solid) trail
derived from it, with dots at the trail markers. (c) A conveyor grid; darker cells are
more often crossed by trails.



Learning Spatial Models for Navigation 7

A region is an obstruction-free local area. Wall register vectors are limited
only by obstacles (e.g., walls) and the sensors’ range. The robot only senses
(i.e., produces wall register values) from a position where it is about to make a
decision. At each such position, it computes a region as a circle whose center is
its current location and whose radius is the length of its shortest wall register
value, as in Figure 1(a). Regions are reminiscent of some human mental models
[19, 30] and of areas in online mapping [35], but do not require that the robot
map all walls first. As the robot travels, regions may gradually grow or shrink,
but they never overlap. (This was a pragmatic design decision; there is a tradeoff
between the number of regions and the cost to maintain and use them.) An exit
from a region is a point on its circumference that intersects with a path.

Finally, a conveyor affords visitation to a small area that has often facilitated
travel (similar to [25]). The conveyor grid covers the footprint of the world with
cells about 1.5 times the size of the robot’s footprint. The conveyor-learning
algorithm tallies the frequency with which all trails pass through its cells. High-
count cells in that grid are conveyors; they appear darker in the example in
Figure 1(c). The descriptives form a knowledge store over which SemaFORR
reasons.

3.3 The Reasoning Mechanism

SemaFORR selects one action at a time, that is, it does not plan. To select
an action, it executes a decision cycle. At the beginning of a decision cycle,
SemaFORR retrieves the current descriptive values from the DM and caches
them on the robot. These include its position and the current target and spatial
model. Then SemaFORR reasons about which action to choose from its 14-action
repertoire. The output of a decision cycle is the selected action.

In SemaFORR, a rationale is a plausible reason to select an action. An Advi-
sor is a boundedly rational (resource-limited) procedure that applies a rationale
to evaluate actions. SemaFORR’s use of multiple rationales is consistent with
the recent result that multiple wayfinding strategies best predict human route
selection [33]. The input to an Advisor is a set of possible actions and the descrip-
tives’ values. The output of an Advisor is a (possibly empty) set of comments,
each of which expresses an opinion about the appropriateness of a single action
from the perspective of the Advisor’s rationale.

SemaFORR partitions its Advisors into tiers that correspond to Montello’s
distinction between locomotion (tier 1 ) and wayfinding (tier 3 )[26]. As shown
in Figure 2, a decision cycle first invokes the tier-1 Advisors in a predetermined
order. One at a time, they have the opportunity to comment. In tier 1, Advisors’
rationales are quick to compute and assumed to be correct. Each tier-1 rationale
gives rise to a single Advisor that mandates or vetoes obvious reactions. If any
tier-1 Advisor mandates an action, that becomes the decision and no further
Advisors are consulted. If a tier-1 Advisor vetoes an action, it is eliminated from
the set of possible actions passed to the next tier-1 Advisor.

Despite possible vetoes, tier-1 processing always retains some action, so that
decision making always returns a value. If at any point in tier 1 only pause
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Fig. 2. A schematic for SemaFORR’s control structure with sample input.

remains, it becomes the decision, and no other Advisors are consulted, that is, the
robot does nothing until its next decision cycle. Otherwise, the unvetoed actions
are forwarded to tier 3, which chooses among them. (Tier 2, which supports the
selection of action sequences, is the focus of current development, and not used
in the work reported here.)

In tier 3, SemaFORR alternately chooses a pause or a move on one decision
cycle, and then a pause or a turn on the next. Thus, if in Figure 2 the previous
decision cycle were for turns, only the unvetoed moves and pause would be
forwarded to tier 3. Note that pause does not halt movement or sensing; it merely
defers a decision to the next cycle, and thereby permits longer consecutive moves.
The turns of intensity one serve the same purpose as the pause, that is, they
permit longer turns in the same direction.

In tier 3, all Advisors comment before any decision is made. SemaFORR’s
tier-3 Advisors have deliberately disparate spatial rationales. To resolve their
differences of opinion and to capitalize on the synergy among them, voting tallies
the comment strengths from all tier-3 Advisors. When Advisor i comments on
action j with strength sij , voting returns an action with maximum total strength:

argmaxj
∑
i

sij (1)

Ties in voting are broken at random. The remainder of this section explains the
commonsense rationales and how they rely on local perception and the spatial
model, along with a unifying example of a SemaFORR decision.

3.4 Tier-1 Advisors

Table 1 lists SemaFORR’s 13 Advisor rationales by tier. There are three tier-1
Advisors. The first, Victory, comments if it does not sense an obstruction in
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Table 1. Rationales that underlie SemaFORR 22 Advisors. There is one Advisor for
each tier-1 rationale. Each tier-3 rationale is implemented by a move Advisor and a
turn Advisor (with the exception of †, applicable to turns only).

Tier 1, in order

Victory Go to an unobstructed target.
AvoidWalls Do not go within ε of a wall.
NotOpposite Do not return to last heading.

Tier 3 heuristics vote

Based on commonsense reasoning
BigStep Take a long step or turn in the direction of a long step.
ElbowRoom Go where there is room to move.
Explorer Go to unfamiliar locations.
GoAround† Turn to avoid obstacles directly before you.
Greedy Go closer to the target.

Based on learned spatial affordances
Convey Go to frequent, distant conveyors.
Enter Go into a region via an exit.
Exit Leave a region via an exit.
Trailer Pursue a useful trail segment.
Unlikely Do not enter a leaf region unless it contains the target.

its “line of sight” to the target. It mandates the move that will bring the robot
closest to the target or the turn that will head the robot most directly toward
it. The second, AvoidWalls opposes actions likely to bring the robot too close
to a wall and thereby risk collision due to its noisy actuators. (“Likely” is within
δ of a wall, given the wall register values.) Finally, NotOpposite vetoes turns
that would simply restore the robot’s immediately preceding heading.

Thus, by design, tier 1 selects an action toward to an unobstructed target
within range, and otherwise forwards to tier 3 only actions that avoid colli-
sions with walls and do not oscillate in place. Recall that tier-1 Advisors are
expected to be correct. Given the uncertainty inherent the robot’s actuators and
its partial view of the world, little else can be safely asserted. The remainder of
SemaFORR’s reasoning is necessarily heuristic.

3.5 Tier-3 Advisors

SemaFORR’s tier-3 Advisors have heuristic rationales. With the exception of
GoAround, each tier-3 rationale gives rise to two Advisors: one for moves (name
ends in M) and one for turns (name ends in T). A turn Advisor considers how its
associated move Advisor would comment after each possible turn. A turn decision
is not a classical robotics plan, however, because it makes no commitment to a
subsequent move; it only anticipates one. For example, GreedyM comments on
moves with strengths that are inversely proportional to the distance they are
expected to place the robot from the target. In tandem, GreedyT calculates
its comment strengths from how close the robot could come to the target if it
were to turn and then make GreedyM’s most preferred move.
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Each tier-3 Advisor has a metric that assigns a real value to each possible
action. To comment on a given set of n actions, an Advisor applies its metric,
ranks the actions in descending order by their metric values, and then assigns
corresponding comment strengths from n down to 1. The larger the strength,
the more the Advisor prefers the action.

Four more tier-3 rationales also represent commonsense and rely only on local
perception. BigStep supports large actions, with comment strengths propor-
tional to the action’s size. ElbowRoom supports actions that keep the robot
further from walls. When the robot is facing a wall, GoAroundT supports
turns that veer away from it, and prefers larger turns more strongly when the
wall is closer. Finally, Explorer advocates exploration to reduce uncertainty,
confirmed behavior for people in noisy, dynamic environments [32]. It supports
actions toward locations that are relatively novel with respect to the current
target (i.e., minimize the total Euclidean distance to previous decision points).

The remaining tier-3 rationales exploit learned spatial affordances. Convey
supports actions to high-count conveyors, with preference for those further from
the robot. When high-count conveyors are near one another, Convey thereby
advocates travel through those locations rather than merely to them.

Trailer is a case-based reasoning mechanism for trails. A trail is accessible
if and only if a ray from the robot’s current wall register intersects some line
segment of the trail between two consecutive trail markers. Unless it has al-
ready done so, Trailer identifies an accessible trail that has a marker m within
sensory range of the target (as indicated by the wall register at m). If there is
such a trail, Trailer’s comments greedily support actions toward trail markers
further along the trail segment that leads to the target. TrailerM’s comment
strengths reflect the ability of each move to get the robot farther along that
trail on its way to the vicinity of the target. There is no plan-like commitment
to a trail, however, because the other Advisors may draw the robot elsewhere.
(Indeed, once the robot arrives in the immediate vicinity of the target, Victory
will take control.) Furthermore, if Trailer cannot sense any marker on its se-
lected trail for four consecutive decision cycles, it is “lost,” does not comment,
and looks for a new trail on the next decision cycle.

Three Advisor rationales reference regions. A leaf region is defined as one
whose exits all lie within an arc of no more than 90◦. (With perfect knowledge,
a leaf region would be a dead-end.) When the target lies in region T, the robot
in region R, and R is adjacent to T, Enter supports actions into T, Unlikely
opposes actions into a leaf region other than T, and Exit supports actions
toward any exit from R if the target is not in R, in the spirit of [3].

Figure 3 provides a unifying example. It superimposed on the true map the
robot, its current target, and the current spatial model, with leaf regions drawn
lighter. At this point in the decision cycle, AvoidWalls has already vetoed the
move of intensity 5 because actuator error could drive the robot into a wall.
Because SemaFORR turned on its previous decision, only pause and moves with
intensity 1, 2, 3, and 4 along the robot’s current heading have been forwarded
to the tier-3 Advisors.
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target&
robot&

Comments:&<Advisor,&move,&strength>&
BigStepM,*pause,*1 *TrailerM,*pause*,1 *ElbowRoomM,*pause,*5**
BigStepM,*1,*2 *TrailerM,*1*,2* *ElbowRoomM,*1*,4*
BigStepM,*2,*3 *TrailerM,*2,*4* *ElbowRoomM,*2,*3*
BigStepM,*3,*4 *TrailerM,*3,*5* *ElbowRoomM,*3,*2*
BigStepM,*4,*5 *TrailerM,*4,*3* *ElbowRoomM,*4,*1*

**
GreedyM,*pause,*1 *ConveyM,*pause,*0 *ExplorerM,*pause,*0*
GreedyM,*1,*2 *ConveyM,*1,*1 *ExplorerM,*1,*1*
GreedyM,*2,*3 *ConveyM,*2,*1 *ExplorerM,*2,*2 **
GreedyM,*3,*4 *ConveyM,*3,*2 *ExplorerM,*3,*3 **
GreedyM,*4,*5 *ConveyM,*4,*0 *ExplorerM,*4,*4 **

Fig. 3. A spatial model and the comments generated by the tier-3 Advisors when the
robot is at the indicated decision point on its way to a target. For clarity, the walls
(unknown to the robot) and only the trail selected by the Advisors are shown.

The comments in Figure 3 clearly reflect the rationales and the current de-
cision point. GoAroundT will not comment, because no turns are currently
available. BigStepM’s comment strengths reflect the size of each move. Since
the target is far from the robot’s location, GreedyM comments on 4 with
strength 5, and on the other moves with decreasing strengths. For clarity, Fig-
ure 3 shows only the selected trail that Trailer wants to pursue. ConveyM’s
comment strengths direct the robot to the darker grid cell that lies in front of
it. ElbowRoomM’s comments encourage moves to locations further from walls.
By this time the robot had visited much of the room it was in, so ExplorerM’s
comment strengths seek to drive it out into the hallway, to less familiar territory.
EnterM and UnlikelyM do not comment because the target is not within any
region, and ExitM does not comment because the robot is not in any region.
Because the vote in Figure 3 is tied among moves 2, 3, and 4, one of them will
be selected at random.

4 Empirical Design

To examine how SemaFORR’s knowledge and skill evolve in world W , the robot
is given an agenda, a sequence of targets T to visit. In a run, the robot begins
at the same position (in the lower left of W ) and attempts to visit each target
in the fixed but randomized order of T . Once the robot reaches a target, it
addresses the next one on its agenda from its current position. If the robot does
not reach a target after 250 decisions, it is deemed to have failed on that target,
and addresses the next target in T from its current position. The evaluation
criteria for a run are the success rate (percentage of reached targets in T ),
the total elapsed wall-clock time in seconds, and the total distance traveled in
centimeters.
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The pair 〈W,T 〉 is called a setting. There are two sources of non-determinism
in a run: actuator variance and random tie-breaking during voting. Thus, to
gauge performance consistency within a given setting, results are averaged over
5 runs. To gauge performance consistency within a given world W , there are 5
randomly generated, 40-target sets T for each world W , and results are averaged
over all settings. Thus our data describes navigation performance on 1000 targets
(25 runs of 40 targets) in each world. To gauge performance consistency across
different navigation challenges, our experiments investigate three worlds built for
people but with different connectivities [28]. World A simulates an office space,
world B a rotunda, and world C a warehouse or library stacks.

The experiments reported here compare SemaFORR with SemaFORR-A*,
a gold standard for robot planning. From a map of the world, SemaFORR-A*
plans a shortest (A*) path to each new target t. This path is represented as
a sequence of waypoints from the robot’s initial location to t and avoids walls
on the map. To make a decision, SemaFORR-A* selects the action intended to
bring the robot closest to its next waypoint in the plan. Such navigation would
be perfect were it not for actuator errors, which may move the robot to a position
where a waypoint is obstructed or too far away. In that case, SemaFORR-A*
must replan. To reduce the impact of actuator error and thereby help adhere
to the plan, SemaFORR-A* selects only small (intensity-1) moves and turns.
Comparison to SemaFORR-A* evaluates the impact of reactivity and a local,
rather than a global, view.

To tease apart SemaFORR’s navigation skills, we also test five ablated ver-
sions of SemaFORR. SemaFORR-B navigates with only commonsense qualita-
tive spatial reasoning, as represented by tier 1 plus four qualitative common-
sense rationales in tier 3: BigStep, ElbowRoom, GoAround, and Greedy.
SemaFORR-B has no spatial affordances; comparison to it evaluates the im-
pact of commonsense spatial reasoning. To gauge the impact of exploration,
SemaFORR-E augments SeamFORR-B with Explorer. To evaluate the im-
pact of the individual spatial affordances, SemaFORR-C, SemaFORR-R, and
SemaFORR-T, each add a single spatial affordance (conveyors, regions, or trails,
respectively) to SemaFORR-E, along with their associated Advisors.

5 Results

5.1 Learned spatial models

A qualitative evaluation metric is the appropriateness of SemaFORR’s learned
spatial models. Figures 4(a)- 4(d) show how a spatial model for world A evolved
during a single run. Note how they develop quickly, with few changes after the
first 10 targets. Videos of the robot’s travel show how a model evolves after
each target despite actuator error: http://youtu.be/3C_675H6-xk, https://
youtu.be/4WF8unQlSm8.

Figures 4(d)- 4(f) show, for each world, the spatial model learned after a
single run, overlaid on the walls of its true map. Inspection indicates that these
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(a) (b) (c)

(d)

(e) (f)

Fig. 4. Spatial models in SemaFORR, overlaid on the corresponding true map, which
the robot does not have. Conveyors are shown as grid cells (darker is more salient),
and regions as circles with dotted exits. Trails are line segments with dots at the trail
markers. The spatial model for world A as it evolves after (a) 10 (b) 20 and (c) 30
targets. After 40 targets, SemaFORR’s learned spatial models of (d) world A, (e) world
B, and (f) world C.
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Table 2. Navigation performance of SemaFORR-A* (an ideal planner), SemaFORR,
and five ablated versions of it, measured by time in seconds, distance, and success
(percentage of reached targets per run).

. . .

World A World B World C
Navigator Time Dist. Succ. Time Dist. Succ. Time Dist. Succ.

SemaFORR-A* 1035.9 400.1 100.0 884.6 335.1 100.0 1119.9 437.9 100.0

SemaFORR-B 1823.7 974.5 94.1 1124.6 565.0 97.8 2473.5 887.5 82.2
SemaFORR-E 1415.1 1018.8 99.4 1090.2 730.9 99.2 1497.7 983.2 98.5
SemaFORR-C 1323.8 977.4 99.8 1009.8 698.7 99.2 1303.2 933.2 99.7
SemaFORR-R 1280.1 892.2 99.6 941.5 612.6 99.6 1524.7 919.7 98.2
SemaFORR-T 1163.8 813.0 99.5 867.2 553.3 99.8 1278.0 775.7 99.6

SemaFORR 1221.2 854.5 99.5 835.3 554.9 99.7 1275.7 798.2 99.8

final models varied little over the five runs for one setting. They also varied little
from one set of targets T to another in the same world. Observe how the regions
capture the “rooms” in worlds A and B, but only two of the cubicles in world C;
targets in that particular world-C setting appeared in cubicles less often. Note,
too, how the conveyors develop a “highway” for the hallway in world A, diagonal
“highways” for world B, and perimeter and central “highways” for world C.

5.2 Performance

Performance results appear in Table 2. For all our navigators, the target sets in
world B are clearly the easiest, and those in world C the most difficult. In the
following discussion, high variance caused both by actuator error and randomized
target sets T makes some apparent differences inconclusive; differences cited here
are at p < 0.05.

Without a map and given its penchant for exploration, SemaFORR should
not be expected to match SemaFORR-A*’s distance along its optimal paths in
a complete map. Nonetheless, in world B SemaFORR reaches its targets just as
fast as SemaFORR-A*. In worlds A and C, SemaFORR travels further but is
only slightly slower than SemaFORR-A* (18% and 14% slower, respectively).

Both SemaFORR-A* and SemaFORR spend most of their time in travel
rather than decision making. SemaFORR-A* devotes about 19% of its time to
decisions in all 3 worlds. SemaFORR devotes 17% of its time to decisions in
worlds A and B, and 18% in C. Moreover, in every world, SemaFORR’s learning
requires less than 0.01% of the elapsed time.

Compared to SemaFORR-B, SemaFORR improves navigation: time is sub-
stantially reduced, distance decreases in worlds A and C, and reliability (as
measured by success rate) rises. SemaFORR-E demonstrates the improvement
exploration brings to the commonsense reasoning of SemaFORR-B, and the price
the robot pays for it. Travel time is reduced by 22%, 3%, and 39%, in worlds
A, B, and C, respectively, and the success rate rises, particularly in world C.
Exploration also increases travel distance, however, by 5%, 29%, and 11%, re-
spectively. Moreover, as one would expect, SemaFORR-E does not demonstrate
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(a)

(b)

Fig. 5. For each world, plotted across 40 targets and averaged over all runs, the ratio
of SemaFORR’s (a) time and (b) distance to the A* distance to each target. Dashed
regression lines with negative slopes indicate improved performance across time in
worlds A and C.

any improvement across targets; it fails as late as on the 32nd target in world
A, the 36th in world B, and the 29th in world C. Compared to exploration plus
commonsense, each spatial affordance alone reduces travel time (except for re-
gions in world C) and distance, with improvements in every success rate for all
but SemaFORR-C in world B. The trails (SemaFORR-T) are particularly effec-
tive; they can reach the targets as quickly in world B as SemaFORR-A* does,
presumably because they allow longer, highly effective steps.

SemaFORR’s superiority to SemaFORR-B demonstrates that learning spa-
tial affordances is an important component in SemaFORR’s performance. There
are two ways to gauge if that learning is online, that is, if SemaFORR’s per-
formance improves across a sequence of targets. First, with more experience,
SemaFORR should fail on targets less often. While SemaFORR-B has runs in
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which it fails as late as on the 40th (final) target, SemaFORR’s last failure on
any setting and run in map A was on the 19th and in map C on the 23rd.
(There was one failure in world B on the 35th, probably brought on by actuator
error because higher-intensity moves are more frequently possible in B.) Second,
SemaFORR should reach its targets faster. Because random generation makes
some targets intrinsically more difficult to reach, we normalize performance by
how hard it is to reach a target, estimated here by the distance in an A* plan.
(This ignores the need to turn correctly and differs from SemaFORR-A*’s dis-
tances, which are subject to actuator error.) Figure 5 shows that the regression
trend lines for this ratio descend across 40 tasks for worlds A and C for both
time and distance. In other words, with experience SemaFORR learns to reach
its targets more quickly and in a shorter distance.

6 Discussion

SemaFORR is not envisioned as a replacement for SLAM, but as a companion to
it, one that facilitates robot-human interaction. A cognitively plausible mental
model like SemaFORR’s can be shared with a person at a level of abstraction that
is both meaningful and parsimonious. “I’m at the center of the biggest region”
are considerably more informative for people than “My pose is < 10, 20, 39◦ >.”

When, as in HRTeam, a person collaborates with an agent, the ability to
explain the agent’s reasoning in a human-friendly manner is a first step toward
transparent, more natural communication and the establishment of trust. Instead
of a metric map, SemaFORR relies on commonsense reasons that support low-
level actions. As a result, a SemaFORR robot can explain any of its reasons. A
comment from Explorer, for example, can be paraphrased as “Let’s go this
way because we haven’t explored it much yet,” and one from Enter as “I want
to go into this dead-end [leaf region] because it contains the target.”

For a decision made in tier 3, SemaFORR has a mechanism to translate it into
natural language that reflects both the rationales of the Advisors whose com-
ments supported it and the degree of their preference (i.e., comment strength).
For example, a vote where the strength of ElbowRoom’s comment is consid-
erably higher than that of any other comment becomes “I really want to move
into open space.” In contrast, a vote in which the comments from BigStep,
Explorer, and Greedy dominate but with somewhat lower strengths than in
the previous example becomes “It seems reasonable to move as far as possible,
into a new area, and toward our target.” Furthermore, because of its modu-
larity, SemaFORR can readily incorporate new explanations as a spatial model
becomes more elaborate. Recent work on the construction of a depiction from a
verbal description (e.g., [37]) and the negotiation of a route between a robot and
person (e.g., [39]) could also be applicable here. The remainder of this section
examines the components that drive SemaFORR, its real-world applicability,
and our current work.



Learning Spatial Models for Navigation 17

6.1 What Makes SemaFORR Work

SemaFORR uses its sensors’ values to compute and store a simplistic model of
its spatial environment. This model is dynamic; it consists of affordances (re-
gions, trails, and conveyors) that proliferate and change as the robot experiences
new parts of the environment. Because the model is based on heuristic learn-
ing algorithms that analyze only the robot’s local views and actual travel, it
is necessarily a set of approximations. The interdependence among affordances
(e.g., the presence of some high-scoring conveyors along a trail) is deliberate;
it both mediates disagreement between possibly disparate approximations and
enriches their usefulness. SemaFORR’s spatial representation provides flexibility
and efficiency, and provides a human-like basis for strategy formation [34].

SemaFORR’s architecture exploits the synergy among näıve commonsense
reasons. For example, in a mix of heuristics that argue with various intensities
for or against a set of moves, Greedy is just one among many reasons to move
down a hallway toward the right room. Qualitative reasoning also allows the
robot to correct for, and even anticipate, the inaccuracies of its actuators. For
example, when a large move incurs a large actuator error that draws the robot
off its intended trail and into an irrelevant room in world A, Explorer and
Exit soon pull it back out again.

SemaFORR’s model of the robot is realistic. As the floor surface changes or
as batteries drain, it is reasonable to assume that a real-world robot’s position
after it executes a decision may not be precisely what it anticipated. This mo-
tivated the replication of laboratory-observed actuator error during simulation.
Advisors’ comment strengths also deliberately smooth data already recognized
as approximate. SemaFORR discretizes movement in continuous space into a
sequence of frequent decisions. It chooses an action at least once per second and
as often as 3 times per second, depending upon the length of the intervening
moves. The result appears To the human observer as smooth navigation.

SemaFORR’s learning is pragmatic; it only infers conveyors, trails, and exits
from regions when it manages to reach its target. (Regions, however, are simple
local observations, learned either when the robot arrives at its current target,
or it reaches its decision limit.) Moreover, SemaFORR’s learning algorithms are
heuristically honed for fast computation and retrieval. Thus, the resultant spatial
model is necessarily an approximation and not a map. The robot represents only
what it experiences. If a setting does not take the robot to an area where it can
capture a local view, the model will not include that area. In the sensor placement
described here, there is also a bias toward the robot’s heading, which collects
more information about what is in front of the robot. Nonetheless, learning
during navigation supports flexibility and gradual improvement. Reinforcement
learning that relies on an abstract map [21] is somewhat similar, but SemaFORR
extracts and labels its own training examples heuristically, from its experience.

SemaFORR is similar to robotics work both in subsumption and in potential
fields. Tier 1 is analogous to a subsumption architecture, where rules are carefully
engineered and ordered. (The robot vacuum cleaner RoombaTM, for example,
has a subsumption architecture.) Tier 1, however, has only 3 Advisors, and
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they make only about 24.13%, 37.09%, and 22.75% of all decisions in worlds
A, B, and C, respectively; the heuristic Advisors in tier 3 make all the others.
SemaFORR’s tier 3 is analogous to a potential field, where forces attract or
repel the robot with vectors analogous to Advisors’ comment strengths. Potential
fields, however, are vulnerable to local minima. SemaFORR avoids local minima
through two mechanisms: exploration and randomization. Exploration draws it
to locations less recently visited; voting ties broken at random provide enough
non-determinism to extricate it from repetitive behavior.

Robotics has traditionally relied on precision planning from a global view; if
the robot has no map it immediately tries to construct one. People in a com-
plex environment, however, lack the working memory to construct an A* plan.
Instead, they satisfice with a spatial model, commonsense qualitative reason-
ing, and the ability to learn. SemaFORR tests the extent to which such behav-
ior supports navigation. People can, however, concatenate previously successful
routes to construct a new one. While SemaFORR could similarly piece together
trail segments, computation over extensive stored experience would soon become
costly. Instead, SemaFORR’s tier-3 Advisors foreshadow some of the approaches
anticipated for tier 2, which is currently under development. A planner could, for
example, support a turn decision followed immediately by the move that made
it attractive, or it could follow a trail more closely.

6.2 Transition to the Real World

Although the results reported here are for simulation, Player/Stage simplifies the
transition to real-world execution. SemaFORR-A* controls real-world Blackfins
in a laboratory whose walls are replicated in world A. Indeed, the values used here
for how close the robot can come to a wall and how close it must come to the tar-
get were gleaned from the metrics already used in the lab. (The same values were
also applied, unchanged, to worlds B and C.) An earlier study demonstrated that
some performance metrics gathered in HRTeam’s simulation are good predictors
of behavior in the physical world [31]. Current work includes on-the-floor exper-
iments to confirm that transfer from simulation to the physical world remains
effective. Meanwhile, we continue to hone SemaFORR in simulation, where we
can run online experiments quickly.

Both the descriptives and the Advisors were developed in world A, but are
sufficiently generic to apply to worlds B and C as well. To test the extent of that
generality, and to see how SemaFORR’s approach scales, we have reproduced
for simulation a considerably more elaborate environment, a wing from the floor
of a large building that includes one of our labs. This is a realistic built space,
about 40 times the area of world A, with 2 hallways and about 7 times as many
rooms. It is also considerably more complex; there are rooms with multiple doors
and rooms that are accessible only through a sequence of other rooms (i.e., not
directly off a hallway). The complexity of this world necessitates more targets and
a larger decision limit before failure. Here we used 50 randomly-chosen targets
and a 400 decision-cycle limit; all other settings and algorithms remained the
same.
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Fig. 6. What SemaFORR has learned after 50 targets in a challenging real-world en-
vironment. The robot enters at the stairwell, marked with an S.

The ease with which SemaFORR scales is visible in Figure 6, shown after a
single run. Figure 6 makes clear that the model only includes areas in which the
robot travels; more points would likely be necessary to cover this world and to
refine the regions that appear to cross a wall. (Regions typically reduce with more
travel through them.) It also shows some opportunities for further improvements
in SemaFORR. It is clear that for less square rooms it may be worthwhile to
merge regions in some way. Moreover, as the complexity of the space increases,
the likelihood that any trail matches a new target declines significantly. One way
to address this issue would be to combine subsequences of trails at runtime.

We expect SemaFORR’s reactive approach to support a variety of other
behaviors, some of which go unaddressed by modern, plan-based navigation. In
particular, an agent with an agenda need not consider it in a prescribed order.
A brief detour to address a target on the agenda but not the current focus of
attention is an obvious extension to SemaFORR. Moreover, it should be possible
to transfer knowledge between similar environments, such as floors in some office
buildings. In addition, when an individual robot needs repair or recharging, a
clone given the acquired knowledge is a near-seamless replacement (subject to its
idiosyncratic actuator and sensor noise). Finally, how often a robot must expend
energy to sense is an open question. Because SemaFORR senses only between
actions, a variety of tested intensities could provide a preliminary answer.

Current work capitalizes on SemaFORR’s modularity to support its gradual
development. One current research avenue is the use of a team of robots that
addresses a setting simultaneously, with targets assigned to particular robots.
Each robot remains autonomous, with its own copy of SemaFORR, but all robots
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share in the construction and use of the same spatial model, stored on the DM.
We are now testing rationales (analogous to AvoidWalls, ElbowRoom, and
BigStep) to avoid robot-robot collisions and crowding.

SemaFORR’s modularity includes the ability to support robots on different
platforms (e.g., a Blackfin and a TurtlebotTM) with different maneuverability
and different footprints. Features that may appear platform-specific here are
actually modular and readily replaced without hand tuning. For example, the
number of discrete commands was intended for the Blackfin, but a slightly larger
set of intensities should pose no difficulty for the architecture. (The maximum-
intensity command actually reflects the furthest one would want the robot to
move or turn without sensing again. That is learnable as a function of the world
and the robot platform.) How close the robot must come to the target to be
successful is a function of the robot’s footprint . Different sensors (e.g., a Kinect
or 20 equally-spaced infrared units along the robot’s perimeter) could be readily
accommodated. Indeed, better sensors should provide considerably more accu-
rate local views that could further improve performance. Thus, we believe that a
SemaFORR-supported heterogeneous multi-robot team is a tractable next step.

Meanwhile, SemaFORR quickly learns features of an environment that fa-
cilitate effective autonomous navigation without costly mapping or planning.
That knowledge transfers from one task to another. When a SemaFORR robot
travels, it moves around obstacles and toward its target, with big steps where
its world permits. It also anticipates access within regions, uses markers from
old trails, turns around obstacles, explores new locations, and recovers from its
own errors. Remarkably, that suffices to reach targets in these environments, and
quickly builds a simple spatial model of the world that facilitates explainable,
human-friendly, effective navigation.
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