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Abstract

Reasoning with uncertain information is a problem of
key importance when dealing with real knowledge. The
more information required by the procedure used to handle
the knowledge, the higher the probability of failure of  the
reasoning system. The theory of rough sets is not
information intensive and is thus a good basis for
reasoning in domains where knowledge is sparse. We
present a logic  based on rough set theory that is suitable
for reasoning under uncertainty, a rough inference rule, and
demonstrate its effectiveness in rule-based reasoning.

1. Introduction

Any system designed to reason about the real world must
be capable of dealing with uncertain information. This is a
consequence of the complexity of the real world and the
finite size of the knowledge base that such a system has at
its disposal. A number of mathematical formalisms have
been developed to cope with uncertainty in knowledge-
based systems [4]. These formalisms all suffer from the
fact that they are information intensive, requiring large
amounts of precise information in order to deal with
uncertainty. Thus truth values of relations between
variables are required in the form of grades of membership
and probability distributions. Such values are often
unknown, or expensive to obtain, and methods that are
not information intensive are often desirable.

2. Rough set theory

Consider a set of elementary objects A  = {A1,...,An}.

The members of this set are used to define a set of objects
E = {E1,...,Em} each of the Ai corresponding to a

possible attribute of the Ej. Since the specification of  the

Ej must be based on the Ai alone, it could well be the

case that some of the specifications of the Ej are

indistinguishable since the values that distinguish them
are not identified by the Ai. Thus the use of a finite set A

implies the existence of an equivalence relation and a
consequent partition on E; P = {P1,...,Pr} where ∪ P i  =

E  and   PifiPj  =  Ø for i ≠ j = 1,...,r and each  Ps  =

(Es
1
,...,Ez

s
)  is an equivalence class. Let T‹S be an object,

whose attributes are TA⁄A, that we wish to describe in

terms of  the set of  partitioned attributes Ei.

Tc(P, E) = {e:e ∈ Pi, Pi‹T ≠ Ø}

Te(P, E) = {e: e ∈ Pi, PifiT ≠ Ø}

where Tc(P, E) is the  core  of  T based on E and P , and

Te(P, E) is the envelope. The pair [Tc(P, E), Te(P, E)]
is a rough set [3].

We can determine the degree to which logical
combinations of roughly defined objects may themselves
be defined. Logical operations such as disjunction,
implication and negation may be defined in terms of set
operations on the core and envelope of the objects
concerned:

(A∨B)c ¤ AcflBc (A∧B)c = AcfiBc

(A∨B)e = AeflBe (A∧B)e ⁄ AefiBe  

(¬A)c = ~(Ae) (A→B)c ¤ ~AeflBc

(¬A)e = ~(Ac) (A→B)e = ~AcflBe

where ~A is the complement of set A.

3. A logic of rough truth values

Consider a Boolean algebra of propositions (P, ∨, ∧,
¬). We define a rough measure R on P  such that p ∈ P,

R(p) = [pc, pe]. R(p) may be related to the truth of the
proposition p by careful choice of the set A [2]. We can
distinguish the following limiting values of R(p), for
Ø‹X‹A, and Ø‹Y‹A, which form a lattice, ordered by set
inclusion:

[Ø, Ø] ⁄ [Ø, X] ⁄ [Ø, A] ⁄  [Y,A] ⁄ [A, A]
 false      roughly false   unknown   roughly true      true

We then introduce a rough truth measure  RV which
identifies which of these five values each p ∈ P takes on.



The advantages of such a measure are its extreme
simplicity and robustness. The logical behaviour of  the
measure RV is established from set operations on the
measure R for relevant propositions. For example:

RV (p£q) = max (RV(p), RV(q))

We can adapt reasoning patterns of  classical logic such
as modus ponens for this rough valued logic:

RV (p→q) = α
RV (p) = β

                                                                                                                                                                                                                                                                                                                                                                            
α ≥  RV (q) ≥ min (α, β)

4. An example

Consider the following simple example, based on the
‘meeting problem’ [1], from which we can deduce two
conflicting results:

C1. If Robert comes to a meeting, then Mary does not come.
R(x) → ¬M(x) (t).
C2. Robert is coming to the meeting tomorrow. R(m) (t).
C3. If Beatrix comes to the meeting tomorrow, it is unlikely
to be quiet. B(m) → ¬quiet(m) (rt).
C4. Beatrix may come to the meeting tomorrow. B(m) (rf).
C5. If Albert comes to a meeting,  then it is almost certain
that the meeting will be quiet. A(x) → quiet (x) (rt).
C6. If MAry does not come to a meeting, then John almost
definitely comes. ¬M(x) → J(x) (rt).
C7. If John comes to the meeting tomorrow, it is rather likely
that Albert will come. J(m) → A(m) (rt).

C3

C5

C7

C4

C6

C2C1

Ÿquiet(m) (rf) ŸM(m) (t)

J(m) (rt)

A(m) (rt)

  quiet(m) (rt)

Since quiet(m) is deduced 

with value  rt,  a  higher 

truth value than that with 

which    the    conclusion 

Ÿquiet(m)  is reached,  we 
can   conclude    that   the 

meeting  is very likely  to 

be quiet.

5. Rule-based reasoning

In many domains detailed numerical estimates of the
certainty of rules and facts may be impossible to obtain,
and the inference mechanism adopted must be capable of
dealing with vague estimates.

The knowledge base of a typical rule-based system
consists of a series of rules of the form ‘if p then q’  with
a certainty value attached to each. In forward chaining
inference starts with one or more facts, also with an
associated certainty, which match the antecedents of
particular rules. These rules are fired to obtain their
consequents, with the certainty of the consequent being
determined by  a combination of the certainties of rule and

antecedent, and the consequents used to fire more rules. 
If we assume that rules of the form ‘if p then q’ are

translated by use of material implication into logical
statements of the form p→q, then the mechanism of
forward chaining is the modus ponens. We can establish
when consequent values of unknown certainty will be
generated, taking the lower bound on the value of q:

p

tt

No  combinations of values of antecedent and rule
other than those shown, have either antecedent,
consequent, or rule valued as unknown. The truth tables
show  that the value of the consequent can be determined
if the value of the rule and the antecedent is not unknown,
or, if one has an unknown value the other has the value
false (f) or roughly false (rf). Thus the logic has the
ability to absorb vague data.

6. Conclusion

We have presented a symbolically quantified logic for
reasoning under uncertainty that is based upon the concept
of rough sets. This mathematical model  provides a
simple yet sound basis for a robust reasoning system. We
have supplied a rule of inference analogous to modus
ponens, and shown how it might be used by a reasoning
system to determine the most likely outcome under
conditions of uncertain knowledge. An analysis of the
robustness of the logic in rule-based reasoning has also
been presented.
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