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Abstract. Multi-Robot Task Allocation (MRTA) is the problem of dis-
tributing a set of tasks to a team of robots with the objective of opti-
mising some criteria, such as minimising the amount of time or energy
spent to complete all the tasks or maximising the efficiency of the team’s
joint activity. The exploration of MRTA methods is typically restricted
to laboratory and field experimentation. There are few existing real-
world models in which teams of autonomous mobile robots are deployed
“in the wild”, e.g., in industrial settings. In the work presented here, a
market-based MRTA approach is applied to the problem of ambulance
dispatch, where ambulances are allocated in respond to patients’ calls
for help. Ambulances and robots are limited (and perhaps scarce), spe-
cialised, mobile resources; incidents and tasks represent time-sensitive,
specific, potentially unlimited, precisely-located demands for the services
which the resources provide. Historical data from the London Ambulance
Service describing a set of more than 1 million (anonymised) incidents
are used as the basis for evaluating the predicted performance of the
market-based approach versus the current, largely manual, method of al-
locating ambulances to incidents. Experimental results show statistically
significant improvement in response times when using the market-based
approach.
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1 Introduction

The well-studied problem of multi-robot routing involves assigning a team of
robots to travel to a set of locations such that collisions are avoided and some
performance metrics are optimised, such as minimising travel time or distance.
The real-world challenge of emergency vehicle dispatch bears a number of key
similarities to multi-robot routing. Emergency medical services (EMS) agencies
receive calls (incidents) which frequently result in the dispatch of one or more
vehicles (responses) to the location of the incident. The determination of which
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ambulance should respond to which incident is highly complex, involving consid-
eration of traffic conditions, knowledge of road infrastructure, patient situation
and requirement for any specialised healthcare equipment or specially trained
personnel. Sub-optimal travel time or improperly equipped emergency response
crews can contribute to loss of life, and extraneous travel distance can result in
unnecessary costs for what are typically financially challenged public agencies.

In the study described here, we apply our earlier work on market-based mech-
anisms for multi-robot task allocation (MRTA) to the real-world problem of am-
bulance dispatch. We present three novel contributions:

1. The use of historical data from the London Ambulance Service (LAS) that
serves as the set of incidents considered—instead of previously engineered
or randomly chosen task and robot starting locations, as is the case in most
MRTA literature;

2. The use of the next-generation routing engine developed for the LAS —
instead of classic routing engines such as A*, which is used by many MRTA
approaches, or Google Maps, which is used by many recent studies involving
traffic management; and

3. Experimental evaluation comparing predicted response times when using
market-based mechanisms versus the current, largely manual, method of task
(incident-to-ambulance) allocation—showing statistically significant differ-
ences and improved response times when the market-based mechanisms are
utilised.

Although this proof-of-concept study is conducted in collaboration with LAS,
and so focuses on London (UK), and on emergency medical services response,
we believe that more general conclusions can be drawn for ambulance services in
other parts of the world, as well as other types of emergency response services,
such as police or fire.

The structure of this paper is as follows. Section 2 covers technical back-
ground and prior work on aspects of multi-robot task allocation. Section 3 de-
scribes the specific application domain addressed in our work: the problem of
ambulance dispatch facing the LAS. Section 4 outlines a set of experiments we
conducted using data provided by LAS, where we applied market-based multi-
robot routing techniques to the ambulance dispatch problem. Section 5 presents
and discusses the results of these experiments. Then, Section 6 highlights related
work on ambulance dispatch. Finally, in Section 7, we conclude with a summary
of current work, next steps and directions for future work.

2 Multi-Robot Task Allocation

In a multi-robot routing problem, a team of mobile robots must collectively visit
some number of task locations where they will perform activities such as site
inspection or object pick-up and/or delivery. Solutions to this class of problem
entail distributing tasks to robots and planning routes, or paths, from robots’
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current positions to their assigned task locations in order to optimise some crite-
ria such as travel distance or time. A multi-robot routing problem is similar to a
multiple depot, multiple Travelling Salesperson Problem (mTSP) [3] or Vehicle
Routing Problem (VRP) [21], where vehicles need not return to their depots [19].
The primary challenge of solving a multi-robot routing problem is multi-robot
task allocation (MRTA): deciding which tasks should be assigned to which robots
so that the overall execution of a mission is, by some measure, efficient. While
there are several kinds of approaches to solving task allocation problems, we
focus on market-based methods of task allocation, and auctions in particular,
because they can be flexible, distributed and, in some cases, scalable.

Market-based approaches to task allocation frame the assignment problem as
a multi-agent systems (MAS) problem. Rather than having a centralised plan-
ner be responsible for computing the costs or utilities of potential allocations, a
market-based approach to MRTA relies on the fact that robot team members are
each capable of planning subsets or sub-problems of the mission (i.e., planning to
execute individual tasks or groups of tasks) and can express the costs or utilities
of these plans in a way that is simple and efficient to communicate. Task alloca-
tion is governed by a mechanism, a set of rules that dictate how tasks should be
assigned, and a protocol for communicating the availability of tasks to robots and
the values robots have for them. A mechanism enables a virtual marketplace in
which tasks can be distributed to robots or exchanged among them. A common
kind of market-based mechanism for MRTA is an auction, which compares bids
for resources from interested parties and awards them to the highest (or lowest)
bidder according to the particular rules of a mechanism. It can be expensive to
compute an allocation that is optimal for some performance objective, so most
auction mechanisms strive for approximately optimal allocations. Designers of
auction mechanisms must make trade-offs between the costs of computing an
allocation and the performance of the execution of a mission that results from
the allocation.

Our previous work in the MRTA domain led to the development of our
MRTeAm framework [30,29], which was designed to evaluate a range of task al-
location mechanisms in simulation and on physical robots. While other research
in multi-robot routing has concentrated largely on discovering optimal assign-
ment mechanisms for a single type of environment, our work using MRTeAm
has focussed on evaluating a range of performance metrics in a variety of com-
plex task environments [12,20] and analysing both task assignment and task
execution—which makes this framework particularly relevant for application to
a real-world domain where we are especially concerned with measuring response
or travel times.

In MRTeAm, a map specifies the extent of a geographical space and the
arrangements of free space and obstacles within it. A team is a set of n robots
R = {r0, . . . , rn−1}. A starting configuration, S, specifies the location on a map
of each robot in the team at the beginning of a mission. A scenario is a set
of m tasks T = {t0, . . . , tm−1} situated on the map. Each task t ∈ T has the
following properties: t.pos, a fixed position on the map; t.arr, the arrival time



4 E. Schneider et al.

Fig. 1: Interaction of an auctioneer agent with robots in MRTeAm. Robot con-
troller agents compute bids and are responsible for autonomous navigation to
task locations after allocation. In the ambulance domain, the auctioneer is a
proxy for a dispatcher and robot controllers are proxies for ambulance vehicles.

of the task; and t.req, the number of robots required to complete the task.
A mission comprises the map, a scenario, and a robot team with a starting
configuration: M = {map, T, R, S}. An auction mechanism allocates tasks to
robots over a number of rounds. In an auction round, a coordinating auctioneer
agent announces tasks to the team, team members compute and submit bids to
the auctioneer, and the auctioneer awards one or more tasks to team members
according to the rules of the mechanism (Figure 1).

A bid for a task is computed by a robot as:

bid = w0f0 + w1f1 + . . .+ wϕ−1fϕ−1

where fi is a quantitative factor, wi is a weight associated with that factor,
and ϕ is the number of factors to consider in the bid. For example, f0 could be
the estimated travel distance from the robot’s starting location at the time of
placing the bid to the location of the task it is bidding on, and f1 might be the
priority of the task. If we deem distance more important than task priority, then
w0 > w1.

The metrics we use to evaluate performance in MRTeAm measure the dis-
tance travelled by robots as well as various time-based performance measures
such as: deliberation time (the time taken to compute a set of task assignments);
execution time (the time taken to execute the assigned tasks); movement time
(the time robots spend actually moving towards task locations); idle time (the
time a robot sits idly waiting for other robots to complete their tasks after it
has completed its last task); and delay time (the time each robot spends wait-
ing for other robots to pass safely by in order to avoid collisions). As described
in Section 4, movement time is the most relevant measure for the experiments
described here, though idle time will be a key metric to consider in future work.
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The next section explains how the problems faced in ambulance dispatch are
related to those explored in the MRTeAm project.

3 Ambulance dispatch in London

Greater London (UK) has a population of approximately 8.2 million people, ac-
cording to the 2011 national census [25], and its medical emergencies are handled
by the London Ambulance Service, which is governed by a UK state agency, the
National Health Service (NHS). In order to manage the needs and resources
of such a large city, the NHS divides London into 33 Clinical Commissioning
Groups or CCGs. These CCGs are grouped into five sectors (Figure 2). Am-
bulances are allocated to ”home” locations within each CCG, indicating where
crews report at the start and end of a shift. In performing assignment of an
ambulance to an incident, there is an attempt to keep ambulances within their
”home” CCGs for a number of reasons, such as reducing travel distances (and
associated petrol costs) and travel times (not only because distances are shorter
but also because crews are more familiar with the roadways in their home CCG).

LAS receives emergency medical service calls 24 hours a day, 365 days of
the year. For example, in 2016, LAS handled approximately 5,000 emergency
calls on a daily basis. If a call requires a responder vehicle, then the call is
logged as an incident. The main responder vehicles are accident and emergency
units (AEUs), the large “truck” ambulances which are capable of transporting a
patient to hospital, and the fast response units (FRUs), i.e., cars, which can get
to the scene in a shorter amount of time. Every responder vehicle that is sent
to an incident is defined as a separate response, so often there can be multiple
responses for a given incident. It is not unusual for an FRU to be dispatched
first, in order to give help as quickly as possible, followed by an AEU, to provide
the means to convey a patient to hospital.

LAS receive many different types of call, and these are categorised based on
severity, which is defined according to the nature of a patient’s chief complaint.
Calls are categorised from A (highest priority) to C, each with subcategories
referring to the target response time. For Category A, the highest subcategory
is red1, referring to a life threatening incident with a target response time of 8
minutes. The subcategories for Category C range from green1, with a response
time of 20 minutes to green4 with a target time of 4 hours. Depending on the
nature of the call, the LAS definition of different time measures vary. Response
time is always defined as the difference in time between the clock start time and
the first responder arriving at scene of the incident, however the clock start time
is measured differently for different patients. The clock start for the highest pri-
ority cases begins when the call is answered by the control room. For other calls,
the clock start time begins at the earliest of: the first vehicle being dispatched;
the type of incident being determined; or 240 seconds after the call is answered.

Performance is measured by the proportion of first-responder response times
that fall within an incident category’s maximum allowable time. Performance
is measured for Greater London overall, but also for each CCG. In 2016, ap-
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Sounds good

Fig. 2: London Ambulance Service sectors and NHS Clinical Commissioning
Groups. The Service sectors are the large coloured regions: North Central (pur-
ple), North East (blue), North West (green), South East (ochre) and South West
(red). Clinical Commissioning Groups are the areas within the service sectors.

proximately 65% of Category A incidents received responses within the target
8-minute time limit. Since 2017, the LAS have adopted new categories of severity
and performance measurement through the Ambulance Response Program.4

The notion of computer-assisted dispatch (CAD) was first introduced in the
London Ambulance Service in 1992 and quickly became a lesson in software en-
gineering mishaps. The early version of CAD included two key components: “an
automated vehicle locating system (AVLS) and mobile data terminals (MDTs)
to support automatic communication with ambulances” [10]. Within hours after
deployment, the avls lost track of vehicles’ whereabouts, so the CAD database
became inaccurate. Ambulances were dispatched non-optimally: some calls re-
ceived multiple ambulances; others received none. The CAD software started
issuing error messages and overloaded the system. Ambulance crews stopped
sending status reports via MDTs because the system was too slow. This catas-

4 https://www.england.nhs.uk/urgent-emergency-care/arp/

https://www.england.nhs.uk/urgent-emergency-care/arp/
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trophic failure led to deficient patient care, possible loss of life, and loss of em-
ployment for the LAS chief executive. Since then, the road has not been smooth:
a software upgrade in 2006 led to systemic failure [22] and the initial intro-
duction in 2011 of the current CAD system, CommandPoint,5 was delayed for
technical reasons. However, since 2012, CommandPoint has successfully been
providing dispatch support for LAS [14]. The LAS are currently in the process
of re-evaluating and upgrading their CAD software modules to exploit new and
emerging technologies, such as pervasive mobile computing, and sources of data
such as real-time traffic and weather information [9].

The long term vision for the work described here is the integration of our
auction-based multi-robot routing methodology into the computer-assisted dis-
patch system. The experiments described in the next section and results that
follow will help us demonstrate to LAS the predicted advantages of our ap-
proach.

4 Experiments

This section describes the series of experiments that we conducted to compare
the results when vehicles are allocated to incidents using our auction-based mech-
anism versus the manual allocation process currently employed, where human
dispatchers in the LAS control room can consult the CAD system for recom-
mendations but ultimately execute selections themselves.

4.1 Experimental Setup

The auction-based mechanism employed in our experiments was taken from the
MRTeAm framework, described earlier. For simplicity, bids were derived using
one quantitative factor: f0 = estimated travel time. This will provide us with
a baseline for future work in which we can consider additional factors in the
bidding. The experiments conducted here demonstrate that even using just the
one factor, the auction-based methodology predicts significantly shorter response
times (detailed in Section 5).

Our experimental evaluation was facilitated by an historical data set pro-
vided by the LAS, which records, for each incident that occurred in 2016, the
location and call time of the incident, the locations of vehicles at the times they
were dispatched to the incident, and the vehicles’ travel times to the incident
location, as well as other information about the incident, such as chief complaint
and category. The data set contains 1.1 million incident records and 1.5 million
response records. In order to keep the data anonymised, location coordinates are
quantised to the nearest vertex on a 100m-precision grid.6 For the experiments
described here, we only considered Category A incidents.

5 https://www.northropgrummaninternational.com/capabilities/

command-point/
6 https://www.ordnancesurvey.co.uk/resources/maps-and-geographic-resources/

the-national-grid.html

https://www.northropgrummaninternational.com/capabilities/command-point/
https://www.northropgrummaninternational.com/capabilities/command-point/
https://www.ordnancesurvey.co.uk/resources/maps-and-geographic-resources/the-national-grid.html
https://www.ordnancesurvey.co.uk/resources/maps-and-geographic-resources/the-national-grid.html
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Because estimated travel time is taken as the basis for bidding, it is important
for us to compute that carefully. We considered two methods for computing
routes and estimating travel times between vehicle and incident locations: one
makes use of a publicly available route planner (the Google Maps Directions
API,7 referred to here as GMaps), and the other makes use of a proprietary
routing engine, called Quest [27]. Thus we can compare three different response
times: (i) the historically observed response time (taken directly from the LAS
data set); (ii) the Quest-simulated response time, taking the vehicle start and
end locations from the LAS data set and using the Quest routing engine to
estimate travel time; and (iii) the GMaps-simulated response time, again taking
the vehicle start and end locations from the LAS data set, but using the Google
Maps route planner to estimate travel time. For privacy reasons, we do not have
access to the actual routes taken by emergency response vehicles, so using the
simulated response times based on historical start and end locations gives us a
fair basis for comparison between actual vehicle choices and simulated choices
taken by our auction-based mechanism.

We designed a set of simulation experiments to compare two independent
variables: (1) vehicle selection (”historical choice” (hist) or ”auction mechanism
choice” (auct)) and (2) routing engine (Quest or GMaps). Our hypothesis
is that the auction mechanism choices will predict shorter response
times than the historical choices, for either routing engine. We evaluate
this hypothesis in two steps. First, we produce a benchmark measure by com-
paring Quest-simulated and GMaps-simulated travel times with historically
observed travel times, using the same (historic) start and end locations from the
LAS data set for all three metrics. Second, we evaluate the efficacy of the auc-
tion mechanism by comparing simulated travel times for pairs of start and end
locations: the historically recorded vehicle in the LAS data set (the benchmark)
versus the vehicle chosen by the auction mechanism. Details of the two steps are
provided below.

4.2 Benchmark Generation

To provide a benchmark for evaluation, we compared the historically observed
response time for a chosen vehicle from the LAS data set with the simulated
response times computed by each routing engine. In both cases, we used the start
and end locations of the historically chosen vehicles to compute routes. This step
also serves to demonstrate the advantage of using Quest-simulated travel times,
which are derived from historical road speeds of emergency service vehicles. A
sample of 2000 Category A incidents was drawn uniformly randomly from the
data set. We identified the first response vehicle assigned to each incident and
queried each of Quest and GMaps for a route between the vehicle’s location at
the time the vehicle was dispatched and the incident’s location, along with an
estimated travel time. We then compared both estimates to the historical travel
time observed in the sample. The results, shown in Figure 4 and discussed in the

7 https://developers.google.com/maps/documentation/directions

https://developers.google.com/maps/documentation/directions
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Fig. 3: Locations of idle vehicles and their routes to an example incident location
(red cross). The route (369 seconds) of the historical first-responder vehicle dis-
patched to the incident is shown in blue. The route of a first-responder vehicle
chosen via auction (duration: 272 seconds) is shown in green.

next section, show that the estimates computed by Quest are more accurate
than GMaps with respect to actual travel times of emergency vehicles. Following
this demonstration of the effectiveness of the Quest engine we carried out the
experiments that are the main contribution of this paper.

4.3 Adaptation of Auction Mechanism Framework

The MRTeAm framework was adapted for these experiments in the following
ways. The map, represented in the Quest routing engine, is based on the ITN
Road Layer8 map produced by the UK’s Ordnance Survey mapping agency.
Each “robot” agent in R represents an emergency vehicle (ambulance) and is
capable of planning a route between two locations on the map and computing
the distance and estimated time to travel along the route. A scenario comprises
a single emergency incident task, described in detail below. The mechanism
employed in all experiments is the sequential single-item auction, which has
been shown to produce allocations that are close to optimal [18] while scaling
better than e.g., combinatorial auctions [4]. A bid comprises a single bid factor,
the estimated travel time between a vehicle’s location and an incident location.
The auctioneer agent functions identically to its robot setting.

The data set did not provide the locations of idle vehicles—vehicles not en
route to an incident or otherwise assigned (for example, for conveyance from an
incident location to a hospital). However, the data set did provide the locations
of vehicles both at the time they completed their assignments and at the time
they were next dispatched following a completed assignment. Thus, the locations

8 https://www.ordnancesurvey.co.uk/business-and-government/

help-and-support/products/itn-layer.html

https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/itn-layer.html
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/itn-layer.html
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of idle vehicles for a given time instant were interpolated along a route between
these two locations.

For every incident in each experimental condition, idle vehicles were identified
within a 20 km2 neighbourhood around the incident and their locations at the
call time of the incident were estimated as described above. The auctioneer
agent announced the “task” (incident) to agents representing idle vehicles in
their neighbourhood. These agents computed bids representing their estimated
travel times to the incident location, and submitted them to the auctioneer. The
auctioneer then aggregated the bids received and assigned the lowest-bidding
vehicle to the incident. Figure 3 depicts an example in which idle vehicles have
planned routes to an incident location (red cross). The route of the lowest-
bidding vehicle is shown in green while that of the vehicle dispatched to the
incident, historically, is shown in blue.

4.4 Experimental Conditions

Since evaluating a dispatch decision for every incident from the data set (> 1 mil-
lion) was infeasible, we defined four experimental conditions that drew samples
of incidents. In each condition, 100 Category A incidents were sampled uniformly
randomly from a temporal and geographic range. For each sample incident, the
travel time of the historically-assigned first-responding vehicle from its location
at dispatch time to the incident location was compared to that of a (possibly
different) vehicle chosen by the auction mechanism. Condition 1M-1C sampled
incidents that occurred over one month in one arbitrarily selected Clinical Com-
missioning Group (CCG); 12M-1C sampled from 12 months (all of 2016) in the
same CCG; 1M-nC sampled from one month and all CCGs (n = 33); and 12M-nC
sampled from 12 months and all CCGs. Table 1 lists the four conditions under
which experiments were conducted in order to evaluate the effectiveness of our
approach.

one month 12 months

one CCG 1M-1C 12M-1C

all CCGs 1M-nC 12M-nC

Table 1: Experimental conditions

4.5 Metrics

We computed two types of metrics, both of which are analysed in the next sec-
tion. The first metric is simulated response time, discussed above, where a routing
engine takes as input a start and end location for a vehicle and then estimates
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the amount of time needed for the vehicle to travel from one location to the
other. Shorter response times are better. This metric is the equivalent to move-
ment time from the MRTeAm framework. The second metric is vehicle choice.
During experiments, we record the identity of the vehicle chosen by the auction
mechanism and then compare that to the historically observed vehicle choice.
We count how many choices were made differently by the auction mechanism as
opposed to the human-in-the-loop CAD-advised process currently employed in
the LAS control room. We express these as percentages: higher values indicate
more differences in vehicle choice.

5 Results

5.1 Benchmark Generation Results

Figure 4 compares distributions of travel times for 2000 journeys between vehi-
cle and incident locations. Historical travel times are shown in blue (µ = 426s);
travel times for the same journeys estimated by quest are shown in green
(µ = 441s) and those estimated by gmaps are shown in red (µ = 768s). The
Wasserstein distance from the historically observed distribution of journey times
is 40.9 for quest and 336.39 for gmaps. These results show that quest produces
travel time estimates that closely agree with historical travel times while gmaps
tends to overestimate them. Both routing engines employ traffic models that are
tuned for specific journey times (a given hour- or minute-of-the-week). However,
quest’s estimates are based on road speeds of emergency vehicles, which obey
different traffic rules and tend to be higher than those of passenger or commercial
vehicles, which gmaps targets. These results validate and extend previous work
that demonstrated the accuracy of the quest routing engine when compared
to a simple model of computing travel times based on straight-line Euclidean
distances [27]. The results presented here demonstrate quest’s accuracy even
when compared with gmaps, a state-of-the-art routing engine. These benchmark
results also provide a measure of confidence in the accuracy of our auction-based
results as compared with related work that employed gmaps [23].

5.2 Auction Results

The results of auction-based allocation under the four experimental conditions
are shown in Tables 2–3 and Figure 5. Focusing on results obtained using the
quest routing engine, under the 1M-1C condition, response times were reduced
from 396 to 205 seconds; under the 12M-1C condition from 460 to 155 seconds;
under the 1M-nC condition from 437 to 170 seconds; and under the 12M-nC
condition from 407 to 187 seconds.

Table 3 shows the proportion (percentage) of times auction-based allocation
chose a vehicle to dispatch that was different to the vehicle that was historically
dispatched to an incident. With both the quest and gmaps routing engines, a
different vehicle was chosen 89+% of the time across all experimental conditions.
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0 500 1000 1500 2000 2500 3000

Historical

Quest-simulated
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Fig. 4: Distributions of travel times to incidents (seconds). Historical travel times
(blue) compare with those of the same journeys estimated by the Quest routing
engine (green) and the Google Maps Directions API (red).

This indicates that, historically, there was often an alternative vehicle that could
have reached an incident location sooner given our assumptions about idle vehicle
locations (discussed below). Note that there is no value judgement inherently
attached to the percentage difference values, but it is interesting to be able
to consider that a high percentage of differences implies that the methodology
evaluated here is predicted to behave differently from the current system, as
borne out in the improved response times.

As a whole, these results indicate a potentially large reduction in response
times when using an auction-based approach to dispatching. The auction mech-
anism in these experiments produced allocations in a way similar to the “closest
available vehicle” strategy currently employed by dispatchers at the LAS, but
using a different method to assess what “closest” means. One factor that may
explain the difference in average response times is the accuracy of the quest
routing engine when compared with the routing engine used by the LAS at the
time that the data set was recorded. The LAS estimate vehicle travel times us-
ing a method that considers the types of road segments along a proposed route
(i.e., number of lanes) but not current or historical traffic conditions. The quest
routing engine considers historical traffic conditions and right-of-way rules that
apply to emergency services vehicles when estimating travel times, and so pro-
duces more accurate estimates than state-of-the-art non-specialised alternatives
such as gmaps.



Market-based Task Allocation for Ambulance Dispatch 13

HistoricalTravelTime AuctionWinnerTravelTime

0

250

500

750

1000

(a) 1M-1C Box plot

HistoricalTravelTime AuctionWinnerTravelTime

0

250

500

750

1000

(b) 12M-1C Box plot
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(c) 1M-nC Box plot
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(d) 12M-nC Box plot

0 250 500 750 1000 1250 1500

(e) 1M-1C Distribution

0 250 500 750 1000 1250 1500

(f) 12M-1C Distribution

0 250 500 750 1000 1250 1500

(g) 1M-nC Distribution

0 250 500 750 1000 1250 1500

(h) 12M-nC Distribution

Fig. 5: Auction results for quest across the four conditions: 1M-1C, 12M-1C,
1M-nC and 12M-nC. For each condition, we present both a box plot of travel
times, and a representation of the distribution. For both box plot and distribu-
tion, blue indicates simulated historical travel times (hist), and green indicates
the estimated travel time of the auction winner (auct).
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Exp. condition gmaps quest

1M-1C hist 682.81 396.27

auct 263.36 205.41

t-statistic (p-value) 10.5 (8.7e−21) 9.7 (1.9e−18)

12M-1C hist 807.37 460.04

auct 265.38 154.50

t-statistic (p-value) 7.99 (1.1e−13) 12.28 (9.8e−26)

1M-nC hist 730.03 437.44

auct 272.83 170.28

t-statistic (p-value) 5.29 (3.3e−7) 9.02 (1.9e−16)

12M-nC hist 741.97 407.45

auct 279.92 186.69

t-statistic (p-value) 3.51 (5.5e−4) 4.83 (3.0e−6)

Table 2: Historical and auction-based response times compared. Values are av-
erage response times in seconds with a 2-tailed t-statistic.

Experimental Condition gmaps quest

1M-1C 93% 89%

12M-1C 96% 97%

1M-nC 91% 92%

12M-nC 92% 94%

Table 3: Percentage (%) of times that auction-based allocation chose a different
vehicle to that which was dispatched historically.

These results are based on several assumptions. The identities and locations
of idle vehicles were not present in the data set provided by the LAS and needed
to be estimated. Incidents were assumed to be independent: the effect of as-
signing a vehicle to an incident, possibly moving it away from responding to
subsequent incidents in its idle area of coverage, were not modelled. Neverthe-
less, the auction-based model is attractive because the bid each vehicle agent
computes can be extended to consider factors other than estimated distance or
travel time, factors such as the cost of removing a vehicle from an area of service
(decreasing the equity of coverage), crew fatigue, the ability of a vehicle to con-
vey a patient, or the presence of specialist equipment or skills of personnel on
board the vehicle. A key factor remains the ability of a routing engine to accu-
rately estimate travel times, possibly enhanced by real-time traffic data. These
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factors that comprise the suitability of a vehicle to respond to an incident can
be clearly presented to a human dispatcher who makes an ultimate assignment
decision.

6 Related work

There are four main areas of related work on ambulance dispatch: applying new
information technologies (IT); predicting demand; predicting response time; and
identifying the optimum location of emergency services.

Applying new technologies to support emergency response includes a wide
range of data-centric modelling and decision-support solutions. Zhou et al. [39]
created a geo-temporal model of ambulance demand in Toronto (Canada) and
demonstrated that such modelling could lead to more accurate predictions of op-
erational results than current industry standards. This is one of a number of stud-
ies that have investigated application of various modelling methodologies to bet-
ter understand the range of factors that influence emergency response [26,6,8,15].
A number of approaches for decision-support systems to aid emergency services
have been explored, primarily by analysing data from past incidents [1,2,33]. The
problem of providing information to citizens and responders during incidents has
been studied by [28], who focussed in particular on ways to communicate with
citizens via mobile devices to provide live updates and instructions. Zadorozhny
& Lewis [37] consider the problem of information fusion. Although their example
scenario concerns robot-aided urban search-and-rescue, they address the ques-
tion of data reliability and propose a crowdsourcing approach to mitigate the
adverse effects of inaccurate or incomplete information, an approach also taken
in [5]. Collectively, these studies demonstrate the potential of non-traditional
data-backed, technology-based methods to improve ambulance response.

Predicting incident demand is perhaps the largest area of EMS research, and
focuses on predicting demand of a population across a day, week or year. It is
important for EMS personnel to understand demand in order to have appro-
priate numbers of ambulances on shift. The moving average method, which is
commonly used by ambulance services in the US to predict demand [32], is based
on an average of the call volume of one hour time periods on a specific day in
four consecutive weeks over the previous five years. This can be used to predict
demand for a specific location as well as for an entire city.

Separate models for both daily and hourly demand have been developed by
[7] based on data for Calgary (Canada) during 2000–2004. This suggests that
there is an overall increase in demand over the four years, with larger volume
in July and December. Special Days, where the demand is unusually large, can
be identified—these include New Year’s Day and the annual Calgary Stampede
event. Call arrival data from Toronto is the basis of the Poisson-based model
developed in [24]. Here New Year’s Eve and New Year’s Day were Special Days.
Vile et al. [36] analysed demand data from the Welsh Ambulance Service Trust
(UK), once again showing that there are daily, weekly and yearly periodicities
as well as Special Days (in this case, all Special Days were New Year’s Day in
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different years). There was also an overall positive increase in demand across the
57 months for which data was available.

As well as understanding when demand is expected to be particularly high or
low, research also investigates the distribution of demand across geographic re-
gions. For example, Kamenetzky et al. [17] developed a model to predict demand
across any area of Southwestern Pennsylvania (US), using regression analysis
based on 1979 data from 82 ambulance services in the region. Spatio-Temporal
analysis provides more precise demand models by combining the two techniques
discussed above, predicting demand based on the time of day for specific areas
of a population. Setlzer et al. [32] developed such a model based on Artificial
Neural Networks to improve prediction forecasts for the Charlotte-Mecklenburg
region of North Carolina (US) beyond the accuracy and precision of the MEDIC
model. Other work has to develop more accurate methods of predicting ambu-
lance demand for more precise areas [38,39,40] has also developed models that
are significantly more accurate than MEDIC.

As well as simply predicting ambulance demand, further work investigates
developing models which directly predict ambulance response time, based on a
prediction of call arrivals. In this line, Scott et al. [31] developed a probabilistic
model that was fitted to a random 28-day sample from data for Houston, Texas
(US) between July 1973 and June 1974. Similarly Taylor [34] modelled response
times for the London Fire Brigade using survival analysis, and Thornes et al. [35]
list factors affecting response times which include: the number of ambulances;
congestion in A & E; and weather and consequent road conditions.

Further considerations in optimising the ambulance services include the lo-
cation of EMS facilities to enable adequate coverage across the city. For exam-
ple, Gendreau et al. [11] looked for optimum ambulance locations in Montréal
(Canada) under a double coverage model, and Higgins et al. [13] describe a spa-
tial model to identify communities most at risk from fires around Merseyside
(UK) based on fire station location.

Poulton & Roussos [27] developed a routing engine and simulation framework
to evaluate the performance of ambulance dispatching and relocation methods.
Their relocation model, which seeks to provide geographic coverage for current
and anticipated emergency incidents, improved on historical response times on
a sample of emergency incidents drawn from the Greater London (UK) area in
2011.

Lujak & Billhardt showed that auction-based approaches to ambulance allo-
cation, applied to a sample of emergency incidents drawn from Madrid in 2009,
led to reductions in ambulance travel distance and response times as compared
with a first-come-first-served approach [23]. In contrast to the work presented
here, their approach used the gmaps routing engine with a combinatorial auc-
tion mechanism, the computational costs of which scale exponentially with the
number of tasks and agents [4] and is unlikely to be able to municipal-sized
dispatching problems.
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7 Summary

This paper has described our work applying techniques from multi-robot routing
to the problem of ambulance dispatch at the London Ambulance Service. Our re-
sults strongly suggest that a combination of accurate route plan estimation and
auction-based vehicle selection has the potential to significantly reduce response
times—which was the case for all four experimental conditions we evaluated.
Of the four experimental conditions that we examined, the worst average per-
formance across 100 incidents was for the 1M-1C condition (which corresponds
to January 2016 in the Harringey CCG), where the average simulated response
time for the auction mechanism choice was 48% faster than the average simu-
lated response time for the historically chosen vehicles. For the 12M-nC condition
(2016 across the whole of London), the average simulated response time for the
auction mechanism choice was 54% faster than that of the historically chosen
vehicle.

The type of auction-based resource allocation mechanism presented here
could also be applied to the task of an ambulance crew deciding which hos-
pital to transport a patient to, termed conveyance by the LAS. It is not always
sensible to bring a patient to the nearest hospital due to factors such as a pa-
tient’s need for access to special equipment, services or medical specialists, the
proximity to a patient’s home for ease of family visits, the location where a
patient has previously been treated, the current waiting time at the hospital’s
emergency room (termed “A & E” in the UK), or the number of available beds
in the hospital. In the case of stroke patients, for example, it has been shown [16]
that minimising time to treatment — what is known as “door to needle time” —
is best achieved not by conveying patients to the nearest hospital, but by taking
them to a specialist stroke unit. A post-response, pre-conveyance auction could
take place, where the ambulance is the “auctioneer” and the hospitals are the
“bidders” to address exactly this issue.
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