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Abstract. Humans are very good at abstract spatial reasoning, both
in the physical world and in virtual settings. For example, game players
immersed in virtual environments simulating mobile agents can quickly
identify potential collisions and effect evasive action if given control over
agents’ movements. In a multi-robot system, avoiding collisions is a nec-
essary behaviour. Traditional methods typically employ a fixed policy,
such as robots negotiating for right-of-way when approaching a thresh-
old separation distance. More sophisticated methods that account for
robots’ velocities and planned paths of motion can be more effective, but
are computationally expensive, do not scale well, and are impractical for
deployment on-board limited robot platforms. The work presented here
takes advantage of humans’ spatial reasoning skills, by collecting data
from a simple 2D game where multiple robots move around in an enclosed
arena and a human player prevents the robots from colliding with each
other by issuing commands via a point-and-click interface. Behaviours
for avoiding collisions are learned by mining data logged during games.
These mined behaviours are then deployed on robots in a non-interactive
environment and are compared with a fixed-range policy. Results show
that mined behaviours provide a more effective and flexible alternative
to the fixed policy.

1 Introduction

The notion of behaviour mining combines data mining and behaviour modelling.
Here, we describe an approach to behaviour mining that involves building agent-
based models of human behaviour by mining data collected from interactive
applications, such as decision-making tools or games. The aim is for the acquired
model to be used as a controller for an agent subsequently deployed in the
application, either to perform better on its own, with other agents and/or with
humans. This could be an agent that helps a novice human make decisions
in a complex environment by suggesting actions that might be taken by more
experienced human users; or it could be an agent that challenges a human in a
competitive game environment by emulating moves of more creative or advanced
human players.

Our approach to emulating human behaviour differs from traditional expert
systems for several reasons. First, the human whose behaviour is being modelled



is not asked to explain their actions. Instead, data reflecting how the human
behaves when interacting in the environment is mined for recognisable patterns.
Second, the human being modelled is not necessarily an expert. Instead, a wide
range of users’ behaviours might be modelled, from novice to expert. There are
many reasons for wanting to be able to model different types of users’ behaviours.
For example, in a learning environment, it would be helpful to be able to model
behavioural characteristics commonly exhibited at different stages of the learning
process. In a complex environment, it is sometimes hard to rank expertise, and
instead, it may be desirable to characterise a range of strategies that exhibit
different strengths.

There are many advantages to taking a data mining approach to behaviour
modelling. Especially in real-time and complex domains, humans typically can-
not explain how they perform a task or why they choose their actions. This is
particularly true of people who are not experts or teachers. So, if the goal, as
above, is to model not (only) experts but (also) a range of different levels and
types of users, then a traditional knowledge-engineering approach is insufficient.
Another advantage of a data mining approach is that behaviour can be captured
“after the fact”. As long as activity is being recorded, behavioural information
lies in these logs. For interactive computer-based applications, these data are
often referred to as the clickstream.

In the work presented here, we take advantage of humans’ exceptional abil-
ities with respect to spatial reasoning and decision making in dynamic, uncer-
tain environments. For example, when crossing a crowded city street or rushing
through a busy airport, humans can quickly judge whether they will need to
modify their pace and/or heading in order to avoid crashing into other people.
Further, these abilities, for many people, extend to video games, where human
players control fast-moving vehicles and manage to avoid crashing them into
other moving objects, such as racing games where players have to weave around
cars driving at high speeds on a confined track, or spaceship games where players
have to dodge asteroids or alien missiles.

We apply this observation to the multi-robot domain and explore two re-
lated questions: (1) Can a human player who has some control over a robot
moving around in a video-game-like environment issue simple commands to pre-
vent a robot from colliding with others? (2) If so, can we then learn a model
of this human-directed collision avoidance behaviour by applying data mining
and agent-based modelling techniques to the human’s clickstream data, and
thus learn an effective policy for collision avoidance? In this paper, we address
both questions, but primarily focus on the second (because the first is true for
most people). We begin in Section 2 by reviewing related work with respect
to behaviour mining. Then, Section 3 describes our approach for mining users’
clickstream data, learning a policy and applying that policy to a robot. Section 4
details a series of experiments that we have run to assess the potential of our
approach and reports the results of those experiments, which are discussed in
Section 5. Finally, we close with a summary and outline of future work.



2 Related Work

Mining the clickstream is not a new idea. Teitelman developed an automatic
error correction facility in the 1970’s [1], and Cypher created an agent that
recognised repetitive tasks in the 1990’s [2]. Subsequently, Maes used machine
learning techniques to train agents at a variety of tasks (e.g., mail processing,
news filtering, recommending entertainment) and acquire a representation of
users’ preferences [3]. Network security researchers have demonstrated the use
of data mining techniques for modelling behaviours for intrusion detection [4,
5]. Yang et al. [6] applied data mining to modelling customers’ switching be-
haviours in the telecommunications industry. The web is a popular environment
for behaviour mining, and much recent work is centred on modelling patterns of
searching and other web-based activity (e.g., [7–9]). In earlier related work, we
learned behaviours from data collected while humans played video and educa-
tional games [10–12].

The idea of learning from humans within the context of robotics is also not
new. A range of explicit teaching techniques, such as learning or programming
from demonstration [13, 14] have been explored. These are generally considered
supervised learning methods, acquiring a policy from a sequence of state/action
pairs [13].

Chernova & Velosa [15] developed an interactive policy-learning algorithm
where an agent is able to actively request demonstrations when needed. They
utilised Gaussian mixture models (GMM) as a mapping function to derive a
policy, where each GMM, with multiple Gaussian components, represents a single
action. They were able to reduce the number of demonstrations required by
the agent to learn a task, thus improving training time and minimising teacher
effort. To test their algorithm, they trained a Sony Aibo robot to navigate a
circular path. The Aibo used its infrared sensor, located in its head, to create
a three-dimensional vector representation of its surroundings. They compared
their algorithm to an agent that learned to navigate the path using a variant
of reinforcement learning called Prioritized Sweeping [16] and found that the
reinforcement learning method took much longer than the demonstration-based
method.

Knox & Stone [17] developed the “Training an Agent Manually via Evaluation
Reinforcement” (TAMER) framework, which provides a scheme for interactively
training an agent using shaping. The machine learning instantiation of shaping
is based on an animal training method where the trainer rewards successive pre-
cursory actions until some target behaviour is achieved. In shaping, the trainer
observes the agent and provides simple feedback about each action the agent has
taken. Knox & Stone evaluated their framework using two domains: the game of
Tetris and the Mountain Car simulation. They employed 28 human trainers, 9
for Tetris and 19 for Mountain Car. They compared their Tetris TAMER agent
to other Tetris agents developed in [18–21] and their Mountain Car agent to two
different Sarsa(λ) agents. They found that the Tetris TAMER agent learned
an optimal policy much faster than the other agents. The agent, on average,
outperformed both Sarsa(λ) agents for the first few episodes.



Other approaches to robots learning from people include Katagami & Ya-
mada [22], where human teachers provide examples that seed evolutionary learn-
ing; Lockerd & Breazeal [23], where a robot tries to identify a human’s goal and
make its own plan to achieve it; and Nicolescu & Matarić [24], where a robot
observes while the human carries out actions in its domain and learns the out-
comes of its own actions from these observations. Little of this work is concerned
with multiple robots, however. There is a long history of multi-robot learning,
for example [25–28], but these involve learning by trial and error, not learning
from a human teacher.

3 Approach

Our behaviour mining approach is a multi-step process. This section describes
our general approach. Details of our experimental environment and results are
deferred to the next section.

3.1 Collecting clickstream data

First, we collect data from human subjects. For the experiments described here,
a graphical user interface is provided to a human player, displaying a bird’s-eye
view of an environment in which a team of robots is deployed for performing
exploration tasks. A screenshot of the interface is shown in Figure 1. The en-
vironment consists of six interconnected “rooms”. Suspended above the arena
is a grid of web cameras that track the robots in the arena, providing robots’
positioning information to the team. At the start of a game, the human player
and robot team are given a mission: the robot team must explore a set of inter-
est points in the arena, and the human must prevent the robots from crashing
into each other. The team uses a simple auction-based mechanism to distribute
the interest points amongst the robots (we have documented this mechanism in
other related work [29, 30]). Once the interest points are distributed, the robots
start moving around the environment, exploring their assigned locations. Dur-
ing this execution phase of the game, it is the human’s responsibility to ensure
that the robots do not collide with each other. The human player can click on
a robot to pause its movement, if she is worried that the robot might crash into
a teammate. The player can then click on the same robot again, to resume its
motion once the danger of colliding with a teammate has passed. The human
can also pause/resume all the robots with the press of a button. Note that the
robots have an internal map of their environment, so they know where the walls
are and how to avoid them; the collision avoidance behaviour investigated here
is focused on robots avoiding each other.

During a game, the system logs data continuously. Robots’ positions are
recorded multiple times per second. The waypoints that define robots’ paths1 to

1 A robot devises a path to its next interest point using the classic A* path-planning
algorithm [31].



Fig. 1. Screenshot of user interface

their next interest points are recorded every time a new path is planned or an
existing path is re-planned. The log file for any run can be used to reconstruct
the state of the environment, at each timestep recorded. As described below,
we mine these logs to learn the human’s policy for pausing and resuming robot
motion.

3.2 Mining the clickstream

Our overarching aim is to learn a small-footprint policy that can be placed
on-board a low-cost robot platform that has limited memory and computing
capacity. So it is important that the learned policy can be represented and
executed with a conservative amount of memory and computation time. This
means that many machine learning techniques would be unsuitable for this task.
Neural networks, which are very good at generalising and identifying non-linear
relationships, may require storing a large number of weights and/or performing a
large number of computations. Similar barriers impede the use of GMMs, which
have many applications in learning from human interaction [13]. Unfortunately,
GMMs are another computationally expensive method of learning. GMMs rely
on an iterative algorithm, called Expectation-Maximization (EM), to maximise
the logarithm of a likelihood function [32]. The EM algorithm itself is susceptible
to singularities (unique conditions where the log-likelihood function approaches
infinity) and may even converge to a non-global maximum.



We used WEKA2 [33], an open source data mining tool, to develop our model.
WEKA is capable of quickly processing a training set and developing a variety
of classifiers. We chose to implement the learned policy in the form of a decision
tree because decision trees are easy to implement and have the added bonus of
being completely transparent. Our learned policy is implemented using WEKA’s
J48 decision tree (Quinlan’s C4.5 decision tree algorithm [33]).

The training set used to develop our model is a collection of pair-wise con-
figurations of robots and their corresponding labels extracted from the log data.
Each example in the training set is represented by a seven-dimensional state
vector. This state vector is defined as:

〈range, θ, Vx, Vy, Hx, Hy, α〉

where range is the Euclidean distance (in cm) and θ is the angle (in radians)
between two robots;

Vx, Vy and Hx, Hy are the velocity and heading (to the next waypoint)
components of one of the robots in the pair.

The last dimension, α, is a flag indicating whether the human clicked on the
robot in this state or not. For each time step, two state vectors are produced
for each unique robot pair. As described earlier, the effect of a click is to stop a
robot if it is moving, or restart a robot if it is stopped.

As is often the case, the data must be pre-processed prior to training in
order to prevent skewed learning. Before the log data is processed by WEKA,
we balance the data set, because there are so few pause commands in relation to
the other data that is collected. We create a training set by filtering the majority
of exemplars where the human chose to do nothing (i.e., did not click on a robot).
For every recorded click, two non-click exemplars are chosen from the log. These
other exemplars are selected at regular intervals in the log file, to obtain a
training set that is not only balanced but also evenly distributed throughout the
duration of the training game. It should also be noted that because the aim is
to learn collision avoidance, all the exemplars represent states where collisions
did not occur.

3.3 Constructing the behaviour model

Embedding the decision tree into our multi-robot system entails simply placing
code that follows the rules in the tree within our existing robot controller. A
decision tree, such as the ones shown in Figure 3, can be transcribed into a
sequence of nested if-then statements that drive the robot’s collision avoidance
behaviour.

4 Experimental Results

This section describes our experiments and results. First, we collected data from
human subjects to seed the behaviour mining process. We asked each human

2 http://www.cs.waikato.ac.nz/ml/weka, Version 3.6.7



subject to play 5 games. In each game, three robots were deployed to explore a
total of 8 interest points. The configuration of the 8 interest points was different
in each game, but the robots always started in the same positions (see Figure 2).
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Fig. 2. Game configurations: ri’s indicate robots’ starting positions; labels indicate
positions of interest for three different game configurations, A, C and D (some overlap).

Then, we ran the J48 decision tree algorithm to mine the data logged during
humans’ games (see Section 3.2). Table 1 shows the results of the training on
data from two human players, as well as stratified 10-fold cross validation of the
learned policy and the corresponding confusion matrix.

human player #1 human player #2
(number of instances = 186) (number of instances = 364)

training cross-validation training cross-validation
correct classifications 82.80% 72.58% 79.95% 71.43%

Kappa statistic 0.66 0.46 0.60 0.43
root mean squared error 0.34 0.44 0.38 0.45

confusion matrix (cross-validation):
classified as → no action action no action action

no action 76 17 111 71
action 34 59 33 149
Table 1. Results of mining humans’ games

The next step was to test the ability of the mined policy to guide a robot
to avoid collisions. As outlined in Section 3.3, we coded the mined policy in our
robot controller software. Figure 3 contains the decision trees that were learned
from mining the logs of games with two human players. The training examples
gathered seem to indicate that both players considered a robot’s heading in the



positive y direction (i.e., up), represented by the variable Hy in the state vector,
as the top-level criterion for determining whether to click on a robot or not. It
is interesting to observe that player #1 initially branches on headingY = 95,
while player #2 branches on a much lower value, headingY = 16. Subsequently,
player #2’s behaviour is almost exclusively defined by further refinements of
headingY ; whereas player #1’s behaviour considers other aspects of the robot
state vector, including range, direction and velocity.
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Fig. 3. Decision trees mined from games with human players.

We then deployed one robot using the mined policy (from human player #1)
in a non-interactive version of the multi-robot game described in Section 3.1 in
order to assess the learned behaviour. Figure 4 illustrates traces of some repre-
sentative games. The robots start in the lower left corner of the environment,
indicated by three square boxes. The interest points for each configuration are
indicated with red X’s. The top row shows the games played by the human. The
bottom row shows non-interactive simulations where one robot uses the learned
policy for collision avoidance (indicated by the cyan-coloured lines).

These runs demonstrated that the mined policy can avoid collisions, but
they do not indicate how good the policy is. For example, how does the collision
avoidance in the non-interactive games compare to the human-controlled colli-
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(#1)

mined
policy

Fig. 4. Performance of policy mined from human player #1. The trajectories for the
human games (on the top) are more irregular because they show paths of robots moving
in a physical environment, where noise in the motion and position estimates introduce
fluctuation. In contrast, the mined policy (on the bottom) was tested in a noiseless
simulation environment.

sion avoidance? Table 2 illustrates two metrics computed with respect to human
player #1. The first metric, number of pauses, counts the number of times that
the human player or the robot following the mined policy paused to avoid a
collision. The second metric, total pause time, sums the amount of time that the
paused robot in each condition remained motionless until resuming movement,
either because the human clicked on it a second time or because the mined pol-
icy sensed the environment was safe for the robot to move again. On average,
the human initiated pausing less frequently than the mined policy. However,
the amount of time that the robot remained motionless in the human-controlled
game was significantly longer than in the non-interactive simulation. The biggest
indicator of this is the average pause time, which is only 2.27 seconds for the
mined policy as compared to 12.70 seconds for the human-controlled robot.

These results appear promising, however, one pressing question remains: how
effective is this mined behaviour in comparison with the fixed policy that was
in place in the multi-robot game prior to the experiments described above? The
next section addresses this question.

5 Analysis

Our autonomous multi-robot system has been using a manually engineered fixed
range policy for collision avoidance, which works as follows. If, whilst moving, two



human player mined policy

number of pauses 5.00 (1.22) 16.87 (6.84)
total pause time (sec) 63.52 (27.68) 38.36 (25.41)

average pause time 12.70 2.27
Table 2. Metrics comparing performance of mined policy with that of human player.
Human player statistics are averaged over 5 games recorded by one representative
player. Mined policy performance is averaged over 15 games. Standard deviation values
in parentheses.

robots detect that they are within a fixed range of each other, then both robots
stop. They exchange messages indicating the distance that each has remaining
to travel from their current location to their current interest point. The robot
with the least path alteration cost3 is given right-of-way and resumes its motion.
The other robot waits until the first robot has moved beyond the fixed threshold
distance, and then the second robot resumes its motion. This is a very simple
policy, and it works satisfactorily most of the time. In prior work, we have tested
this policy successfully both in simulation and on physical robots [34]. However,
this policy is not flexible, nor is it particularly efficient. For example, Figure 5
illustrates two cases where there is potential for collision. In case I, the robot on
the left is heading toward the waypoint on the right, and the robot on the right
is heading toward the waypoint on the left. Clearly, the robots’ projected paths
intersect, but depending on the relative timing of the robots’ entries into the
potential collision zone (marked by a circle in the centre of the diagram), there
may or may not be a collision. In case II, even though both projected trajectories
intersect with the potential collision zone, the robots are less likely to need to
initiate a collision avoidance policy because their routes do not cross each other.

case I. case II.

Fig. 5. Example paths that intersect (I) and do not (II).

3 The path alteration cost is calculated as the distance each robot must travel to go
around the other robot, while still heading to its next waypoint.



There is related work that explores modulating robots’ velocities to avoid
collisions, e.g., [35, 36]. In contrast, our goal is to provide a range of policies for
members of a heterogeneous robot team, where all robots do not use the same
policy for collision avoidance and they do not make assumptions about how the
other robots’ policies operate. This is in contrast to [35], for example, because
there the assumption is that all the robots follow the same policy of slowing down
to avoid meeting. Other work, such as [37], considers heterogenous strategies for
agent behaviour models in simulated crowds, which is a large application area for
multiagent simulation. Future work will include comparison with other collision
avoidance techniques that have been successfully demonstrated in simulation
environments.

We compared the performance of the policy mined from human player #1
with our fixed range policy in two test cases similar to those shown in Figure 5.
We ran each case with two conditions: (a) both robots used the policy mined from
human player #1; and (b) one robot used the fixed range policy and the other
robot uses the mined policy. Figure 6 illustrates sample trajectories from some
successful runs for these conditions. Table 3 contains metrics for the test cases,
as in Table 2. This time, the metrics are less clear—especially since the standard
deviations are extremely high. Ignoring standard deviation, the condition with
the shortest average pause time is when the paths intersect and both robots
employ the mined policy. However, when the paths come close to each other
but do not intersect, the shortest average pause time occurs when both robots
employ the fixed policy. These results warrant further investigation.

intersecting paths close paths

number of pauses
(a) both mined policy 13.00 (10.40) 13.33 (16.65)
(b) one of each policy 7.00 (0.00) 15.33 (10.69)

total pause time (sec)
(a) both mined 20.37 (7.87) 27.37 (33.82)
(b) one of each policy 26.67 (0.00) 43.03 (25.55)

average pause time
(a) both mined 1.57 2.05
(b) one of each policy 3.81 2.81

Table 3. Comparison of metrics on test cases

Finally, we look at the range values for both mined policies. The fixed-range
policy uses a value of 35cm to determine whether to invoke a collision avoidance
action or not. Analysis of the training data reveals a lower range value for both
human players (see Table 4). Figure 7 plots the range values from the training
data, in the order in which they are presented to the trainees. The red circles in-
dicate where actions were issued. The horizontal blue lines indicate the minimum



(a) both mined policy

(b) one of each policy (cyan-colored trajectory
is that of mined policy)

Fig. 6. Sample trajectories of test cases

action range values that are listed in Table 4. It is easy to see the differences in
policies, even from just looking at this range data.

policy minimum action range (cm)

human player #1 21.10
human player #2 15.13

Table 4. Minimum action range values. Compare to the fixed-range policy which
activates collision avoidance at a threshold of 35cm.

6 Summary

We have presented a method for behaviour mining, applied to collision avoid-
ance in multi-robot systems. This methodology has several advantages. First, it
is a general technique for constructing behaviour models from data and can be
applied in a variety of domains. Second, it does not require a human teacher to
explain their actions, engineer training examples or spend a long time demon-
strating behaviours for a learner. Third, the resulting policy does not require a
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Fig. 7. Range and action values in training data. Red circles indicate where actions
where issued. Horizontal blue lines indicate minimum action range values (see Table 4).
There are some outliers, which indicates that range alone is not the only factor being
considered by the human trainers—as borne out by the decisions coded in Figure 3.

lot of memory to store or computational power to execute, which makes it ap-
propriate for deployment on low-cost, small compute-footprint robot platforms.
Finally, in the context applied here, the results demonstrate behaviours that are
more flexible and efficient than the alternative fixed policy evaluated.

Follow-on work will extend this method to a wider user study, gathering data
from many human subjects and mining policies from a broader population. We
are also experimenting with a 3D version of the interactive game, using Blender4

to provide a more immersive environment for the human players.
As well, additional experiments will be conducted in which the mined policy

is evaluated on physical robots. Finally, a more comprehensive study of collision
avoidance in multi-robot systems is in process, to compare techniques other than
the fixed-range policy assessed here, using the metrics discussed herein.
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