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Abstract. Task allocation is an important topic in multiagent and multi-
robot teams. In recent years, there has been much research on the use of
auction-based methods to provide a distributed approach to this alloca-
tion. Team members bid on tasks based on their local information, and
the allocation is based on these bids. The focus of prior work has been on
the optimality of the allocation, and has established that auction-based
methods perform well in comparison with optimal allocation methods,
with the advantage of scaling better. Here we take a different approach,
comparing several auction-based methods not on the optimality of the
allocation, but on the efficiency of the execution of the allocated tasks.
This approach factors in aspects such as the utilization of the team mem-
bers and the degree to which they interfere with each others’ progress,
giving a fuller picture of the practical use of auction-based methods.

1 Introduction

This paper is concerned with the multi-robot routing problem. This is a task
allocation problem in which tasks require robots to reach particular target points,
and each target must be visited by one robot only. As [1] points out, multi-robot
routing is a standard task that is part of problems such as search-and-rescue
and demining, and it is a common test domain for robot coordination [2]. The
problem is also computationally hard. The number of ways of allocating m target
points to n robots is a Stirling number of the second kind:
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and the size of the problem quickly defeats attempts to use standard optimization
techniques like integer programming [3].

The computational explosion in the multi-robot routing problem has led
to researchers looking for more efficient solutions. For example [4] began an



interesting line of work in using auction mechanisms to allocate the target points
in a multi-robot routing problem. This work showed that multi-round auctions,
where each round consisted of bids on single tasks, had a performance that was
experimentally determined to be close to that of an optimal allocation.

This initial paper was followed by work on the way that rules for determining
bids affected the performance of the auction mechanism, establishing bounds on
the performance of different rules [5], and empirically comparing the performance
of the auctions against an optima allocation under different bidding rules [3].
Later work considered the sequential single-item auction [6, 7] as an alternative
to combinatorial auctions for multi-robot routing, again showing that the total
path cost — the total distance travelled by all the robots in the team — is close
to optimal. The same authors have subsequently shown that there are advantages
to allowing bundling of goods in such auctions, in terms of reducing the number
of bids, but at the cost of increasing the total distances travelled by the team.

Overall, we believe that this work shows the power of auction mechanisms
in task allocation in this domain, and this paper builds on this prior work.
Our extension is to evaluate the effectiveness of auction mechanisms not only
in terms of the total distance that the team expects to travel given the task
allocation — what we might consider the theoretical cost of executing the tasks
— but also in terms of a set of metrics that measure how the tasks are executed
in practice. As we explain below, making these measurements can distinguish
between allocations that minimise the total distance travelled by the team (as
considered in previous work) and the total time taken to complete the tasks.
This reveals the trade-offs between auction mechanisms in different scenarios,
and allows us to draw conclusions about the applicability of those mechanisms.
To our knowledge, this is the first paper to provide this analysis of the practical
application of the sequential single-item auction, and to compare its performance
against other auction mechanisms on such metrics.

The paper is structured as follows. Section 2 discusses the system that we
used to carry out this work and the metrics used to assess the mechanisms we
are testing. Section 3 then describes the experiments in detail, gives the results,
and provides some analysis. Section 4 discusses the results, Section 5 describes
related work, and Section 6 concludes.

2 Methodology

The work reported here is part of a larger effort [8, 9] aimed at evaluating coordi-
nation techniques in terms of their potential for application in real robot systems.
This influences a number of aspects of the experiments that we conducted. We
discuss these aspects in this section.

2.1 System Architecture

Our multi-robot system is fully distributed in the sense that the controllers for
the robots are independent agents running as separate processes. No controller
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Fig. 1. Scenario definitions. The plots on the top show the two sets of starting points
superimposed on a map of the test environment. The plots on the bottom show two
sets of target points.

has the ability to tell the controller of another robot what to do. The coordination
of the team is through a central auction manager, which holds a list of target
points and communicates the start of an auction, which will award target points
to each robot controller4. Each controller sends in bids, the auction manager
determines the winner of the auction and allocates target points accordingly.
Since the individual controllers only have access to their local information, their
bids and the allocation don’t explicitly attempt to optimize across all robots.

Our software architecture is agnostic about whether the team executes its
tasks on real robot hardware or in simulation. That is, the robot controllers
are capable of receiving information either from real robots operating in our
lab, or from simulated robots operating in a simulation of the lab, and the
same decisions are made and the same control signals output in both cases. For
the work reported here, we ran the experiments using the Stage simulator [11].
Previous work [9] suggests that for our setup, there is close agreement between
simulated results and results obtained on real robot hardware.

4
Though the bidding process and winner determination are managed centrally, there is no cen-
tralized control in the usual sense. The auction could also be distributed among the robots as
in [10].



The environment in which our robots, both real and simulated, operate is
an office-like environment with rooms opening off a central hallway. The layout
of rooms is shown in Figure 1. This is a smaller environment, in terms of the
number of rooms, than that studied by [7] (and in similar work by the same
group of authors), a fact determined by the maximum size of the physical area
available in our lab for the real robots and our desire to be able to run parallel
experiments in both simulation and on the real robots.

2.2 Metrics

To measure the performance of the robot team in practice — and hence the
coordination mechanisms — we consider a number of metrics applicable to the
performance of individual robots and the team as a whole.

In any work with robots, an important consideration is power consumption.
This is the fundamental scarce resource that a robot possesses. Robot batteries
only last for a limited time, and so, all other things being equal, we prefer
solutions to the multi-robot routing problem that minimize battery usage. As
in [3–7], therefore, we measure the distance travelled by the robots in executing
a set of tasks — both individually and as a group — since this is a suitable
proxy for power consumption.

It is important to note that distance is not computed by looking at the short-
est distances between the target points, but is (as closely as we can establish) the
actual distance moved by the robots during task execution. We collect regular
position updates from the simulator, compute the Euclidean distance between
successive locations, and sum these up. As Figure 2 shows, the resulting paths
show plenty of variation from straight line paths.

Distance travelled is not the only metric of interest. In many multi-robot
team activities that relate to the routing problem, time to complete a set of
tasks is also important. Time is important in exploration tasks — in search
and rescue activities, in patrolling, and possibly in demining5 — and so we
also measure run time, the time between the start of an experiment and the
point at which the last robot on the team completes the tasks allocated to it.
Also relevant is the deliberation time, the time that it takes for the tasks to be
allocated amongst the robots. Deliberation time matters because it feeds into
the overall time required to complete a set of tasks, but also because it allows
us to establish how different allocation mechanisms compare in terms of the
computational effort and communication resources required to run them.

We also measure idle time, the amount of time that robots sit idly during
the execution of a set of tasks. We compute the idle time for a robot as the
time that elapses between when that robot completes its last task and when
all robots on the team have completed all of their assigned tasks. This gives
us a way of quantifying how equally tasks are distributed among robots, and
it also suggests the extent to which resources are being wasted by a particular

5
One can easily imagine demining happening against the clock — in humanitarian demining [12],
for example, there may be the need to demine an area in order to allow refugees to move safely
away from a dangerous situation.



allocation. Although the mismatch between the number of tasks and the number
of robots means that some idle time is inevitable, idle time represents the use of
precious power that is not being directed towards the completion of the tasks.

With several robots moving around a limited space, especially one that re-
quires robots to move through a single corridor to navigate from room to room,
robots naturally get in each other’s way and are in danger of collisions. We han-
dle this situation using the same approach that was adopted in the first DARPA
Grand Challenge [13]. That is, we detect situations where a collision between
two robots is likely, stop one robot, and give the other the right of way. Since
such episodes impact the other metrics, we count these episodes and record the
number of what we call near collisions, as well as the amount of time robots
spend waiting to give others right of way, which we record as delay time.

3 Experiments

In this section we describe a set of experiments that we carried out using the
system described above, and give the results of those experiments.

3.1 Experimental Setup

As described earlier, the multi-robot routing problem that we are studying in-
volves a team of robots tasked to visit a number of target points such that one
robot visits each point. A scenario is a mission defined by a specific set of pa-
rameters: the number of robots on the team (n), the starting locations for the
robots, the number of target points to visit (m), and the locations of the target
points. Thus, a scenario can be described by a tuple

〈n, {(x0, y0), . . . , (xn−1, yn−1)},
m, {(x′0, y′0), . . . , (x′m−1, y

′
m−1)}〉

The experiments reported here measured results in four different scenarios. All
scenarios involved n = 3 robots, m = 8 target points. There were two sets of
starting locations, one distributed and one clustered, and two sets of target point
locations, A and C. The starting locations and the target points can be seen in
Figure 1. Experiments were conducted with each scenario using each of the four
task allocation mechanisms discussed below, and each was run 10 times. Thus
160 experimental trials were conducted in all:

2 start locations × 2 target point sets

×4 allocation mechanisms × 10 trials

Each experiment recorded the metrics described above:

– Distance travelled;
– Run time;
– Near collisions;
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Fig. 2. Sample runs on target points A, with start points clustered (top) and distributed
(bottom)

– Deliberation time;
– Idle time; and
– Delay time.

From these values we also compute the travel time of a robot, which is the run
time minus the delay time and the idle time — that is the time that the robot
is actually moving.

3.2 Mechanisms tested

Our experiments involved four different mechanisms for task allocation:

– Round-robin
– Ordered single item auction
– Sequential single item auction
– Parallel single item auction

We describe these in turn.
In round robin (rr) allocation, we start with two ordered lists, one of target

points and one of robots. The first target point is allocated to the first robot,
the second interest point to the second robot and so on. When one target point
has been allocated to each robot, a second target point is allocated to the first
robot. And so on. This is clearly not a particularly efficient way to approach
task allocation, but it provides a baseline against which other mechanisms can
be tested. We referred to this as the “greedy taxi” policy in our earlier work [9],
because this policy emulates the behaviour of a taxi rank.
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Fig. 3. The allocation of target points from set A to robots over all runs.

The approach we call the ordered single item auction (osi) takes a simple
step to improve on round robin allocation. In this case the target points are
again placed in an ordered list, but this time each point in turn is offered to all
the robots. Each robot makes a bid for the point, where the bid is the distance
that the robot estimates (using an A* path planner) it will have to travel to
reach the point from its current location. The point is allocated to the robot
that makes the lowest bid, that robot updates its location to be the location of
the target point it just acquired, and the next point is auctioned.

In the sequential single item auction (ssi) [7], all the target points are pre-
sented to all the robots simultaneously. Each robot bids on the target point with
the lowest cost (again computed as the A* distance to the point) and the point
with the lowest bid is allocated to the robot that made the bid. The winning
robot updates its location to that of the target point it just won and the remain-
ing points are re-auctioned. The process is repeated until all points have been
allocated.

The parallel single item auction (psi) [7] starts like ssi with all robots bidding
on all points, but rather than just allocating the target point with the lowest
overall bid, all the target points are allocated in one round, with each point going
to whichever robot made the lowest bid on it.
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Fig. 4. Team results for target set A, with start points clustered (left) and distributed
(right).

3.3 Results

The results of the experiments can be seen in Figures 2–5. Figure 2 shows the
paths taken by the robots in individual runs across different scenarios as solved
by different allocation mechanisms. The routes taken by different robots are given
in different colors. The aim of the figure is to give a sense of allocations produced
by the different mechanisms and the effect that these have on the routes taken
by the robots. These traces capture many of the key points about the allocations
that are echoed in the metrics. The randomness of the rr allocation mechanism
is clear in the lack of a clear pattern in the allocations to each robot. The
tendency of psi to allocate points unevenly between robots — first noted in [7]
— is clear when comparing it with other mechanisms for the clustered start
points. The propensity for ssi to produce tight groupings is clear in its handling
of the distributed start points. Note that we only show results for target points
A. The allocation of target points to robots is also shown in Figure 3, revealing
the patterns in each allocation mechanism. Also, note that each robot visited
target points in the order in which they were allocated, which wasn’t necessarily
the shortest path amongst the complete set of points allocated to the robot.

Figure 4 then plots the average values over 10 runs of each metric for each
of the four mechanisms on target points covering both the clustered and dis-



Distance Run time Delib. time Idle time Delay time

Clustered RR 3539 ± 95 478 ± 82 0.05 ± 0.0005 251 ± 52 41 ± 27

OSI 3133 ± 95 421 ± 18 0.95 ± 0.06 245 ± 56 38 ± 23
SSI 2865 ± 34 435 ± 86 1.08 ± 0.06 249 ± 106 42 ± 23
PSI 3233 ± 207 1056 ± 82 0.22 ± 0.017 2113 ± 164 0 ± 0

Distributed RR 4468 ± 168 605 ± 28 0.05 ± 0.003 286 ± 84 82 ± 30
OSI 2108 ± 142 300 ± 27 0.89 ± 0.01 189 ± 46 10 ± 8
SSI 1772 ± 35 229 ± 25 0.98 ± 0.043 107 ± 63 12 ± 8
PSI 2564 ± 123 381 ± 39 0.23 ± 0.015 290 ± 71 15 ± 10

Table 1. Team metrics for target set A. Time is in seconds. Distance is in centimeters.
The values given are means with 95% confidence intervals.
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Fig. 5. Results for each robot on target set A with start points clustered (left) and dis-
tributed (right). The four bars for each robot are the results for the different allocation
mechanisms. The bars are ordered RR, OSI, SSI and PSI.

tributed start points. Again these are only the results for target set A. Looking
at the results from the two sets of start points side by side makes it clear that
the clustered set of start points provides a steeper challenge for the allocation
mechanism than the distributed set. While deliberation times are comparable,
distance and run time are much reduced for the distributed case, as are delay
times and the number of collisions (naturally each of these pairs of metrics are
going to be strongly correlated). Table 1 gives the same information as Figure 4
but in tabular form, making numerical comparisons possible. The table also gives
95% confidence intervals for the metrics.

Finally, Figure 5 gives the metrics that are computed on a per robot basis,
as opposed to those computed for the team as a whole. These individual metrics



are distance, delay time, idle time and travel time, and the figure gives these
for each of the three robots for each mechanism and both sets of start points.
(Again we just show the results for target set A). Since the same robot starts in
the same position each time, the distribution across the robots tells us something
about the mechanisms. For example, they expose the skewed nature of the results
for psi in the case of the clustered start points, with two robots travelling no
distance and reporting high idle time.

We don’t give the results for the runs using the C configuration of target
points since these are qualitatively very similar to those for the A points. In the
next section we highlight the most interesting of the results.

3.4 Analysis

The aim of these experiments is to understand the comparative performance
of the allocation mechanisms across the different scenarios with the aim of es-
tablishing the suitability of the mechanisms for different kinds of multi-robot
routing tasks. As a result, our analysis focuses on the comparative performance
of the mechanisms. We start by considering the results for the A target points.

Overall our analysis supports the results in [3–7], showing the effectiveness of
the sequential single-item auction in finding solutions to the multi-robot routing
problem when the overall distance covered is the most important performance
metric. For both the clustered and distributed start points, ssi generated solu-
tions which required the team to travel the smallest overall combined distance on
average. This means that the solutions generated by ssi were executed quickly
in comparison to those generated by the other allocation mechanisms, though on
average in the clustered case the ssi solutions take marginally longer to execute
than the osi allocations.

The cost for this performance can be seen in the deliberation times. ssi, which
requires bids from all robots for all unallocated points on all rounds, involves
much more bidding than any of the other approaches, and this translates into
the longest time spent in the allocation process (deliberation time). However, for
the scenarios we consider here, the deliberation times are all less than 1 percent
of the total task to execute the set of tasks. We return to the consideration of
deliberation time in Section 4.

ssi also performs well in terms of idle time. An individual robot accumulates
idle time when it finishes visiting its allocated target points before other robots
finish visiting theirs, so across the team it is a measure of wasted resource. For
clustered start points, ssi narrowly outperforms osi and rr (though these results
are dominated by the terrible performance of psi on this metric), and for the
distributed start points, ssi has, on average, about half the idle time of the
second-best performing mechanism.

Indeed, in terms of the metrics we assess, ssi can only be considered to have
poor comparative performance in terms of near collisions in the case of clustered
start points. This suggests that the task allocations created by ssi in this case
require the robots to traverse the same space more frequently than other alloca-
tion mechanisms (since near collisions occur when robots are trying to move past



each other in close proximity). However, the cost of near collisions is increased
delay time, and this is not much higher for ssi than the other mechanisms. In
addition, the difference is two orders of magnitude below the run time, so is not
a significant factor in the terms of task completion.

As [7] points out, psi can come up with arbitrarily poor allocations because
it does not take synergies between target points into account. As the results for
the clustered start points show, it can also skew the distribution of tasks between
robots — Figures 2 and 5 reveal that in the clustered start case, it allocates all
the target points to one robot. This skew means that although psi is not much
worse than ssi or osi on overall distance, it is much worse on run time and
on idle time.6 (Naturally, since it only allocates task points to one robot, there
are no near collisions and hence no delay time.) Even on the distributed start
points where this skew does not occur — as Figure 5 shows — psi performs
rather poorly, where overall distance travelled is more than 40% greater than
that travelled, on average, in a ssi allocation.

Turning briefly to the results for the C target points, we find that they largely
follow the same pattern. ssi again produces good results, broadly outperforming
the other mechanisms for the clustered start points on all metrics except delib-
eration time. psi however, performs considerably better when the start points
are distributed (it again produces very skewed results when they are clustered).
In particular, the run-time for psi (377 seconds) is basically identical to that for
ssi (375 seconds) with a considerably lower idle time (127 versus 424 seconds).

4 Discussion

Overall, our results tend to confirm the strong performance of the ssi auction
mechanism in multi-robot routing tasks. The one area in which ssi performs
worse than other mechanisms is in deliberation time, the time that it takes to
allocate tasks to robots. For the scenarios we consider here, the cost of allocating
the tasks is negligible, with the deliberation time being less than 1 percent of the
total time for completing the set of tasks. The total number of bids to allocate
m tasks to n robots is7:

n

(
m(m + 1)

2

)
and it is conceivable that this could become big enough to be problematic.
For example, consider the case of one hundred robots — as in the Centibots
project [14] — which have to allocate 500 target points. In such a case the ssi
auction would require over 12 million bids, a 12,000-fold increase over what is
required in our experiments, and enough to make deliberation time a significant
contributor to the time for task completion. In addition, since each bid has to
be transmitted wirelessly — either to a centralised auction manager, or to all

6
The distance for psi is 13% larger than that for osi and 23% larger than that for ssi, but the
runtime for psi is 2.4 times that for ssi and 2.5 times that for osi.

7
One bid from each robot for m tasks in the first round, one bid from each robot for m− 1 tasks
in the second round, and so on.



other robots in a distributed auction — the number of messages can be a factor
in robot deployments where communication bandwidth is limited [15].

Both of these aspects might make the osi or psi mechanisms worth consid-
ering for larger deployments. The osi auction results in distances that are 10%
(clustered start) to 20% (distributed start) worse than ssi in terms of distance
to the A target points, and for our Centibots example would require several hun-
dred times fewer bids (50, 000 rather than 12 million). The psi auction is about
40% worse in terms of total distance for the distributed case with the A target
points, but could do the task allocation for the Centibots with just 500 bids (one
for each task). In the clustered case with the A target points, as we pointed out
above, psi is only about 23% worse than ssi in terms of distance travelled, but
the long run time that results from the skewed allocation needs to be taken into
account. This point is reinforced by the results for the C target points, which
show that there are situations in which psi can equal or outperform ssi on some
metrics. However, while our results are encouraging in this respect, an analysis
of more scenarios would be required before we can reach any firm conclusions
about whether psi can predictably outperform ssi in a way that would allow one
to select the best mechanism based on the characteristics of the problem being
solved.

5 Related work

As mentioned above, there is much related work on auction mechanisms for task
allocation in robotics. Some of this has already been mentioned, and here we
take a look at the relevant work that we have not yet covered.

The use of market mechanisms in distributed computing can be considered to
start with Smith’s contract net protocol [16], and this was followed by Wellman
and Wurman’s [17] market-aware agents. Wellman and Wurman [17] point out
that every decision in a mas can be considered to be a decision about resource
allocation with obvious application to multirobot systems to optimize resource
usage, communication and task completion time [18].

A primary strength of market-based approaches is their reliance only on
local information or the self-interest of the agents to arrive at efficient solutions
to large-scale, complex problems that are otherwise intractable [2, 19]. The most
common instantiations of market-based approaches in multirobot systems are
auctions. Auctions are commonly used for distribution tasks, where resources
or roles are treated as commodities and auctioned to agents. Based on their
private preference information for a particular commodity, agents bid in these
auctions. A significant body of work analyzes the effects of different auction
mechanisms [16, 20–22], bidding strategies [5, 23], dynamic task re-allocation or
swapping [24] and levels of commitment to the contracts [25] on the overall
solution quality. The application domains vary from loosely coupled tasks, such
as exploration [4, 18, 22], to tightly-coupled tasks [18, 26] such as box pushing and
formation control [27], which require close coordination between robots. Auctions



have also been used for role allocation in robot soccer [28] and in heterogeneous
teams [29].

In domains where there is a strong synergy between items, single-item auc-
tions can result in sub-optimal allocations [20]. In the domain of interest here,
multi-robot exploration, a strong synergy exists between target points that
robots need to explore. Combinatorial auctions emedy this limitation by al-
lowing agents to bid on bundles of items, and minimize the total travel distance
because they take the synergies between target points into account [6]. Combi-
natorial auctions suffer, however, from the computational costs of bid generation
and bundle valuation by the agents, and winner determination by the auction
mechanism itself, all of which are NP-hard [7].

Of all the literature on auctions in multi-robot teams, [30] and [31] are the
most closely related to our work. Both evaluate ssi in simulation and so could
argue their work evaluates the practical cost of solutions generated using ssi
(and [30] provides some results from real robots). However, the focus of both [30]
and [31] is on finding optimal mechanisms for dynamic task reallocation during
execution rather than, like our work, attempting to characterise auction mech-
anisms in terms of the tasks for which they are best fitted. In addition, neither
consider the range of metrics that we do and so are unable, for example to
comment on the load balancing that measuring idle time exposes.

6 Summary

This paper has studied the performance of a number of auction mechanisms on
a version of the multi-robot routing problem. It has gone further than any work
we are aware of in testing auction mechanisms across a range of performance
metrics and in a way that tests how the mechanisms would work on a fleet of
real robots.

The main result is that the sequential single item (ssi) auction broadly out-
performs other single item auctions across our range of metrics, though it does
not perform best on all of them for all scenarios. However, there do seem to
be trade-offs, especially in terms of the total number of bids required by the
mechanisms, which suggests that the ssi auction might have issues with scal-
ing to larger routing problems than we study here, especially if communication
bandwidth is restricted. In other words, the high performance of ssi comes at a
cost that might be hard to pay for some scenarios. Other mechanisms we tested,
which can scale better, might be preferable on such scenarios despite their poorer
performance.

As [7] points out, ssi allocations can be improved by moving to combina-
torial auctions that can exploit synergies between tasks by having robots bid
on bundles of target points. However, as [7] also shows, combinatorial auctions
require more bids (since there are more bundles than individual items). As we
pointed out above, winner determination in combinatorial auctions is also a com-
putationally hard problem. This suggests that the trade-off between deliberation



time and run time will be even sharper for combinatorial auctions than it is for
ssi auctions, and this is a topic that we plan to study next.
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