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Abstract. A case is made for logical argumentation as a means for en-
abling true collaboration between human and robot partners. The ma-
jority of human-robot systems involve interactions in which a human
requests a robot to perform a task, and the robot reports its findings.
The relationship between human and robot is one in which the robot is
subordinate, and all high-level decision making is performed by the hu-
man. In contrast, when humans collaborate with each other, they inter-
act in various relationships, some of which are subordinate, while others
are truly collaborative. Successful instances of such relationships involve
dialogue in which each party presents ideas, these are discussed, and
a shared conclusion is agreed upon. This type of dialogue, which pro-
motes dynamic exchange of ideas, does not exist in today’s human-robot
systems. Indeed the primary focus in human-robot dialogue is on the
method of delivery, while the content is typically chosen from scripted
sequences. However, in order to enable human-robot partnerships, both
parties must be able to participate in constructive dialogue where the
content and sequence of utterances can adjust dynamically as the dis-
cussion ensues. Argumentation is a method that can support such needs,
as is demonstrated here.

1 Introduction

Humans interact with each other in a range of relationships, some of which are
subordinate, such as boss-employee or parent-child, and others are collabora-
tive, such as two lumberjacks each holding one end of a two-man cross-cut saw
or two software engineers engaged in pair-programming. In many productive
human-human relationships, the skills of each human complement each other,
for example, a graphic designer and a web programmer collaborating on building
a web site, or a composer and lyricist collaborating on writing a hit song. Each
of these relationships, to be successful and productive, relies on some amount of
communication—dialogue—in which each party presents their ideas, which are
discussed together, and a shared conclusion is agreed upon by both parties.

In contrast, the vast majority of human-robot relationships are ones in which
the human is the master and tells the robot what to do. For example, a workplace
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robot might be asked to deliver letters or packages in an office building, a nurse
robot might be asked to dispense medication to a patient, or a search-and-rescue
robot might be asked to explore a region inside a damaged building. In each of
these cases, the need for communication is limited to the human commanding
or requesting a robot to perform a task, and the robot reporting its findings to
the human. There is no exchange of ideas, hence no dialogue in the formal sense
described above.

This type of limited exchange puts many restrictions on the human-robot
interaction. For example, if a robot fails at its assigned task, it can only report
to the human that it has failed; it cannot discuss the reasons for failure or
possible follow-on courses of action—as two humans would when collaborating
on a task. Or, if a robot disagrees with its assigned task, perhaps because it
knows of a reason why the task may fail, a priori, before even attempting the
task, the robot has no way of explaining this to the human. Additionally, the
human-robot team is constrained by the human’s scope of information and ideas:
the robot cannot recognize new or unexpected opportunities and interrupt its
task to suggest an alternate activity.

Dialogue that is founded on unscripted and opportunistic exchange of ideas
does not exist in today’s human-robot interaction (HRI) systems. The current
focus in most human-robot dialogue work is on natural language architectures [1]
or delivery methods [2–5], rather than dynamic content selection. For human-
robot systems to be truly collaborative, participants need to be able to engage in
constructive dialogue that can adjust dynamically as the dialogue and situation
unfolds. Argumentation is a well-founded theoretical method that can support
such needs. Argumentation-based dialogue can be used to handle the kinds of
example situations listed above: recovering from failure, pre-empting failure, and
revising plans dynamically. In this paper, we make a case for argumentation in
order to enable true human-robot collaboration.

2 Architecture

This work contributes to multiple areas: argumentation, human-robot interac-
tion and human-agent interaction, by filling in the details for combining and
implementing theoretical models of logical argumentation and argumentation-
based dialogue in a dynamic, real-time setting. While there is a large literature
discussing the theoretical underpinnings of argumentation [6, 7] and dialogue [8],
the only implemented systems are off-line decision-making tools [9, 10]. In con-
trast, the system described here outlines an end-to-end solution, which is nec-
essary for an actual implementation and addresses questions such as how and
when to update the beliefs of an agent engaged in a real-time dialogue, and how
and when to initiate a dialogue.

Figure 1 illustrates a classic three-step agent controller architecture [11]: first,
an agent senses its environment; second, the agent formulates a plan about what
to do; and third, the agent acts out its plan; then the process loops back to the
first step. Although modern architectures frequently employ a less sequential
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dialogue

sense plan act

Fig. 1. Agent control architecture, with dialogue step added.

strategy, these three fundamental components are widely used. In our work, we
are concerned with situations in which an agent incorporates dialogue in its
decision-making process about what to do, in order to collaborate with a human
partner1. Thus, we extend the classic architecture by adding a dialogue step.
This dialogue step could be considered part of, or separate from, the planning
step. For now, we take the easier course of considering it separately, but in the
future will look at ways to build plans that combine robot actions and speech
acts [12] that support argumentation-based dialogues.

As shown in Figure 1, an inner loop is added to the classic architecture,
for the agent to sense the environment again after dialogue: since the agent’s
environment is dynamic, conditions may change during a possibly lengthy dia-
logue. If no (significant or relevant) changes occur, then the return loop through
sense and plan after dialogue will be redundant: no changes will be deemed nec-
essary and the agent will execute the original plan. However, if changes have
occurred, then re-planning will be required. Overall, it is less costly to re-sense
and re-assess the original plan than to attempt a plan that is no longer valid.

Next, we explain each step and introduce some notation.

0. Agent Ag starts with an initial belief state, Ag.Σ0, where Σt represents the
agent’s beliefs at time t.
(Beliefs are discussed in more detail in Section 3.)

1. Agent Ag observes its environment, at time t, using its sensors:

obst ← Ag.sense(Envt)

and then updates its beliefs, based on its observations:

Ag.Σt ← update(Ag.Σt−1, obst)

2. Agent Ag plans which action to perform:

Act ← action()

3. Agent Ag performs the selected action, Act.
4. Go to step 1.

1 The process outlined here could also be applied to agent-agent dialogues, but to
focus the scope of this paper, we only discuss human-agent interactions here.
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assess status of plan & goal

select plan

formulate possible plans

select goal

formulate possible goals

execute next action in plan

Fig. 2. A cognitive architecture to support collaboration, which implements a stack of
hierarchically ordered shared decisions.

Step 2 is extended in our context as follows. The choice of action is based
on executing that action in order to achieve a plan, which is selected in order
to achieve a goal. In a collaborative human-robot setting, the robot and hu-
man should reach agreement about the goal(s) that they are trying to achieve,
and then about the plan that they will attempt in order to achieve their joint
goal. We model this joint process using a cognitive architecture based loosely on
FORR [13] and the BDI model [14]. Essentially, the process is broken down into
hierarchically ordered decisions, each of which must be accepted by both partic-
ipants (human and robot) before considering the next decision. This process is
implemented in the robot as a stack, as illustrated in Figure 2. Each time the
robot’s control loop iterates, the items on the stack are considered, starting at
the top. If any item is triggered, then it executes and the control loop iterates
again; otherwise that item is popped off the stack and the next item (below it
on the stack) is considered.

The first time the control loop runs, there are no goals or plans. This means
that the top five items on the stack pop off, and the formulate possible goals item
is triggered. The human and robot collaborate to agree on a set of goals, and
Goals is instantiated.

The second time the control loop runs, the top four items on the stack pop
off because there is no goal selected and thus no plans; so the select goal item is
triggered. Here, the human and robot collaborate to select g ∈ Goals.

The third time the control loop runs, the top three items on the stack pop
off because—although there is now a goal (g)—there are no plans yet defined to
achieve that goal. So, the formulate possible plans is triggered, and the human
and robot define a set of possible Plans to achieve g.

In the fourth iteration of the control loop, the top two items on the stack pop
off because a particular plan, p, has not yet been selected. The select plan item
is triggered, and the human and robot interact to agree on which p ∈ Plans will
be attempted.
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The next iteration of the control loop calls for the human and robot to assess
the status of g and p, with respect to the current state of the environment. If g
is no longer valid, then it is discarded and so is p; and the next time through
the control loop, the top five items will pop off the stack and the process will
start over with selecting a new goal. If p is no longer valid (but g is), then the
process will start over with selecting a new plan. If g and p are both valid, then
the top of the stack will trigger, and the robot will execute next action in plan,
matching the conclusion of Step 2:

Act ← action()

In order for the human and robot to reach agreement about goals and plans,
they engage in a dialog game [8] in which they exchange locutions according
to a protocol. The set of dialogues we propose for human-robot interaction are
covered in the next section.

3 Dialogue

We model HRI dialogues between two agents: R, the robot, and H , the human.
First, we define some notation, and then we explain how different types of di-
alogues from the literature can be used to facilitate exchange of ideas between
human and robot, with the aim of reaching agreement (though this is not always
the outcome).

The following information is represented by the robot:

– ∆R is the set of beliefs that the robot has about its environment and about
the world in general

– ΓR(H) is the set of beliefs that the robot has about the human, that is what
the robot believes that the human believes

– CSR is the robot’s “commitment store” [15], the set of propositions that
have been put forth in the dialogue by the robot

– CSH is the human’s commitment store, the set of propositions that have
been put forth in the dialogue by the human

– GoalsR is the set of robot’s goals
– PlansR is the set of robot’s plans

We define:

ΣR = ∆R ∪ ΓR(H) ∪ CSR ∪CSH ∪ GoalsR ∪ PlansR

as the complete set of information that the robot can use in the dialogue. We
note that ΣR may be inconsistent. Following generally-accepted rules of dialogue
games [8], the robot is only allowed to utter locutions that make use of informa-
tion from ΣR. We make the assumption that the human participant follows the
same rules.

Note that we only represent the beliefs of the robot—we do not pretend
to know what the human is thinking. However, ΓR(H) can be a proxy for the
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human’s beliefs, since it represents what the robot believes that the human
believes. These beliefs are acquired through dialogue, based on what the human
says to the robot. Conceptually, we can say that:

Goals ⊆ GoalsR ∪ GoalsH

with no loss of credibility, since Goals is the set of goals that the human and robot
have agreed upon, and GoalsH ⊆ CSH can be the subset of the human’s goals
that the human has discussed with the robot (which are necessarily in CSH ,
the human’s commitment store). We say “subset” because we assume that the
human typically does not mention to the robot every goal in her head, though
she could (which this framework also allows). Similarly, we can define:

Plans ⊆ PlansR ∪ PlansH

where Plans is the set of plans that the human and robot have agreed upon,
and PlansH ⊆ CSH can be the subset of the human’s plans that the human has
discussed with the robot.

Each type of dialogue affects the beliefs or the actions of the robot. While
the robot’s full set of beliefs is represented as ΣR, a single belief is denoted b,
where b ∈ ∆R ∪ ΓR(H). The full set of possible actions that the robot or the
human could perform is represented as Actions, while a single action is denoted
a, where a ∈ Actions, ActionsR ⊆ Actions is the set of actions the robot is
able to perform, ActionsH ⊆ Actions is the set of actions the human is able
to perform, and a sequence of actions represents a plan, {a0, a1, ..., an−1} = p

where p ∈ Plans (as in the previous section). Similarly (as previously), the set
of possible goals is represented as Goals, while a single goal is denoted g, where
g ∈ Goals.

The remainder of this section describes the pre-conditions, outcomes and
protocols for each type of dialogue, mentioned above, that is relevant in an HRI
scenario. The pre-conditions and outcomes express how the relevant components
of the robot’s belief set are considered and updated. Note that the updating
of beliefs is treated abstractly here. We make the assumption that when the
dialogues described below terminate with accept, then beliefs are updated; but
we leave more complete discussion of this aspect for later. Indeed, a detailed
discussion of belief revision is beyond the scope of this paper; but this topic is
being investigated in our work (and many others’) and will be discussed in future
work.

These definitions are helpful, as will be seen in Section 5, in deciding which
dialogue to apply in a given situation. As stated earlier, we describe a system
that is used by a robot to decide which dialogue to use and what to say during
the dialogue; the focus, below, is on the robot’s mental state.

3.1 Dialogues for discussing Beliefs

Three types of dialogues allow the human and robot to discuss their beliefs.
These are:
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– Information-seeking [16]: where one agent asks another agent a question that
the first agent believes the other agent can answer;

– Inquiry [17]: where two agents collaboratively answer a question that neither
knew before the conversation; and

– Persuasion [18]: where one agent tries to alter the beliefs of another agent
(which could result in either adding new information or revising existing
information in the other agent’s set of beliefs).

Each is discussed below.

An Information-seeking dialogue is used when the robot asks a question of
the human, or the human asks a question of the robot. The agent posing the
question should have reason to believe that the respondent will know the answer.
Hence the second pre-condition specifies that the belief being inquired about,
b, should be contained in the robot’s beliefs about the human’s beliefs (ΓR(H))
(because the robot is seeking for the human to say something about b). Since the
robot begins an information-seeking dialogue about b believing that the human
believes b, the robot is checking its belief rather than starting from ignorance.

pre-conditions: b 6∈ ∆R, b ∈ ΓR(H)
outcomes: b ∈ ∆R, b ∈ ΓR(H)

assert(S’)

assert(not b)

assert(S)

question(b)

accept(b) challenge(b) accept(not b) challenge(not b)

assert(U)assert(b)

Fig. 3. Information-seeking dialogue protocol

The protocol for Information-seeking is shown in Figure 3. The diagram is
read top-down, starting with the pre-conditions, then a tree illustrating the al-
lowable sequence of locutions, then the outcomes. In the tree, the first locution
(at the top) is uttered by the participant who initiates the dialogue. The next
layer down contains the possible responses by the other participant, and so on.
The (possible) locutions uttered by the initiator are outlined in green, whereas
the possible responses uttered by the other participant in the dialogue are out-
lined in black, to make it easier to keep track of which speaker can say what.
Some locutions cause the dialogue to terminate, such as accept(b). Other locu-
tions cause the dialogue to loop back, such as assert(S), where S is the support
for an argument. For example, if a participant’s assertion is challenged, then
that participant presents the support for its assertion, A = (S, b), where S is the
support for the argument that has b as its conclusion. If the challenger accepts
all the elements of the support, then the conclusion is accepted. Otherwise, the



8

dialogue reaches an impasse where the only possible move is for one participant
to repeat itself. This is taken to indicate that the dialogue terminates [19].

pre-conditions: b 6∈ ∆R, b 6∈ ΓR(H)
outcomes: b ∈ ∆R, b ∈ ΓR(H)

accept(b=>c) challenge(b=>c)

assert(b=>c)


assert(S)

Fig. 4. Inquiry dialogue protocol

An Inquiry dialogue is used when the robot and human work together to an-
swer a question. This will result in updating the robot’s beliefs with the answer,
b. The protocol for an Inquiry dialogue is shown in Figure 4. The diagram is
read in the same way as Figure 3.

Finally, a Persuasion dialogue is used when the robot wants to alter the
human’s beliefs, or vice versa. Such a dialogue is appropriate when the robot
believes b and believes the human does not believe b. This type of dialogue is
helpful for error prevention: for example, when the human asks the robot to
execute a plan which the robot thinks will fail. The robot will need to convince
the human to abandon her belief in the plan. The protocol for a Persuasion
dialogue is shown in Figure 5. Again, the diagram is read in the same way as
Figure 3.

pre-conditions: b 6∈ ΓR(H)
outcomes: b ∈ ΓR(H)

accept(b) assert(not b) challenge(b)

assert(S)

assert(b)

Fig. 5. Persuasion dialogue protocol
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3.2 Dialogues for discussing Plans and Goals

Two types of dialogues allow the human and robot to discuss their plans and
goals. These are:

– Negotiation [20]: where two agents attempt to reach agreement about allo-
cation of a scarce resource; and

– Deliberation: [21] where agents collaboratively decide what action to take.

Each is discussed below.

A Negotiation dialogue is typically used when two agents need to reach an
agreement about allocating resources. Here, we adapt this type of dialogue for
allocating tasks between the human and robot, which could be for reaching
agreement about joint plans or shared goals. Figure 6 shows the protocol for a
Negotiation dialogue. Instead of discussing a belief, b, this dialogue is used to
discuss a task, k. This type of dialogue also makes use of a special type of con-
nective: k  j, which can be read as: if k then j, in other words, the robot might
say to the human: if you do k, then I will do j [22]. The Negotiation dialogue
starts with one participant requesting that the other perform a particular task,
k.

pre-conditions: k 6∈ GoalsR, k 6∈ GoalsH
outcomes: k ∈ GoalsR ∧ k ∈ GoalsH

challenge(k)

request(k)

assert(S)

challenge(j)accept(j~>k) refuse(j~>k) promise(i~>j)

promise(k~>j)accept(k)

assert(S)

refuse(k)

Fig. 6. Negotiation dialogue protocol

A Deliberation dialogue can be used when the human and robot need to
decide on a plan. They share their intentions, i.e., set of possible plans, and
together select which plan to follow. The Deliberation dialogue opens with one
agent proposing that an action, a, be undertaken. The second agent can either
accept(a) the proposal, agreeing to execute the specified action. Alternatively,
the second agent can express a preference for a different action z, in place of
that originally proposed, a: propose(z>a).
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pre-conditions: a 6∈ PlansR

outcomes: a ∈ ΓR(H), a ∈ PlansR

accept(a) propose(z>a)

propose(a)

Fig. 7. Deliberation dialogue protocol

4 Formal Argumentation

The dialogues from the previous section are constructed on top of a formal system
of argumentation. This allows the semantics of the locutions to be defined in
terms of formal arguments, and hence related back to the contents of the robot’s
knowledge base. The formal argumentation system we use [23] starts with the
idea that we deal with a robot which has access to a knowledge base, Σ (exactly
the Σ from the previous section), containing formulae in some language L. An
argument is then:

Definition 1 (Argument). An argument A from a knowledge base ∆i ⊆ L is

a pair (S, p) where p is a formula of L and S ⊆ ∆i such that:

1. S is consistent;

2. S ⊢ p; and

3. S is minimal, so there is no proper subset of S that satisfies the previous

conditions.

S is called the support, or grounds, of A, and p is the conclusion of A. Any s ∈ S

is called a premise of A. The key aspect of argumentation is the association of
the grounds with the conclusion. The conclusion and support are exactly those
elements being exchanged in the dialogues described in the previous section.

The language, L, that we use here is constructed from:

– Lprop, a set of atomic propositions;

– Lpref , a set of formulae of the form: p1 > p2, where p1, p2 ∈ L
prop;

and

– Ldef , a set of defeasible Horn clauses of the form:

p1 ∧ . . . ∧ pn ⇒ c

where ⇒ is defeasible (rather than material) implication and

p1, . . . , pn, c ∈ L
prop ∪ Lpref
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Thus, L = Lprop ∪Lpref ∪Ldef . Inference in this system is by a defeasible form
of generalized modus ponens (DGMP):

p1, . . . , pn pi ∧ . . . ∧ pn ⇒ c
c (1)

and if p follows from a set of formulae S using this inference rule alone, we denote
this by S ⊢DHC p.

It is typical that from the data a given individual Agi has about a situation,
we can construct a set of arguments that conflict with each other. We might
have an argument (S, p) in favor of some decision option, and another argument
(S′,¬p) against it (in this case we say the arguments rebut each other). We
might also have a third argument (S′′,¬s) where s ∈ S is one of the grounds of
the first argument (in this case we say that (S′′,¬s) undermines (S, p)). Finally,
we might have a fourth argument (S′′′,¬i) where i is one of the conclusions
to one of the steps in (S, p). (This is another form of rebut, rebuttal of a sub-
argument.) Argumentation provides a principled way—or rather a number of
alternative ways—for Agi to establish which of a conflicting set of arguments are
acceptable [24]. In other words, when an agent should use the locution accept.

As mentioned above, we use argumentation because it allows us to link what
the robot says and does to what it has in its knowledge base. For example [25, 19],
we can link the assert locution to the robot’s knowledge base by only allowing the
robot to assert propositions b that are the conclusions of acceptable arguments.
Similarly, we can restrict the robot to only accept propositions for which it has
an acceptable argument. (Doing this leads to some desirable properties of the
dialogue, as discussed in [19].)

5 An Example

In related work [26], we have implemented a human/multi-robot framework in
which a human interacts with multiple robots to achieve a collaborative task. For
the purposes of collecting data from human subjects, the task is a treasure hunt

game in which the robots explore a region inaccessible to the human, send sensor
data (e.g., camera images) to the human to interpret, and the human identifies
“treasure” items in the images. The robots’ power is limited (i.e., battery life;
treated like “health points” in a video game), and is depleted by moving and by
sending images to the human. The robots (for purposes of the game) possess only
minimal image processing capabilities and must rely on the human to identify
anything of interest in an image. If the human believes that she has found a
treasure in an image, then she can send the image to the “game master” for
verification. If she is correct, then the human-robot team is rewarded with points.
If she is incorrect, then she and her teammates lose points. The goal of the game
is to locate as many treasures as possible before the robots run out of power. A
view of the treasure hunt arena, with three robots, is shown in Figure 8. This is
the view that the human player has during the game.

Following the logic described in Figure 2, the first task is for the human and
robots to agree on where the robots should search. For the purposes of using
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Fig. 8. Experimental arena

this game scenario to illustrate the dialogue implementation, we only consider a
dialogue between the human and one of the robots2.

In our example, the human and robot would like to achieve the goal:

found(treasure)

The robot holds the following information about the world:

at(treasure, region1)⇒ found(treasure)

at(treasure, region2)⇒ found(treasure)

. . .

at(treasure, regionN)⇒ found(treasure)

In order to achieve at(treasure, regioni), the following must be true:

in(picture, treasure) ∧

have(picture, regioni) ⇒ at(treasure, regioni)

In order to achieve have(picture, regioni), the following must be true:

at(robot, regioni) ∧

has(robot, camera) ∧

sense(camera) ⇒ have(picture, regioni)

2 Though the human/single-robot method can be applied in parallel to multiple robots,
by having the human engage in multiple conversations at once—like conducting mul-
tiple “chat” sessions with different, separate people in an instant messenger client.
We note that this obviously will not scale for very many robots (unless the human is
a teenager, in which case her capacity to chat with multiple friends at once appears
limitless to most adults), but testing the scalability is beyond the scope of this paper.
We focus on the human/one-robot mode.
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In order to achieve in(picture, treasure), the following must be true:

has(human, picture) ∧

analyse(picture) ∧

match(picture, treasure) ⇒ in(picture, treasure)

The robot knows that sense() is an action that it can perform, sense() ∈
ActionsR, and that analyse() is an action that the human can perform, analyse() ∈
ActionsH . In solving our example, the robot determines that it has to negotiate
with the human to perform the analysis, so it opens a Negotiation dialogue with
the human:

R : request(analyse(picture))

The human could respond with any of the locutions in the second level of the
tree in Figure 6. For the sake of the example, suppose that the human does not
have a picture to analyse, so she responds with:

H : promise(analyse(picture))⇒ have(picture, regioni)

In other words: the human is bargaining by making a promise to analyse a picture
if she has one. We can assume that she knows that the robot has to supply the
picture, so the robot agrees:

R : accept(analyse(picture))⇒ have(picture, regioni)

At the end of this negotiation, the human and robot have agreed to achieve two
tasks3:

analyse(picture)

have(picture, regioni)

The next step is to formulate a plan to accomplish these tasks. The robot
can take the initiative and open a Deliberation dialogue:

R : propose(at(robot, region1))

which the human will agree with:

H : accept(at(robot, region1))

unless the human doesn’t want the robot to go to region1, so she might express
a preference instead of accepting the robot’s proposal:

H : propose(at(robot, region4) > at(robot, region1))

Thus the human expresses a preference for the robot to go to region4 instead of
region1.

3 We could also think of these as subgoals.
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Now, the robot might wonder why the human has a preference for region4.
Perhaps the human knows something about region4 that makes it more likely
to find the treasure there. So the robot can suspend the Deliberation dialogue
and open an Information-seeking dialogue in order to get more information from
the human:

R : question(region4 > region1)

to which the human would assert her preference:

H : assert(region4 > region1)

which the robot would challenge:

R : challenge(region4 > region1)

forcing the human to defend her stance by presenting all her evidence from
which she draws the conclusion of preferring region4 over region1 (as explained
in Section 3.1).

The great advantage for using argumentation dialogues is that the rules for
these interchanges have been well laid out in the literature, for example [19]. The
rules force a dialogue either to terminate with agreement or end in an impasse.
There is a guarantee that a dialogue will never continue infinitely, because neither
participant is allowed to repeat a locution within any of the dialogue protocols.
In addition, there is a formal framework that defines how to combine dialogues
as we have described here [8]. Work in this area is ongoing.

6 Related Work

Scholtz [27] defines 5 different roles that humans may undertake when function-
ing in the same physical space as a robot: (i) bystander, (ii) supervisor, (iii)
operator, (iv) mechanic or programmer, and (v) teammate. In the first case (i),
the human is an observer who has no physical interaction or direct communica-
tion with the robot. In the next three cases (ii–iv), the human has a dominating
role over the robot in which the human either tells the robot what to do (ii and
iii) or actually programs the robot to perform a task (iv). The fifth case (v) is
the instance we are interested in: the case where the robot and human inter-
act as peers. Here, they must collaborate, which means discussing ideas about
which task(s) to perform and how to perform the task(s). Just like in any effec-
tive human-human collaboration, they should reach agreement about what to do
and how to do it before either partner takes any action, and, as we have shown,
argumentation-based dialogue is a way to achieve this. There is little other work
that has moved in the direction of cooperative human-robot interaction, and
here we briefly survey what there is.

In [28] the robot is intended to assist an astronaut working on the space
station. The robot handles tools, greatly improving the efficiency of the task, but
the need is primarily one of convenience and there is little need for assistance on
the human’s part. Other robots, such as the one developed by [29], use human
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teachers in a learning phase, then use that information to be more autonomous
at a later stage. [30] demonstrates a robot with affect as it wanders terrain with
a human but warns when its battery power is low, while [31] makes humans part
of an “operating system” where a computer determines, distributes and assigns
tasks to human and robot alike. In this application, while humans and robots
are team members, communication between humans and robots is not a priority.

Much of the work on human-robot cooperation involves less explicit com-
munication than we have explored here. [32] had a person take a mobile robot
by its arm and lead it (by pushing and pulling) around an obstacle course. In
a later phase, the human is led by the robot. In the phases where the human
is leading, the robot is learning the course. The robot’s sensors are of limited
capability, and thus needs human assistance in learning. In other versions of the
experiment, the human is blindfolded and the robot leads.

[33] takes a similar approach with a robot that leads people through an
office building to attend meetings. The authors describe this as a symbiotic
relationship. The robot in question is a mobile platform but it cannot open doors
or serve coffee. It can also have trouble localizing. Thus the robot is programmed
to ask for human help.

In work where communication is important, the focus is less on the content
of the communication than the delivery. For example the robot in [30] detects
negative valence in the human’s voice as well as some degree of facial recognition
of stress. It associates affect with its task list which helps determine priority
and it can express worry in its synthesized voice. Similarly, the robot in [34]
uses aspects such as eye contact, proximity, and vocal cues to more effectively
persuade a human subject to do things.

7 Summary

We have presented a model for human-robot interaction that supports flexible
and dynamic argumentation-based dialogue. Although this work is preliminary,
the ideas contribute not only to human-robot interaction, but also to argumenta-
tion, by outlining an end-to-end framework that combines theoretical models of
logical argumentation and argumentation-based dialogue applied to a real-time
setting. Our next steps include investigation of belief revision, as indicated in
Section 3, and specification of termination conditions for each type of dialogue.
Parallel work includes an implementation of the theory outlined here and a user
study, to test the efficacy of our method with human subjects in playing multi-
ple scenarios of the treasure hunt game [35]. In addition, the framework is being
applied to a human-agent interaction environment in which human users reason
about uncertain information received in real-time from multiple sources.
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