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Abstract. In this paper, we present a genetic algorithmic approach to automated
auction mechanism design in the context of CAT games. This is a follow-up to one
piece of our prior work in the domain, the reinforcement learning-based grey-
box approach [13]. Our experiments show that given the same search space the
grey-box approach is able to produce better auction mechanisms than the genetic
algorithmic approach. The comparison can also shed light on the design and eval-
uation of similar search solutions to other domain problems.
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1 Introduction

Auction mechanisms play an essential role in electronic commerce and in market-
based control and resource allocation in computer systems. A major challenge in these
domains is to design auction mechanisms that exhibit desired properties. Automated
mechanism design aims to solve the problem of mechanism design in an automated
fashion, typically by searching some space of possible mechanisms [3,5,19].

One piece of our prior work in this area is [13], in which we presented a what we
called grey-box approach to automated design of double auctions in the context of TAC
Market Design Competition (or the CAT Game) [14]. In the grey-box method, we use
a tree model to represent the search space and associate an n-armed bandit problem
solver [22, Chapter 2] to each node where multiple partial solutions to the same part
of the problem exist. The n-armed bandit problem solvers select building blocks so
that complete auction mechanisms can be constructed and evaluated in CAT games. The
performance of each sampled auction mechanism in CAT games is then used as feedback
for those building blocks in the mechanism. Our experiments showed that the grey-box
search was able to produce better auction mechanisms than those manually crafted by
participants in the first CAT Game.

As the tree model is independent of search methods, one follow-up question that
arises naturally is: How would the grey-box method perform compared to other search
methods? Indeed, other search methods have been used in automated auction mecha-
nism design, though focusing on some particular aspects of an auction mechanism. For
instance, Cliff [3] used a simple genetic algorithm (GA) to explore a continuum of prob-
abilities of the next shout in an auction coming from a seller (or a buyer) and Phelps et
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al. [19] used genetic programming (GP) in acquiring pricing rules for double auctions.
In this paper, aiming to answer the question raised above, we investigate how effective
simple GAs are in automated auction mechanism design based on the same tree model
(search space) as used in the grey-box search.

We first briefly review the grey-box method as well as the search space of double
auctions in the domain of CAT games in Section 2. Due to the space constraint, detailed
descriptions of these and other background information are not included here but can be
found in [13].3 Then Section 3 introduces the GA search method and Section 4 describes
the GA experiments we carried out and interprets the experimental results. Section 5 fur-
ther draws contrasts and makes connections between the grey-box method and various
evolutionary computational solution concepts and techniques, and finally concludes.

2 A Brief Review of the Grey-Box Method

The grey-box method aimed to search for auction mechanisms in the domain of the CAT
Game, an annual event held from 2007 through 2011 to foster research in electronic
market mechanism design [14]. In a CAT game, participants each operate an electronic
double-auction marketplace and the marketplaces compete against each other for mar-
ket share and profit. Traders are software agents provided by the game organizers. Each
trader is armed with a marketplace selection strategy as well as a bidding strategy so
that the trader can choose a marketplace to bid and trade in. A CAT game lasts a certain
number of trading days. Each trader has a chance before the start of each day to select
a marketplace to trade during that day and the marketplace can impose various charges
on traders, admission, transaction fee, etc. At the end of the day, each marketplace re-
ceives a daily score between 0.0 and 1.0, a combination of three components with equal
weights: share of trader population attracted, share of profit, and percentage of success-
ful trade offers. The marketplace, or indeed the auction mechanism designed for the
marketplace, that receives the highest cumulative score wins the game. The execution
of CAT games is supported by JCAT [15], the open source software package that we also
used to run the grey-box experiments [13] and the GA experiments in this paper.

In the grey-box method, the search space is modeled as a tree, which is depicted in
Fig. 1, an abbreviated version of Fig. 1 in [13]. The tree model illustrates how building
blocks are selected and assembled level by level. There are and nodes, or nodes, and
leaf nodes in the tree. An and node combines a set of building blocks, each repre-
sented by one of its child nodes, to form a compound building block. The root node, for
example, is an and node assembling policies, one on each major aspect of an auction
mechanism (M for matching policy, Q for quoting policy, A for shout accepting policy, C
for clearing condition, P for pricing policy, and G for charging policy),4 to construct an
auction mechanism. An or node represents the decision making of selecting a building
block from the candidates represented by the child nodes of the or node. A leaf node
represents an atomic block that can either be for selection at its or parent node or be
further assembled into a bigger block by its and parent node. A special type of leaf

3[13] is available at http://www.sci.brooklyn.cuny.edu/~jniu/research/publications/.
4A taxonomy of policies in this domain of auction mechanisms is described in detail in [16].

http://www.sci.brooklyn.cuny.edu/~jniu/research/publications/
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Fig. 1: The search space of double auctions modeled as a tree.

node in Fig. 1 is that with a label in the format of [x,y]. Such a [x,y] node is a convenient
representation of a set of leaf nodes that have a common parent—the parent of this
special leaf node—and take values evenly distributed between x and y for the parame-
ter labeled at the parent node. Note that both the grey-box search and the GA search to
be introduced below consider only mechanisms using a fixed charging policy, denoted
as GF0.1. This simplification aims to avoid the slow exploration in the particular corner
of the search space for charging policy, which involves significantly more parameters
and variations than those for other policies.

The grey-box method combines techniques from reinforcement learning, e.g., solu-
tions to n-armed bandit problem [22], and evolutionary computation, e.g., the use of a
Hall of Fame [20]. The general idea of this algorithm is to use n-armed bandit learners
to choose building blocks when needed so as to construct auction mechanisms based on
the tree model in Fig. 1, to run CAT games to evaluate the constructed mechanisms, and
to keep good mechanisms in a Hall of Fame.

In the tree model, or nodes contribute to the variety of auction mechanisms in
the search space and are where exploitation and exploration occur. We model each or
node as an n-armed bandit learner that chooses among candidate blocks, and we use
the simple softmax method [22, Section 2.3] to solve this learning problem. Solving
all the n-armed bandit learners in the tree will uniquely determine a configuration of
an auction mechanism, which is exactly how an auction mechanism is sampled in the
search space. The sampled mechanisms can then be put into a CAT game for evaluation.
The game score of a sampled mechanism not only suggests how good the mechanism
itself is, but is also an indicator of the performance of the building blocks that are used
in the mechanism. If a building block is due to the selection of an n-armed bandit learner
among the child nodes of the corresponding or node, the game score can be readily
used as the feedback for the building block. All such feedback to a building block
cumulatively serves as the expected return, or what we call the quality score, of the
building block. Thus, after a game completes, the quality scores of building blocks that
are children of an or node are updated, and so are the way how an auction mechanism
is sampled in the space in later steps.

In each CAT game that is run to evaluate sampled mechanisms, we include four
fixed, well known, mechanisms plus selected mechanisms that performed well at previ-
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ous steps and are from the Hall of Fame. The fixed set of four mechanisms in every CAT
game includes two clearing house (CH) mechanisms—CHl and CHh—and two contin-
uous double auction (CDA) mechanisms—CDAl and CDAh—with one of each adopting
the GF0.1 policy, charging a low 10% fee on trader profit and the other charging a high
100% fee on trader profit. The CH and CDA mechanisms have been used in the real world
for many years and were found competitive in the context of CAT games as well. The
selection of Hall of Famers to compete in the CAT game is based on the same softmax
method as used in choosing building blocks at each or node. More details on how the
Hall of Fame is maintained and Hall of Famers are selected can be found in [13].

3 The Genetic Algorithmic Approach

To compare the effectiveness of the grey-box approach with other search methods, we
carried out a new set of experiments, searching the same solution space as used in the
grey-box experiments based on the classic GA [6,10].

In these GA experiments, each individual auction mechanism is not represented by
a binary string as in a typical GA, but by a tree structure, since each individual auction
mechanism can be viewed as the result of making selections at the or nodes in the
tree model in Fig. 1 (it is exactly the case in the grey-box experiments), and thus be
conveniently represented by the tree structure after the unselected branches of the or
nodes are cut off from the tree model. For example, the tree on the left side in Fig. 2
represents the auction mechanism ME + QS + ADw=3 + CPp=0.4 + PUk=0.7 + GF0.1.

The tree-based encoding of an individual requires specialized mutation and crossover
operators, due to the hierarchical construction and the different types of node in the
tree. The diversity of auction mechanism individuals in the space originates from the
or nodes, so mutation and crossover occur only at or nodes. To apply mutation to an

individual, it is decided probabilistically, based on the mutation rate, at each or node
in its tree-based encoding whether the node selects a different child node from the tree
model. If yes, the original child (and its children if any) is replaced by the new child,
which is uniformly selected from all the possible choices other than the original one.
If the new child requires its own descendants, the whole subtree is added. Descendants
that are or nodes make their selections randomly, in contrast to the way in the grey-box
experiments where selections are made based on the quality scores of different choices.
Fig. 2 demonstrates an example of mutation on the auction mechanism given above,
with the encoding before mutation on the left side and the encoding after mutation on
the right side. The node C is the only place where mutation occurs and as a result the
branch CPp=0.4 is replaced by CR, both enclosed by dotted lines.

Crossover occurs between two auction mechanism individuals in the GA exper-
iments, and only at or nodes similar to what happens with mutation. To perform
crossover, indeed single-point crossover, between two individuals, the or nodes that
appear in both trees and have different children respectively in the two trees are col-
lected; then one of these collected nodes is selected randomly as the place to possibly
perform the crossover; and finally it is decided probabilistically, based on the crossover
rate, whether or not to perform the crossover, and if yes, the two appearances of the
selected node in the two trees switch their children. Fig. 3 demonstrates the crossover
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Fig. 2: An illustration of mutation in the GA, before mutation on the left side and after
mutation on the right side. The replaced and replacing subtrees are both enclosed by
dotted lines.
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Fig. 3: An illustration of crossover in the GA between two individuals. The or nodes
at which crossover can be performed are marked with • in the original encodings. P is
selected to be the place where crossover is actually performed. The two subtrees with P

as the root in the two trees are swapped and enclosed by dotted lines.

between two individuals—identified as a and b in the figure respectively. In Fig. 3, the
or nodes at which crossover can be performed are marked with •, including M, Q, P,

and p. A and C are excluded because their children in the two trees respectively are also
identical, while θ and p in individual a and n in individual b are excluded because they
appear in only one of the two trees. Random selection among the eligible nodes picks P.
After a probabilistic test based on the crossover rate is taken and turns out to be positive,
the subtrees PUk=0.2 in a and PNn=7 in b, both enclosed by dotted lines in the figure, are
swapped, producing two new individuals.

The skeleton of the GA algorithm that is used in our GA experiments is given in Al-
gorithm 1. These GA experiments adopt the same search space of auction mechanisms,
the same set of fixed auction mechanisms to evaluate the fitnesses of the mechanisms
sampled from the space, and the same idea of using a Hall of Fame to produce output
as in the grey-box experiments.

The initial generation of auction mechanism individuals in each GA experiment is
created by randomly sampling the search space in exactly the same way as at the be-
ginning of the grey-box search until a certain number (size of population) of indi-



6 A Genetic Algorithmic Approach to Automated Auction Mechanism Design

Algorithm 1: The GA-AMD algorithm.

Input: B, FM
Output: HOF

1 begin
2 HOF←∅
3 for g← 1 to num of generations do
4 if g = 1 then
5 P← Init-Population(B)

6 else
7 P← Select-Population(P)
8 P← Crossover-Population(B, P, rco)
9 P← Mutate-Population(B, P, rm)

10 P← Randomize(P)
11 for i← 1 to |P|/num of samples do
12 G← Create-Game()
13 SM←∅
14 for m← 1 to num of samples do
15 SM← SM ∪ {P[(i−1)∗num of samples+m]}
16 EM← Select(HOF, num of hof samples)
17 Run-Game(G, FM∪EM∪SM)
18 foreach M ∈ EM∪SM do
19 Update-Market-Score(M, Score(G, M))
20 if M /∈HOF then
21 HOF←HOF ∪ {M}
22 if capacity of hof < |HOF| then
23 HOF←HOF − {Worst-Market(HOF)}

Function Init-Population.

Input: B
Output: P

1 begin
2 P←∅
3 for i← 1 to size of population do
4 M← Create-Market()
5 for t← 1 to num of policytypes do
6 B← Select(Bt , 1)
7 Add-Block(M, B)

8 P← P ∪ {M}

viduals are obtained (see Function Init-Population). Each of the subsequent generations
is created through steps of selection, crossover, and mutation from the previous gen-
eration. The selection step, shown in Function Select-Population, is a combination of
elitism and roulette wheel selection. Elitism selection keeps a certain number of fitter
individuals in the next generation based on the elitism rate, which determines the size
of the portion of the population to be considered as elite individuals. Roulette wheel
selection fills the rest of the population by probabilistically selecting among all the in-
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Function Select-Population.

Input: P
Output: P′

1 begin
2 P′←∅
3 Descending-Sort(P)
4 ne← size of population∗ re
5 for i← 1 to ne do
6 P′← P′ ∪ {P[i]}
7 s← 0
8 for i← 1 to size of population do
9 s← s + Score(P[i])

10 for i← ne to size of population do
11 k← size of population
12 r← Uniform(0,s)
13 for j← 1 to size of population do
14 r← r − Score(P[i])
15 if r <= 0 then
16 k← j
17 break

18 P′← P′ ∪ {P[k]}

Function Crossover-Population.

Input: B, P
Output: P′

1 begin
2 P′←∅
3 ne← size of population∗ re
4 for i← 1 to ne do
5 P′← P′ ∪ {P[i]}
6 for i← 1 to (size of population−ne)/2 do
7 P′← P′ ∪ {Crossover-Individuals(B, P[ne + i∗2−1], P[ne + i∗2],rco)}

Function Mutate-Population.

Input: B, P
Output: P′

1 begin
2 P′←∅
3 ne← size of population∗ re
4 for i← 1 to ne do
5 P′← P′ ∪ {P[i]}
6 for i← ne to size of population do
7 P′← P′ ∪ {Mutate-Individual(B, P[i], rm)}

dividuals in the previous generation. The probability of an individual being selected
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each time is proportional to its fitness, which is its average daily score in the game
that it participated in during the evaluation of the previous generation. This type of se-
lection has a known problem that individuals with low fitnesses have little chance to
get selected when the fitnesses of individuals differ dramatically. Due to the scoring
scheme of the CAT game, the typical daily score of an auction mechanism ranges from
0.1 to 0.5, so the usual drawback of roulette wheel selection does not have big impact
in this GA algorithm. The individuals that are picked in roulette wheel selection then
go through the crossover and mutation steps. In the crossover step, shown in Func-
tion Crossover-Population, individuals are paired up and each pair is probabilistically
recombined (Crossover-Individuals() in Line 7) as we described above and illus-
trated in Fig. 3. In the mutation step, shown in Function Mutate-Population, individuals
are each probabilistically mutated (Mutate-Individual() in Line 7) as we described
above and illustrated in Fig. 2.

To evaluate a generation of auction mechanism individuals, all the mechanisms are
randomly divided into groups. For each group, a CAT game is created, and, similar to
those games in the grey-box experiments, this CAT game also includes a set of fixed mar-
ket mechanisms and a certain number of mechanisms sampled from the Hall of Fame.
After the game, the Hall of Fame is updated to incorporate the scores of the partici-
pating Hall of Famers and include new individuals from the generation that performed
well. The way in which the Hall of Fame is manipulated is exactly the same as in the
grey-box experiments. As mentioned above, the average daily scores of the individuals
are used as their fitnesses in the selection step.

4 Experimental Setup and Results

In the GA experiments, each game is configured to evaluate two individuals from the
population as in the grey-box experiments. To compare the performances of the two
approaches, the population consists of 20 individual auction mechanisms at each gen-
eration and evolves over 20 generations so that each GA experiment makes use of ap-
proximately the same number of CAT games in total (200) as in a grey-box experiment.5

Some experiments based on the GA may have a population of thousands of individuals
or even more. Our experiment cannot support a population of this size due to the high
computational cost of running CAT games. The 20 generations and the population of 20
individuals are the result of balancing the two parameters under the constraint of the
total number of CAT games to run. The elitism rate, re, the crossover rate, rco, and the
mutation rate, rm, are set to be 0.1, 0.7, and 0.05, which are typical in the GA experi-
ments reported in the literature [7,9]. Table 1 summarizes the values of parameters and
inputs of Algorithm 1 in our GA experiments.

5As the Hall of Fame is empty at the beginning of each GA experiment, the first CAT game in-
cludes four individuals from the population, so the total number of games to evaluate the 20
generations is actually 199. But the difference of one game can be negligible. In theory, it is
possible to design the experiments to run exactly the same number of CAT games as long as
num of generations×size of population= 402 and size of population%2 = 0, how-
ever the integer solutions—201 and 2, or 67 and 6—to this equation are not practical for the GA
as size of population is too small.
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Table 1: The values of parameters and inputs of the GA experiments.

Parameter Value Parameter Value

num of generations 20 re 0.1
size of population 20 rco 0.7
num of samples 2 rm 0.05
num of hof samples 2 τ† 0.3
capacity of hof 10 α† 1
num of policytypes 5 FM {CHl , CHh, CDAl , CDAh}

† τ and α are parameters in the softmax solver used by the Select(HOF,
num of hof samples) function, which is exactly the same in the grey-box search in [13].

To provide a better comparison, we ran two sets of GA experiments, one without
crossover and the other with it. Fig. 4 and 5 show the daily scores of the four fixed
auction mechanisms and the top Hall of Famers over time in two sets of GA experiments
together with those from the grey-box experiments. All the results are averaged over 40
runs. Note that the x axes in the subfigures are step (as in the grey-box experiments),
or equivalently the number of games that have been run, rather than generation that is
common in plotting results from GA experiments. This presentation makes it easier to
compare the results of the GA experiments with those from the grey-box experiments.

Plots in Fig. 4a and 4b, from the two sets of GA experiments respectively, exhibit the
similar pattern as those in Fig. 4c, which are from the grey-box experiments. The scores
of the four fixed auction mechanisms are at approximately the same positions across
the three cases and then all descend until they settle down around certain values. These
auction mechanisms ended up with the same relative ranking positions in these different
cases. The difference is that in the end each of the four auction mechanisms settles down
with different scores in different cases, the highest in the GA without crossover and
the lowest in the grey-box search. This suggests that the auction mechanisms explored
in the grey-box experiments are overall the most competitive while those explored in
the GA experiments without crossover are the least competitive. This further indicates
that the grey-box search is more effective than both versions of the GA search and as
expected crossover plays an important role in the GA. Fig. 5 indicates exactly the same.
Fig. 5a and 5b, from the two sets of GA experiments respectively, show that the scores
of the Hall of Famers increase dramatically at the beginning of the experiments and
flatten out at the end around certain positions that are lower than those in Fig. 5c.

Table 2 lists respectively the average scores of the best fixed auction mechanism,
and the best and worst Hall of Famers at the end of the two versions of GA experiments
and the grey-box experiments. At the 95% confidence level, any two values in the sec-
ond row or any two values in the third row are significantly different from each other.
That is to say that the Hall of Famers produced by the grey-box experiments are signif-
icantly better than those produced by the GA experiments. The scores of the best fixed
auction mechanism in the three cases agree to this finding, but they are not significantly
different. This less significance is possibly due to the fact that the CAT game is not a
zero-sum game, since the transaction success rate of a mechanism in a CAT game is rel-
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(b) GA with crossover.
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Fig. 4: Scores of the four fixed auction mechanisms in the two sets of GA experiments,
one without crossover and the other with crossover, and those in the first set of grey-box
experiments, each averaged over 40 runs. (c) is originally Fig. 2(a) in [13].
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Fig. 5: Scores of the Hall of Famers in the two sets of GA experiments, one without
crossover and the other with crossover, and those in the first set of grey-box experi-
ments, each averaged over 40 runs. (c) is originally Fig. 2(b) in [13].

atively independent from the performance of its opponents, which counts for one third
of its total score. Thus the gain of a stronger auction mechanism does not necessarily
mean the same amount of loss of the losing mechanism given that all the rest of the
configuration remains the same.6

To further investigate the effectiveness of the grey-box search in comparison with
the GA search, we ran additional experiments to let the Hall of Famers produced by the
grey-box experiments and the two sets of GA experiments compete against each other
directly. Each of the three sets of experiments produced dozens of the Hall of Famers
(69 from the grey-box experiments, 45 from the GA experiments without crossover, and
71 from the GA experiments with crossover).7 We ran 100 CAT games with eight auction
mechanisms in each game, which includes two of the fixed auction mechanisms, CDAl
and CHl , and two randomly selected auction mechanisms from each of the three set
of Hall of Famers. Other than this, the CAT games are configured exactly the same as

6One example is that the scores of CDAh and CHh flatten out much earlier during the experiments
than the scores of CDAl and CHl in all the three cases in Fig. 4.

7A Hall of Famer may come from more than one run of the same experiment.
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Table 2: The average daily scores of the best fixed auction mechanism and the best Hall
of Famers in the CAT games at the end of the GA experiments, and those at the end of the
first set of grey-box experiments. In parentheses are the standard deviations. The scores
in the second row are significantly different from each other at the 95% confidence level
and so are those in the third row.

Auction mechanism GA without crossover GA with crossover greybox†

Best fixed mechanism (CDAl) 0.3260 (0.0224) 0.3203 (0.0230) 0.3101 (0.0659)
Best Hall of Famers 0.4275 (0.0233) 0.4496 (0.0340) 0.4652 (0.0210)
Worst Hall of Famers 0.3389 (0.0255) 0.3554 (0.0192) 0.3790 (0.0219)

† The values in this column are originally from [13].

Table 3: The average daily scores of the Hall of Famers produced by the GA experi-
ments and the first set of grey-box experiments in direct competition in CAT games. In
parentheses are the standard deviations. The scores are significantly different from each
other at the 95% confidence level.

GA without crossover GA with crossover greybox

0.3481 (0.0201) 0.3643 (0.0188) 0.4155 (0.0291)

we did in the grey-box experiments and the GA experiments. Table 3 lists the average
daily scores of the three set of auction mechanisms. At the 95% confidence level, the
scores of the Hall of Famers from the grey-box experiments are significantly higher
than those from either set of the GA experiments. We showed in [13] that the grey-box
search was able to find mechanisms that are stronger than well known double auction
mechanisms when competing directly in CAT games and are better than mechanisms that
were reported in the literature in term of various economic properties and confirmed
that the grey-box search can consistently produce similar results when, for example,
the capacity of the Hall of Fame varies. This work provides one more piece of evidence
for the superiority of the grey-box approach by comparing the results of the grey-box
experiments and those of experiments based on different versions of the classic GA.8

5 Discussions, Future Work, and Summary

In this section, we draw contrasts and make connections between the grey-box approach
and evolutionary computational approaches including GAs, GPs, and their variants. First,
we can compare our grey-box approach to prior work on automated auction mechanism
and trading strategy acquisition based on simple GAs, including Cliff et al. [4] and
Phelps et al. [18] as well as ours reported here. A simple GA, or SGA, evolves genomes,

8We actually ran additional sets of GA experiments with crossover, each with a different crossover
rate, 0.1, 0.4, or 1.0, in contrast to 0.7 that was used in the GA experiments described in the text.
It turned out that the GA experiments using 0.7 produced the best results and hence only the
results of this set of experiments were included in the text in the comparison against those of the
grey-box experiments.
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or binary strings, using selection, crossover, and mutation operators, while the grey-box
approach evolves a vector of quality scores, each for a pre-defined building block, and
explores the solution space by biasing those building blocks that lead to better solutions.
A SGA maintains a set of sampling points in the solution space and tries to arrive at
points of higher fitness that are accessible by applying the operators, while the grey-box
approach tends to view the solution space along multiple dimensions simultaneously,
maintain a hyperplane that divides the solution space into slices, adjust the sizes of the
slices, and identify and explore more in those of high fitness.

A popular theory that intends to explain the effectiveness of SGAs in many opti-
mization domains is the building block hypothesis, or BBH [10,12]. The BBH argues that
certain building blocks of low order and low defining length, called schemata,9 in the
genome play a substantial role in constructing genomes of high fitness. The operators
of SGAs enable the process to concentrate sampling in subspaces that are identified by
these schemata and further in the common areas of these subspaces that have increas-
ing fitness through mixing different schemata. Based on this argument, Thierens and
Goldberg [23] indicated that computational expense grows exponentially with the dif-
ficulty of the problem, in terms of the number of schemata and the orders of schemata.
Efforts have been made to address this issue with SGAs and improvements to SGAs
were proposed by either explicitly exploring to identify schemata or implicitly using
special operators to avoid breaking possible schemata in the sampled solutions [2,11].
The grey-box approach has similarities to these advanced GAs10 since the grey-box ap-
proach explicitly considers the building blocks for auction mechanisms and biases its
search towards the corners in the search space that correspond to high quality blocks.

The idea of the grey-box approach is in particular similar to that of the compact GA,
or CGA, which was introduced by Harik et al. [8]. A CGA represents the population as
a probability vector, rather than as a set of binary strings, where the ith component of
the probability vector gives the probability that the ith bit of an individual’s genome is
1. Compared with SGAs, CGAs have compact representations and work well in practice.

The tree-based model of auction mechanisms in our work bears similarities on the
surface to the tree structures in GP, though the tree structure in the former case represents
the whole search space and quality scores of building blocks reflect the fitness landscape
of the space while tree structures in the latter each represent one individual in the search
space and contains no information themselves about how fit they are.

Another topic in evolutionary computation that is related to grey-box search is the
problem of early convergence to suboptimal solutions. In the grey-box experiments,
parameters of the softmax exploration method in the n-armed bandit problem solvers
were carefully set up so that sampling in the search space starts with near randomness
and gradually biases modestly towards areas that are fitter than others. Techniques em-
ployed in evolutionary computation to address the problem of premature convergence,
including fitness sharing, crowding, and mutation with high rate, are based on similar
considerations [10,21]. For example, fitness sharing lowers the fitness of an individual

9A schemata is typically represented in the form, for example, ****01*1***, where * can match
0 or 1. The defining length of a schemata is the maximal distance between bits with deterministic
values, and the order of a schemata is the number of bits with deterministic values.

10These are sometimes called competent genetic algorithms.
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by a certain amount, which basically reflects the number of similar individuals in the
population, so that similar individuals with high fitness will not be able to prevail in the
next generation. In so doing, the whole population could remain diverse, approaching
multiple optima in the space in parallel if applicable. In fact, as a piece of future work,
these techniques can be incorporated into our GA experiments to see if the experiments
can produce similar or even better results than the grey-box experiments.

Finally, our grey-box approach should be distinguished from Ronald A. Fisher’s
work in population genetics [1]. Fisher, in his research on Mendelian inheritance, as-
sumed that—as paraphrased by Sewall Wright11—

. . . each gene is assigned a constant value, measuring its contribution to
the character of the individual (here fitness) in such a way that the sum of the
contributions of all genes will equal as closely as possible the actual measures
of the character in the individuals of the population.

Wright disagreed with the view of the linear additive contribution of genes and insisted
that, based on his experimental work, genes favorable in one combination are extremely
likely to be unfavorable in another. Our grey-box approach is not based on Fisher’s ar-
gument, although the vector of quality scores undoubtedly converges and better auction
policies would obtain higher scores if the argument holds in the case of auction mech-
anisms. When the argument does not hold, which we believe is the case based on our
experience with the experiments using CAT games, our grey-box approach may help to
obtain insights on which auction policies can make better or bad combinations, and on
how to design new, better policies that work better with others.

To summarize, the main contribution of this work is that we apply two different
search methods in the same solution space and make a fair comparison between the two
approaches, the first piece as we are aware of in the context of experimental auction
mechanism design. As the search methods are domain independent, considerations in
designing our algorithms and experiments and the discussions above can shed light on
the design and evaluation of similar search solutions to other domain problems.12
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