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Abstract. In this paper we describe an analysis of two double auction markets—
the clearing house auction and the continuous double auction. The complexity of
these institutions is such that they defy analysis using traditional game-theoretic
techniques, and so we use heuristic-strategy approximation to provide an approx-
imated game-theoretic analysis. As well as finding heuristic-strategy equilibria
for these mechanisms, we subject them to an evolutionary game-theoretic analy-
sis which allows us to quantify which equilibria are more likely to occur. We then
weight the design objectives for each mechanism according to the probability dis-
tribution over equilibria, which allows us to provide more realistic estimates for
the efficiency of each mechanism.

1 Introduction

A double-auction mechanism is a generalization of an auction in which both buyers
and sellers are allowed to exchange offers simultaneously.Since double-auctions allow
dynamic pricing on both the supply side and the demand side ofthe marketplace, their
study is of great importance, both to theoretical economists, and those seeking to im-
plement real-world market places. On the one hand, economists who are interested in
theories of price formation in idealized models of general markets have often turned to
exchange-like models such as Walrasian tâtonnement, to describe and understand the
price-formation process [2], and on the other, variants of the double-auction are used
in large real-world exchanges to trade commodities in marketplaces where supply and
demand fluctuate rapidly, such as markets for stocks, futures, and their derivatives [7].

However, the models of exchanges traditionally used by economists in general equi-
librium theory are often simplified for the purposes of analytical tractability to such an
extent that they are of scant relevance to the designers of real-world exchanges, and
even, it is sometimes argued, of scant relevance to the theoretical modelling of markets.
For example, one important simplification often made is thatthe number of agents par-
ticipating in a market is very large; this simplification allows relative market power and
consequentstrategic effectsto be ignored. However, in many real-world marketplaces,



such as deregulated wholesale electricity markets, there may be relatively few competi-
tors on one or both sides of the market. With small numbers of participants, general
equilibrium models break down because they fail to allow formarket power, and the
potential gains of strategic behavior, of participants.

An alternative approach is a sophisticated micro-theory ofmarketplaces calledauc-
tion theory, in which the rational behavior of individual agents faced with different
pricing institutions is analyzed using game theoretic techniques. Whereas neoclassical
equilibrium theory often abstracts away from the details ofindividual agents, game-
theoretic models allow economists to build sophisticated micro-models of individual
agents’ reasoning and preferences. In many scenarios, especially in analyzing single-
sided monopoly markets, these models have been spectacularly successful to the extent
where they have been directly applied to the design of real-world auctions for high-value
government and corporate assets [9]. However, in other practical scenarios, especially
when it comes to analyzing and designing double-sided markets, such as exchanges,
there are still a number of problems with the theory, which weshall briefly review.

Auction-theorists typically analyze a proposed market institution by defining a set
of design objectives, and then proceed to show that these design objectives are brought
about when rational agents follow their best strategies according to a game-theoretic
analysis. The typical design objectives considered by auction-theorists are:

Allocative efficiency: The outcome of using the mechanism should be optimal in some
defined sense, for example, the total surplus generated should equal the available
surplus in competetive equilibrium.

Budget balance: No outside subsidy inwards or transfers outwards are required for a
deal to be reached.

Individual rationality: The expected net benefit to each participant from using the
mechanism should be no less than the net benefit of any alternative.

Strategy-proofness:Participants should not be able to gain an advantage from non-
truthtelling behavior.

In many applications, auction-theory demonstrates the existence of market mechanisms
that satisfy all of these properties when agents follow rationally prescribed bidding
strategies. However, the impossibility result of [13] demonstrates that nodouble-sided
auction mechanism can be simultaneously efficient, budget-balanced and individually-
rational. Moreover, many of the underpinnings of the theoryassume that designers’
interests are restricted to only the aforementioned properties. For example, the revela-
tion principle states that, without loss of generality, we may safely restrict attention to
mechanisms in which agents reveal their types truthfully. However, this result does not
take into account the potential cost or other impracticalities of polling agents for their
type information. Once minimizing the cost of revelation isintroduced as a design ob-
jective, the revelation principle ceases to hold, because there may exist partial-revelation
mechanisms with non-truthful equilibria which sacrifice strategy-proofness for expedi-
ence of revelation. This is of more than academic interest, since in real-world electronic
exchanges it is rarely possible to pollall agents for their valuations before clearing
the market; hence thecontinuousdouble-auction, in which we execute the clearing op-
eration as new offers arrive, thus increasing transaction throughput at the expense of
strategy-proofness.



In designing market places, as with any other engineering problem, we often need to
make such tradeoffs between different objectives depending on the exact requirements
and scenario at hand. We can often satisfactorily solve suchmulti-objective optimisation
problems, provided that we have some kind of quantative assessment of each objective,
yet classical auction-theory provides only a binary yes or no indication of whether each
of its limited design objectives is achievable, making it extremely difficult to compare
the different trade-offs.

Further complications arise when we attempt to use auction-theory to analyze exist-
ing (“legacy”) market institutions. Exchanges such as the London Stock Exchange have
been in existence far longer than game-theory and auction-theory, thus, unsurprisingly,
the original rules of the institution were not necessarily based on sound game-theoretic
or auction-theoretic principles. Moreover, it is unrealistic to expect that core financial
institutions such as these radically alter their rules overnight in response to the lat-
est fashionable developments in auction-theory or game-theory. Rather, it may be more
salient to view financial institutionsevolvinggradually and incrementally in response to
a changing environment [12]. Similarly, agents participating in these institutions do not
necessarily instantaneously and simultaneously adjust their trading behavior to the the-
oretical optimum strategy; for example, adoption of a new trading strategy may spread
through a population of traders as word of its efficacy diffuses in a manner akin to
mimetic evolution.1 Thus, we may think of the institutions we see today as the out-
come of aco-evolutionaryadaptation between financial institutions on the one hand,
and trading strategies on the other.

The issue of legacy institutions has ramifications for auction-design; in these con-
texts the choice of adjustments to the auction rules may be tightly constrained by ex-
isting infrastructure, both physical and social, thus it may be necessary to examine the
attainabilityof equilibria under the new design given existing strategicbehavior in the
legacy design. Classical auction theory relies on classical game-theory which in turn
says nothing about the dynamics of adjustment to equilibrium.

For such applications, we need to turn to models of evolutionand learning in strate-
gic environments; models that we collectively categorize under the banner ofevolu-
tionary game theory. Models of learning and evolution as applied to agents’ strategies
are not new. Where our approach differs, however, is in the application of models of
learning and evolution to the market mechanism itself, a newfield we callevolutionary
mechanism design[16, 3].

In this paper, we extend our previous work on evolutionary mechanism design by
describing a more sophisticated means of analyzing the performance of a mechanism.
Previously we have either evolved trading strategies alongwith the mechanism [16], or
used a single heuristic bidding strategy [17]. Here we use a mix of heuristic strategies,
and describe a rigorous and fully automated way of evaluating a mechanism using this
mixture. We start in Section 2 with a description of the mechanisms we are studying
here, and, in Section 3 with use of several heuristic strategies. Then, in Section 4, we
describe our experimental set up, and in Section 5 how we use these results to establish

1 The adoption by derivatives traders of the Black-Scholes equation for option pricing provides
an example [10].



the evolutionary behavior of the markets. Section 6 gives results, and Section 7 analyses
them before Section 8 describes the work that we will pursue next.

2 The Continuous Double Auction verses the Clearing-House

In a typical exchange, the market institution attempts to match offers to buy with offers
to sell in such a way that the overall surplus extracted from the market is maximized.
If offers are considered as signals of agents’ valuations for a resource, and assuming
agents signal truthfully, then an auctioneer can maximize allocative efficiency by match-
ing the highest buy offers with the lowest sell offers. In this paper we compare two types
of exchange:

– a market in which trades are executed as new offers arrive, and
– a market in which we wait for all traders to place offers before clearing the market.

Following the terminology of [6], we refer to the former as the continuous double-
auction (CDA) and the to the latter as the clearing-house (CH).

On casual inspection of theCDA, we might expect that it is designed according
to the revelation principle, and so should maximize allocative efficiency when agents
signal truthfully. Surprisingly, however, it turns out that surplus extraction in aCDA is
extremelypoor under direct revelation—typical values are approximately80 percent,
which is extremely low compared with outcomes of almost 100 percent which are ob-
served with the non-truthful strategies that are actually adopted by real traders.

The reason for this poor efficiency is easy to spot; the continuous clearing rule
results in myopic matching; when the clearing operation is performed the auctioneer
has only a partial view of the aggregate supply and demand in the market place. In order
to maintain a high throughput of actual transactions, the auctioneer impatiently clears
the market before every trader has the opportunity to place their bid. The extremely
surprising thing about this institution, however, is that rational agents acting locally
to maximize their own profit are able to compensate for this efficiency loss by placing
extra-marginal, non-truthful bids, which collectively result in high-efficiency outcomes.

Much analysis of theCDA has focused on showing that although theCDA is not a
direct revelation mechanism (DRM), it can be considered an almost-DRM by virtue of
the fact that trading strategies with only a minimal amount of intelligence are able to
extract high surpluses from the market [4]. However, such approaches are unsatisfactory
because they fail to demonstrate that such minimalist strategies aredominantagainst
more sophisticated strategies.

Ideally, we would like to find the game-theoretic solution for the CDA, and show
that although truth-telling or other minimalist strategies are not dominant, we can still
find the theoretical mix of strategies that are best-responses to each other, and demon-
strate that the institution performs well in game-theoretic equilibria. However, even at
this point, theCDA along with other variants of the double-auction market, confounds
auction theorists by admitting of no clear equilibrium solution [19].2 Hence in the ab-
sence of robust analytical tools, much analysis of this institution has used an ad-hoc

2 Though this reference is dated, to the best of our knowledge it is still the case that theCDA has
no such solution.



mixture of computer simulation and laboratory experiments[7]. These techniques are
invaluable, since they are able to faithfully incorporate many of the complex details of
the market institution which lead to intractability under conventional analysis. How-
ever, the results thus obtained are often critised for beingdifficult to generalize in the
absence of compelling models that explain the observed outcomes.

Recently, however, techniques have been developed that combine simulation-based
approaches with an approximated game-theoretic analysis.In the following sections, we
describe and then adopt the technique proposed by Walsh and colleagues [23]. However,
our work extends the scope of Walshet al.’s use of their technique. Whereas the orig-
inal work focuses on designingstrategiesfor a given institution, specifically theCDA

institution, we build on this work by applying the same technique formechanismdesign
issues, using it to compare theCDA andCH institutions.

3 Heuristic-Strategy Approximation

Walsh et al. introduce an approximation technique for analyzing games such as the
CDA where the sheer size of the strategy and player-type spaces makes an exhaustive
game-theoretic solution impractical [23].

3.1 Basic approach

The central idea is simple. Rather than considering every possible pure strategy and
type in the multi-stage game, Walshet al.simplify the analysis by considering a limited
number of high-levelheuristicstrategies, such as Cliff’sZero-Intelligence Plus(ZIP)
strategy [4], and treat these high-level strategies as if they were simple pure strategies
in a normal form game. For small numbers of players and high-level strategies, this
gives rise to a relatively small normal form game payoff matrix which is amenable
to game-theoretic solution. Thisheuristicpayoff matrix is calibrated by running many
simulations of the market game; variations in payoffs due todifferent player-types are
averaged over many samples of type information resulting ina single mean payoff to
each player for each entry in the payoff matrix. Players’ types are assumed to be drawn
independently from the same distribution, and an agent’s choice of strategy is assumed
to be independent of its type, which allows the payoff matrixto be further compressed,
since we simply need to specify the number of agents playing each strategy to determine
the expected payoff to each agent. Thus for a game withk strategies, we represent
entries in the heuristic payoff matrix as vectors of the formp = (p1; : : : pk)
wherepi specifies the number of agents who are playing theith strategy. Each entryp 2 P is mapped onto an outcome vectorq 2 Q of the formq = (q1; : : : qk)
whereqi specifies the expected payoff to theith strategy. For a game withn agents, the
number of entries in the payoff matrix is given bys = nk � 1(k � 1)! (1)



For smalln and smallk this results in payoff matrices of manageable size; fork = 3
andn = 6, 8, and10 we haves = 28, 45, and66 respectively. For very largen the game
becomes intractable, but this is not of major concern since our interest is specifically in
markets with small numbers of traders where strategic effects are likely to be prominent.

3.2 Choice of heuristic strategies

For moderately large values ofk, combinatorial explosion rapidly leads to intractability.
This constraint is of more concern than the constraint onn, since in any realistic trading
environment we might, a priori, expect agents to be confronted with a vast number of
high-level strategies from which to choose. There are, for example, many automated
strategies that have been proposed in the literature [4, 5, 8, 18, 22]. However, there is
evidence to show that in many real-life market scenarios traders choose from a lim-
ited number of heuristic strategies. For example, [15] discusses the observed strategic
interaction between human agents and two predominant automated bidding strategies
commonly used on two real-world auction institutions with different auction designs
(Amazon and eBay).

Following these results, we base our work in this paper on thepremise that we are
modeling the effect of the adoption of automated trading agents in theCDA and CH

markets. Thus we compare the behavior of traders using a wellknown automated strat-
egy for the double-auction [18], and one that has been developed to emulate human
strategic behavior in market settings [5]. By comparing these representative heuristic
strategies we hope to gain insight into whether non-homogeneous populations of hu-
man and agent-based traders are strategically stable, and the likely market outcomes
when human and agent-based traders interact. In addition, because we are interested
in the strategy-proofness of the mechanisms themselves under different conditions, we
also introduce the truth-telling strategy. If a mechanism is strategy proof, it should not
be possible to do better than when truthfully report one’s limit price. Thus we havek = 3 heuristic strategies, which is well within the limits of tractability for the Walsh
approximation technique.

4 Experimental setup

In order to compare theCDA andCH, we must first generate a heuristic payoff matrix
for each institution by sampling many simulations of the market game. We made use of
theJASA auction simulator3 which implements aCDA marketplace as described in [22],
as well as aCH marketplace where the market is not cleared until offers from all agents
have been received.

In order to model human-like trading behavior, we adopt a trading strategy based on
a modified version of the Roth-Erev learning algorithm [5] asdescribed in [14], which
we abbreviateRE. This is the same version of the Roth-Erev algorithm that we have
used in our previous work [16, 17]—basically a reinforcement learning approach that
builds up a probability distribution over the space of possible bids. We pit this against a

3 http://www.csc.liv.ac.uk/˜sphelps/jasa



strategy based onZIP, but modified for persistent-shout markets as described by Preist
and Van Tol [18], which we abbreviatePvT , and the truth-telling strategy which simply
bids at the agent’s limit price, which we abbreviateTT .

As in [23], at the start of each game half the agents are randomly assigned as buyers
and the remainder are chosen as sellers. For each run of the game, we choose limit prices
from the same uniform distribution as [23], but limit pricesremain fixed across periods
in order to allow agents to attempt to learn to exploit any market-power advantage
in the supply and demand curves defined by the limit prices forthat game (This is
common in much experimental work in this area [4, 21], and makes it possible for both
artificial traders and humans to exploit memory to quickly converge on trade prices).
Additionally, although we discard limit-prices which do not yield an equilibrium price,
we do not ensure that a minimum quantity exists in competitive equilibrium as this
introduces a floor effect which fails to expose the inferior efficiency of a CDA. We use
the Mersenne Twister random number generator [11] to draw all random values used in
the simulation. Each entry in the heuristic payoff matrix iscomputed by averaging the
payoff to each strategy across 2000 simulations.

5 Dynamic Analysis

Once the heuristic payoff matrix has been computed, we can subject it to a game-
theoretic analysis. In conventional mechanism design, we solve the game by finding
either a dominant strategy or the Nash equilibria: the sets of strategies that are best-
responses to each other. However, because classical game-theory is a static analysis,
it is not able to make any predictions about which equilibriaare more likely to occur
in practice. Such predictions are of vital importance in mechanism design problems.
Since our design objectives depend on outcomes, we should give more consideration to
outcomes that are more likely than low probability outcomes. For example, if there is
a Nash equilibrium for our mechanism which yields very low allocative efficiency, we
should not worry too much if this equilibria is extremely unlikely to occur in practice.
On the other hand, we should give more weight to equilibria with high probability.

As in [23], we useevolutionarygame-theory [20] to model how agents might grad-
ually adjust their strategies over time as they learn to improve their behavior in response
to their payoffs. We use the replicator dynamics equation_mj = [u(ej ;m)� u(m;m)℄mj (2)

wherem is a mixed-strategy vector,u(m;m) is the mean payoff when all players playm, andu(ej ;m) is the average payoff to pure strategyj when all players playm,
and _mj is the first derivative ofmj with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this equation models a simple
co-evolutionaryprocess of mimicry learning, in which agents switch to strategies that
appear to be more successful. For the three heuristic strategies that we have chosen
to analyze, we can interpret this process as modeling the potential uptake ofZIP-like
automated trading agent technology; for example, managersbidding using human-like
trading strategies may switch to aZIP-like strategy if they observe a rival firm obtaining
better than average profits by using automated trading agents.



For any initial mixed-strategy we can find the eventual outcome from this coevo-
lutionary process by solving_mj = 0 for all j to find the final mixed-strategy of the
converged population. Unlike co-evolutionary approachesthat use evolutionary com-
puting to do the search, for instance [16, 1], this model has the attractive properties
that:

– all Nash equilibria of the game are stationary points under the replicator dynamics;
and

– all focal points of the replicator dynamics are Nash equilibria of the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in the stationary points of the direc-
tion field of the dynamics specified by equation 2. Although not all stationary points are
Nash equilibria, by overlaying a dynamic model of learning on the equilibria we can see
which solutions are more likely to be discovered byboundedly-rationalagents. Those
Nash equilibria that are stationary points at which a largerrange of initial states will
end up, are equilibria that are more likely to be reached (assuming an initial distribution
that is uniform).

We capture this idea of “range of initial states” with the notion of abasin of attrac-
tion. The basin of attraction for a stationary point is the range of mixed strategies within
which all strategies will, under the replicator dynamics, lead to the stationary point. The
bigger the basin, the bigger the region of strategy-space which leads to the attractor, and
hence the stronger the attractor.

6 Results

Since
Pmi = 1, each vectorm lies in the unit-simplex. Fork = 3 strategies we can

project the unit-simplex onto a two dimensional space and then identify the switching
between strategies. We plot this switching in Figures 1—4 which show plots of thedi-
rection fielddefined by equation 2 for each institution. The direction field gives us a
map which shows the trajectories of strategies of learning agents engaged in repeated
interactions, from a random starting position. Thus, for Figure 1, each agent participant
has a starting choice of 3 pure strategies (TT , RE andPvT ) and any mixed (proba-
bilistic) combination of these three. The pure strategies are indicated by the 3 vertices of
the simplex (triangle), while mixed strategies are indicated by points on the boundaries
or in the middle of the simplex.

An agent is assigned a random (mixed or pure) strategy to start, and then progres-
sively adjusts this strategy over time in repeated interactions as a result of the learning
mechanism described by Equation 2. The paths shown in Figure1 trace this sequence
of adjustments. In order not to overload the display, we havenot placed arrows on
these paths, but the overwhelming majority of paths start inside the simplex and head
outwards, towards the edges and the three vertices. This indicates that the three pure
strategies act as attractors for randomly-selected mixed starting strategies. The set of
oriented paths leading to each vertex indicates the basin ofattraction of the correspond-
ing pure strategy. We can assess the relative likelihood of one strategy relative to another
by comparing the size of their respective basins of attraction.
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Fig. 1. Replicator dynamics direction field forCH with 6 agents
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Fig. 2. Replicator dynamics direction field forCDA with 6 agents
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Fig. 3.Replicator dynamics direction field forCH with 10 agents
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Fig. 4. Replicator dynamics direction field forCDA with 10 agents



Equilibrium CH probability payoff CDA probability payoffTT 0.38 1.00 0.05 0.86RE 0.11 0.99 0.70 0.97PvT 0.51 0.99 0.25 0.94
Table 1.Equilibria probability distribution for 10 agents

Equilibrium CH probability payoff CDA probability payoffTT 0.24 1.00 0.14 0.87RE 0.35 1.00 0.54 0.97PvT 0.41 0.94 0.33 0.92
Table 2.Equilibria probability distribution for 6 agents

Each plot shows trajectories generated from 250 randomly sampled initialm vec-
tors. For now, we assume that every initial mixed-strategy is equally likely to be adopted
as a starting-point for the co-evolutionary process, and sowe randomly sample the ini-
tial values ofm from a uniform distribution and plot their trajectories as they evolve
according to equation 2. Although no single strategy is dominant in any of these games,
since each corner of the simplex is an attractor and a focal point, we can conclude that
every game has three pure-strategy Nash equilibria, as wellas possibly possessing other
mixed-strategy equilibria.

To automate the analysis of institutions, we need to be able to provide some metric
that allows us to quantify their performance in this kind of analysis. In other words,
we would like to measure the size of the basin of attraction. Tables 1 and 2 show the
stationary points of 1000 randomly sampled trajectories together with the proportion
of trajectories that terminate at that point. Given the random start, this probability is an
estimate of the probability of each equilibrium. In the absence of a static analysis, we
discount the stationary-points that occur with less than 1%probability. Since we know
the payoffs of the various points from the heuristic payoff matrix, we can then compute
expected payoffs, which are also shown in the table. With probabilities over outcomes,
we are in a position to assess the design of each mechanism.

7 Discussion

First of all it is clear thatTT is not dominant, and hence neither theCH or CDA mech-
anism is strategy-proof. However, it is interesting to notethat although truth-telling
becomes less probable in aCDA as the number of agents increases, in aCH the truth-
telling equilibrium becomes more likely as the number of agents increases. This agrees
with the approximate analysis presented in [19], and suggests that truth-telling may
become a strategy adopted by more traders as the market growseven larger.

In a CH market, we see that the most likely strategy to be played is the ZIP-like
trading agent strategy, whereas in aCDA, the most likely strategy is the human-likeRE

strategy.
As expected from our discussion above, we see that payoffs under truthful bidding

in a CDA are relatively low; 86% in this case. This might suggest thattheCDA itself has



a rather low efficiency. However, in order to assess the efficiency of theCDA we must
take into account the fact that the truthtelling equilibrium is not very likely to occur
compared to theRE equilibrium. In order to calculate efficiency for the 10-agent CDA,
we can simply take the pure-strategy payoffs in Table 1 and weight them according to
the probability of each strategy occurring in equilibrium.Thus we have an efficiency of0:05� 0:86 + 0:70� 0:97 + 0:25� 0:94 = 0:96
compared with 0:38� 1:00 + 0:11� 0:99 + 0:51� 0:99 = 0:99
for the CH. Although theCDA yields lower surplus, it is not as inefficient as we might
expect had we assumed that it was designed according to the revelation principle. As
[6] points out, the main reason for choosing aCDA rather than aCH is to handle larger
volumes of trade, and our results here suggest that this is a reasonable trade-off. Switch-
ing to aCDA from a CH as the New York Stock Exchange did in the 1860s, does not
seem likely to entail a large loss of efficiency.

The above analysis assumes that all initial points in the mixed-strategy phase-space
are equally likely to be selected. However, if we are in a situation where we are propos-
ing to make changes to an existing “legacy” exchange with existing traders, our obser-
vations of current trading behavior in the legacy mechanismmay influence our beliefs
about likely behavior in any proposed altered version of themechanism. For example,
we may be tasked with assessing the likely impact in switching from aCH clearing rule
to an exchange with continuous clearing. If we observe that traders bid truthfully in the
existing mechanism, then when we come to perform the dynamicanalysis for the new
design, we may decide to weight our distribution of initial mixed-strategies in favor of
truth-telling to reflect current observations.

8 Further work

What we have demonstrated in this paper is an approach that provides an approxi-
mate game-theoretic analysis, involving equilibria over multiple heuristic strategies, for
mechanisms that do not admit an analytical solution. This isfully automated, and gives
us a means ofanalyzingand hence comparing auction mechanisms. Our previous work
has demonstrated proof-of-concept for the idea ofevolvingauction mechanisms, for ex-
ample using genetic programming to evolve parts of the pricing mechanism for a double
auction market [17], establishing the quality of the marketusing a single heuristic strat-
egy.

Since all parts of the approach we have detailed here are fully automated, it is pos-
sible to combine the these two lines of work. This will enableus to create new auction
mechanisms and then use the kind of analysis described here to rate them, thus search-
ing the space of possible mechanisms while rigorously analyzing them. With our current
implementation running on a 1.4Ghz Athlon AMD processor, ittakes approximately
24-hours to generate the heuristic payoff matrix and perform the dynamic analysis for
a single 10-agent mechanism. We hope to significantly reducethis evaluation cost by



– using a more selective sampling, as in [24] for example;
– further optimizing our code, and
– reducing the number of samples at the expense of accuracy whilst using an opti-

mization algorithm that will be robust to the additional noise.

With these techniques we will move closer to our overall goalof completely automated
mechanism design.
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