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Abstract. In this paper we describe an analysis of two double auctiahkets—
the clearing house auction and the continuous double audtee complexity of
these institutions is such that they defy analysis usingdjticmal game-theoretic
techniques, and so we use heuristic-strategy approximatiprovide an approx-
imated game-theoretic analysis. As well as finding hewristiategy equilibria
for these mechanisms, we subject them to an evolutionaneghgaoretic analy-
sis which allows us to quantify which equilibria are moreelikto occur. We then
weight the design objectives for each mechanism accordititetprobability dis-
tribution over equilibria, which allows us to provide moemlistic estimates for
the efficiency of each mechanism.

1 Introduction

A double-auction mechanism is a generalization of an andgtiovhich both buyers
and sellers are allowed to exchange offers simultaned8#ige double-auctions allow
dynamic pricing on both the supply side and the demand sideeainarketplace, their
study is of great importance, both to theoretical econ@natd those seeking to im-
plement real-world market places. On the one hand, econ®mts are interested in
theories of price formation in idealized models of generatkets have often turned to
exchange-like models such as Walrasian tatonnement,sirile and understand the
price-formation process [2], and on the other, varianthefdouble-auction are used
in large real-world exchanges to trade commaodities in ntatkees where supply and
demand fluctuate rapidly, such as markets for stocks, fetared their derivatives [7].
However, the models of exchanges traditionally used by @wists in general equi-
librium theory are often simplified for the purposes of atiabl tractability to such an
extent that they are of scant relevance to the designersabfuald exchanges, and
even, it is sometimes argued, of scant relevance to thedtiearmodelling of markets.
For example, one important simplification often made is thatnumber of agents par-
ticipating in a market is very large; this simplificationails relative market power and
consequenstrategic effectso be ignored. However, in many real-world marketplaces,



such as deregulated wholesale electricity markets, thayetra relatively few competi-
tors on one or both sides of the market. With small numbersadfigipants, general
equilibrium models break down because they fail to allowrfarket power, and the
potential gains of strategic behavior, of participants.

An alternative approach is a sophisticated micro-theorpafketplaces calleaiuc-
tion theory in which the rational behavior of individual agents faceithwdifferent
pricing institutions is analyzed using game theoretic téghes. Whereas neoclassical
equilibrium theory often abstracts away from the detailsnofividual agents, game-
theoretic models allow economists to build sophisticatéckarmodels of individual
agents’ reasoning and preferences. In many scenarios;iakpén analyzing single-
sided monopoly markets, these models have been spectaculacessful to the extent
where they have been directly applied to the design of realdructions for high-value
government and corporate assets [9]. However, in othetipahscenarios, especially
when it comes to analyzing and designing double-sided nsrkach as exchanges,
there are still a number of problems with the theory, whichsivall briefly review.

Auction-theorists typically analyze a proposed marketitumson by defining a set
of design objectives, and then proceed to show that thesgndeisjectives are brought
about when rational agents follow their best strategiesmiog to a game-theoretic
analysis. The typical design objectives considered byiaurtheorists are:

Allocative efficiency: The outcome of using the mechanism should be optimal in some
defined sense, for example, the total surplus generateddsbqual the available
surplus in competetive equilibrium.

Budget balance: No outside subsidy inwards or transfers outwards are reddior a
deal to be reached.

Individual rationality: The expected net benefit to each participant from using the
mechanism should be no less than the net benefit of any diterna

Strategy-proofness: Participants should not be able to gain an advantage from non
truthtelling behavior.

In many applications, auction-theory demonstrates thetexce of market mechanisms
that satisfy all of these properties when agents followoretlly prescribed bidding
strategies. However, the impossibility result of [13] dersivates that ndouble-sided
auction mechanism can be simultaneously efficient, budgktaced and individually-
rational. Moreover, many of the underpinnings of the themsgume that designers
interests are restricted to only the aforementioned ptigseior example, the revela-
tion principle states that, without loss of generality, waynsafely restrict attention to
mechanisms in which agents reveal their types truthfulgwiver, this result does not
take into account the potential cost or other impractigaliof polling agents for their
type information. Once minimizing the cost of revelationsoduced as a design ob-
jective, the revelation principle ceases to hold, becehesmtmay exist partial-revelation
mechanisms with non-truthful equilibria which sacrificeagtgy-proofness for expedi-
ence of revelation. This is of more than academic interggtesn real-world electronic
exchanges it is rarely possible to pall agents for their valuations before clearing
the market; hence theontinuousdouble-auction, in which we execute the clearing op-
eration as new offers arrive, thus increasing transactiooughput at the expense of
strategy-proofness.

’



In designing market places, as with any other engineeriolglpm, we often need to
make such tradeoffs between different objectives depgnulirnthe exact requirements
and scenario at hand. We can often satisfactorily solvesudti-objective optimisation
problems, provided that we have some kind of quantativesassent of each objective,
yet classical auction-theory provides only a binary yesmindication of whether each
of its limited design objectives is achievable, making itremely difficult to compare
the different trade-offs.

Further complications arise when we attempt to use auttienry to analyze exist-
ing (“legacy”) market institutions. Exchanges such as tbedon Stock Exchange have
been in existence far longer than game-theory and audtieory, thus, unsurprisingly,
the original rules of the institution were not necessardgéd on sound game-theoretic
or auction-theoretic principles. Moreover, it is unreiidiso expect that core financial
institutions such as these radically alter their rules oiggt in response to the lat-
est fashionable developments in auction-theory or gareerthRather, it may be more
salient to view financial institutionsvolvinggradually and incrementally in response to
a changing environment [12]. Similarly, agents partidipgin these institutions do not
necessarily instantaneously and simultaneously adjestttiading behavior to the the-
oretical optimum strategy; for example, adoption of a nesitng strategy may spread
through a population of traders as word of its efficacy dé#fisn a manner akin to
mimetic evolutiont Thus, we may think of the institutions we see today as the out-
come of aco-evolutionaryadaptation between financial institutions on the one hand,
and trading strategies on the other.

The issue of legacy institutions has ramifications for awrctiesign; in these con-
texts the choice of adjustments to the auction rules maydbelyi constrained by ex-
isting infrastructure, both physical and social, thus iyrha necessary to examine the
attainability of equilibria under the new design given existing stratdégibavior in the
legacy design. Classical auction theory relies on clakg@me-theory which in turn
says nothing about the dynamics of adjustment to equilibriu

For such applications, we need to turn to models of evolwdimhlearning in strate-
gic environments; models that we collectively categorimdear the banner oévolu-
tionary game theoryModels of learning and evolution as applied to agentstetyias
are not new. Where our approach differs, however, is in thptiegtion of models of
learning and evolution to the market mechanism itself, a fieheb we callevolutionary
mechanism desigi 6, 3].

In this paper, we extend our previous work on evolutionargimag@ism design by
describing a more sophisticated means of analyzing thepe&nce of a mechanism.
Previously we have either evolved trading strategies alaitiygthe mechanism [16], or
used a single heuristic bidding strategy [17]. Here we uséxeofrheuristic strategies,
and describe a rigorous and fully automated way of evalgaimechanism using this
mixture. We start in Section 2 with a description of the mettims we are studying
here, and, in Section 3 with use of several heuristic stiasedhen, in Section 4, we
describe our experimental set up, and in Section 5 how wehese tresults to establish

! The adoption by derivatives traders of the Black-Scholeston for option pricing provides
an example [10].



the evolutionary behavior of the markets. Section 6 giveslte, and Section 7 analyses
them before Section 8 describes the work that we will purg&xe. n

2 The Continuous Double Auction verses the Clearing-House

In a typical exchange, the market institution attempts tecimaffers to buy with offers
to sell in such a way that the overall surplus extracted froenrharket is maximized.
If offers are considered as signals of agents’ valuationsfeesource, and assuming
agents signal truthfully, then an auctioneer can maxinlipeative efficiency by match-
ing the highest buy offers with the lowest sell offers. Irsthaper we compare two types
of exchange:

— a market in which trades are executed as new offers arrivk, an
— amarket in which we wait for all traders to place offers befdearing the market.

Following the terminology of [6], we refer to the former asthontinuous double-
auction €DA) and the to the latter as the clearing-house)(

On casual inspection of thebA, we might expect that it is designed according
to the revelation principle, and so should maximize allveagfficiency when agents
signal truthfully. Surprisingly, however, it turns out tteurplus extraction in &DA is
extremelypoor under direct revelation—typical values are approxima8tlypercent,
which is extremely low compared with outcomes of almost 18@ent which are ob-
served with the non-truthful strategies that are actuallypded by real traders.

The reason for this poor efficiency is easy to spot; the caotis clearing rule
results in myopic matching; when the clearing operationegfgrmed the auctioneer
has only a partial view of the aggregate supply and demartimiarket place. In order
to maintain a high throughput of actual transactions, thetianmeer impatiently clears
the market before every trader has the opportunity to plaes bid. The extremely
surprising thing about this institution, however, is thational agents acting locally
to maximize their own profit are able to compensate for tHisiehcy loss by placing
extra-marginal, non-truthful bids, which collectivelystgt in high-efficiency outcomes.

Much analysis of theDA has focused on showing that although tm®a is not a
direct revelation mechanisnogMm), it can be considered an almaskm by virtue of
the fact that trading strategies with only a minimal amounintelligence are able to
extract high surpluses from the market [4]. However, sugit@gches are unsatisfactory
because they fail to demonstrate that such minimalistegjias aredominantagainst
more sophisticated strategies.

Ideally, we would like to find the game-theoretic solutiom fe cDA, and show
that although truth-telling or other minimalist strategy@e not dominant, we can still
find the theoretical mix of strategies that are best-resgotseach other, and demon-
strate that the institution performs well in game-thearetjuilibria. However, even at
this point, thecDA along with other variants of the double-auction market,fconds
auction theorists by admitting of no clear equilibrium siwn [19].2 Hence in the ab-
sence of robust analytical tools, much analysis of thistingn has used an ad-hoc

2 Though this reference is dated, to the best of our knowledgestill the case that thepa has
no such solution.



mixture of computer simulation and laboratory experimgntsThese techniques are
invaluable, since they are able to faithfully incorporateny of the complex details of
the market institution which lead to intractability undemeentional analysis. How-
ever, the results thus obtained are often critised for bdifigult to generalize in the

absence of compelling models that explain the observedmés.

Recently, however, techniques have been developed thdiicersimulation-based
approaches with an approximated game-theoretic analgsiee following sections, we
describe and then adopt the technique proposed by Walstodedgues [23]. However,
our work extends the scope of Walshal's use of their technique. Whereas the orig-
inal work focuses on designirgjrategiesfor a given institution, specifically theba
institution, we build on this work by applying the same teiciue formechanisnaesign
issues, using it to compare tlb®A andcH institutions.

3 Heuristic-Strategy Approximation

Walsh et al. introduce an approximation technique for analyzing ganueh ss the
CDA where the sheer size of the strategy and player-type spaakssnan exhaustive
game-theoretic solution impractical [23].

3.1 Basic approach

The central idea is simple. Rather than considering evesgipte pure strategy and
type in the multi-stage game, Walshal. simplify the analysis by considering a limited
number of high-leveheuristic strategies, such as Cliff&ero-Intelligence Plugzip)
strategy [4], and treat these high-level strategies asif there simple pure strategies
in a normal form game. For small numbers of players and héghitlstrategies, this
gives rise to a relatively small normal form game payoff rxatvhich is amenable
to game-theoretic solution. Thigeuristicpayoff matrix is calibrated by running many
simulations of the market game; variations in payoffs duditi@rent player-types are
averaged over many samples of type information resulting $ingle mean payoff to
each player for each entry in the payoff matrix. Playersetypre assumed to be drawn
independently from the same distribution, and an agentiécelof strategy is assumed
to be independent of its type, which allows the payoff mawike further compressed,
since we simply need to specify the number of agents playing strategy to determine
the expected payoff to each agent. Thus for a game Witlrategies, we represent
entries in the heuristic payoff matrix as vectors of the form

p=(p1,.--pr)
wherep; specifies the number of agents who are playingithestrategy. Each entry
p € P is mapped onto an outcome vecioe () of the form
q=(q1,---q)
whereg; specifies the expected payoff to thk strategy. For a game withagents, the
number of entries in the payoff matrix is given by
nk—1
(k—1)!

1)



For smalln and smallk this results in payoff matrices of manageable sizekfer 3

andn = 6, 8, and10 we haves = 28, 45, and66 respectively. For very largethe game
becomes intractable, but this is not of major concern sineénterest is specifically in
markets with small numbers of traders where strategic &fae likely to be prominent.

3.2 Choice of heuristic strategies

For moderately large values bf combinatorial explosion rapidly leads to intractability
This constraint is of more concern than the constraint gince in any realistic trading
environment we might, a priori, expect agents to be conédntith a vast number of
high-level strategies from which to choose. There are, fangle, many automated
strategies that have been proposed in the literature [418,22]. However, there is
evidence to show that in many real-life market scenariodetr® choose from a lim-
ited number of heuristic strategies. For example, [15]ulses the observed strategic
interaction between human agents and two predominant atéohividding strategies
commonly used on two real-world auction institutions witffetent auction designs
(Amazon and eBay).

Following these results, we base our work in this paper omptkeise that we are
modeling the effect of the adoption of automated tradingngg@ thecba and cH
markets. Thus we compare the behavior of traders using awelln automated strat-
egy for the double-auction [18], and one that has been dpedlto emulate human
strategic behavior in market settings [5]. By comparingstheepresentative heuristic
strategies we hope to gain insight into whether non-homeges populations of hu-
man and agent-based traders are strategically stable hariikély market outcomes
when human and agent-based traders interact. In additemause we are interested
in the strategy-proofness of the mechanisms themselvesr dhifterent conditions, we
also introduce the truth-telling strategy. If a mechanisrstiategy proof, it should not
be possible to do better than when truthfully report onedstliprice. Thus we have
k = 3 heuristic strategies, which is well within the limits of ¢tability for the Walsh
approximation technique.

4 Experimental setup

In order to compare theba andcH, we must first generate a heuristic payoff matrix
for each institution by sampling many simulations of the keigame. We made use of
theJasa auction simulatotwhich implements @pba marketplace as described in [22],
as well as a&H marketplace where the market is not cleared until offensifall agents
have been received.

In order to model human-like trading behavior, we adoptditrg strategy based on
a modified version of the Roth-Erev learning algorithm [5pascribed in [14], which
we abbreviateRE. This is the same version of the Roth-Erev algorithm that aech
used in our previous work [16, 17]—basically a reinforcetrdearning approach that
builds up a probability distribution over the space of pblkesbids. We pit this against a

3 http://www.csc.liv.ac.uk/sphelps/jasa



strategy based oniP, but modified for persistent-shout markets as described gigt?
and Van Tol [18], which we abbreviatevT’, and the truth-telling strategy which simply
bids at the agent’s limit price, which we abbrevidté'.

As in [23], at the start of each game half the agents are ralydassigned as buyers
and the remainder are chosen as sellers. For each run ofittes g& choose limit prices
from the same uniform distribution as [23], but limit priaesnain fixed across periods
in order to allow agents to attempt to learn to exploit any keepower advantage
in the supply and demand curves defined by the limit pricegtat game (This is
common in much experimental work in this area [4, 21], andesakpossible for both
artificial traders and humans to exploit memory to quicklywarge on trade prices).
Additionally, although we discard limit-prices which dotrydeld an equilibrium price,
we do not ensure that a minimum quantity exists in competigiguilibrium as this
introduces a floor effect which fails to expose the inferificeency of a CDA. We use
the Mersenne Twister random number generator [11] to drbra@diom values used in
the simulation. Each entry in the heuristic payoff matrix@nputed by averaging the
payoff to each strategy across 2000 simulations.

5 Dynamic Analysis

Once the heuristic payoff matrix has been computed, we chjeslit to a game-
theoretic analysis. In conventional mechanism design, alieghe game by finding
either a dominant strategy or the Nash equilibria: the ski&trategies that are best-
responses to each other. However, because classical gamg-is a static analysis,
it is not able to make any predictions about which equililarie more likely to occur
in practice. Such predictions are of vital importance in haaism design problems.
Since our design objectives depend on outcomes, we shaidargire consideration to
outcomes that are more likely than low probability outcontes example, if there is
a Nash equilibrium for our mechanism which yields very lowedtive efficiency, we
should not worry too much if this equilibria is extremely ikely to occur in practice.
On the other hand, we should give more weight to equilibridn\wigh probability.

As in [23], we useevolutionarygame-theory [20] to model how agents might grad-
ually adjust their strategies over time as they learn to owetheir behavior in response
to their payoffs. We use the replicator dynamics equation

;= [u(ej, m) — u(m, m)]m; 2

wherem is a mixed-strategy vectai(m, m) is the mean payoff when all players play
m, andu(e;, m) is the average payoff to pure strategwhen all players playn,
andrn; is the first derivative ofn; with respect to time. Strategies that gain above-
average payoff become more likely to be played, and this teuanodels a simple
co-evolutionanprocess of mimicry learning, in which agents switch to siyés that
appear to be more successful. For the three heuristic gieeatéhat we have chosen
to analyze, we can interpret this process as modeling thenpat uptake ofzip-like
automated trading agent technology; for example, mandgeding using human-like
trading strategies may switch tae-like strategy if they observe a rival firm obtaining
better than average profits by using automated trading agent



For any initial mixed-strategy we can find the eventual ootedrom this coevo-
lutionary process by solving:; = 0 for all j to find the final mixed-strategy of the
converged population. Unlike co-evolutionary approadhes use evolutionary com-
puting to do the search, for instance [16, 1], this model hasattractive properties
that:

— all Nash equilibria of the game are stationary points uniderg¢plicator dynamics;
and

— all focal points of the replicator dynamics are Nash eqtidilof the evolutionary
game.

Thus the Nash equilibrium solutions are embedded in thmstaty points of the direc-
tion field of the dynamics specified by equation 2. Althoughaibstationary points are
Nash equilibria, by overlaying a dynamic model of learnimglee equilibria we can see
which solutions are more likely to be discoveredimundedly-rationahgents. Those
Nash equilibria that are stationary points at which a largege of initial states will
end up, are equilibria that are more likely to be reachedifag®y an initial distribution
that is uniform).

We capture this idea of “range of initial states” with theinntof abasin of attrac-
tion. The basin of attraction for a stationary point is the ranfgriged strategies within
which all strategies will, under the replicator dynamiesd to the stationary point. The
bigger the basin, the bigger the region of strategy-spadehibads to the attractor, and
hence the stronger the attractor.

6 Results

Sinced_ m; = 1, each vectofn lies in the unit-simplex. Fok = 3 strategies we can
project the unit-simplex onto a two dimensional space aed tentify the switching
between strategies. We plot this switching in Figures 1—ittwvkhow plots of thali-
rection fielddefined by equation 2 for each institution. The directiondfigives us a
map which shows the trajectories of strategies of learngents engaged in repeated
interactions, from a random starting position. Thus, fgufé 1, each agent participant
has a starting choice of 3 pure strategi€g'( RE and PvT") and any mixed (proba-
bilistic) combination of these three. The pure strategiesralicated by the 3 vertices of
the simplex (triangle), while mixed strategies are indéddty points on the boundaries
or in the middle of the simplex.

An agent is assigned a random (mixed or pure) strategy tt ataat then progres-
sively adjusts this strategy over time in repeated int@astas a result of the learning
mechanism described by Equation 2. The paths shown in Figtnace this sequence
of adjustments. In order not to overload the display, we haseplaced arrows on
these paths, but the overwhelming majority of paths staitienthe simplex and head
outwards, towards the edges and the three vertices. Thisaied that the three pure
strategies act as attractors for randomly-selected mitertirey strategies. The set of
oriented paths leading to each vertex indicates the basitiratction of the correspond-
ing pure strategy. We can assess the relative likelihoodebtrategy relative to another
by comparing the size of their respective basins of atwacti
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Equilibrium|cH probability|payofflcDA probability payo

TT 0.38 1.00 0.05 0.86
RE 0.11 0.99 0.70 0.97
PuT 0.51 0.99 0.25 0.94

Table 1. Equilibria probability distribution for 10 agents

Equilibrium|cH probability|payofflcDA probability payo

TT 0.24 1.00 0.14 0.87
RE 0.35 1.00 0.54 0.97
PouT 0.41 0.94 0.33 0.92

Table 2. Equilibria probability distribution for 6 agents

Each plot shows trajectories generated from 250 randonniypksd initial m vec-
tors. For now, we assume that every initial mixed-stratsgagually likely to be adopted
as a starting-point for the co-evolutionary process, andescandomly sample the ini-
tial values ofm from a uniform distribution and plot their trajectories &gy evolve
according to equation 2. Although no single strategy is d¢ami in any of these games,
since each corner of the simplex is an attractor and a fodat,p@e can conclude that
every game has three pure-strategy Nash equilibria, asa&plbssibly possessing other
mixed-strategy equilibria.

To automate the analysis of institutions, we need to be alppedvide some metric
that allows us to quantify their performance in this kind oBbysis. In other words,
we would like to measure the size of the basin of attracti@ilds 1 and 2 show the
stationary points of 1000 randomly sampled trajectoriggtioer with the proportion
of trajectories that terminate at that point. Given the mndtart, this probability is an
estimate of the probability of each equilibrium. In the afxseof a static analysis, we
discount the stationary-points that occur with less thanptébability. Since we know
the payoffs of the various points from the heuristic payaoditrix, we can then compute
expected payoffs, which are also shown in the table. With@lpdities over outcomes,
we are in a position to assess the design of each mechanism.

7 Discussion

First of all it is clear thafl"I" is not dominant, and hence neither ttie or CDA mech-
anism is strategy-proof. However, it is interesting to nibtat although truth-telling
becomes less probable inca@A as the number of agents increases, ioHathe truth-
telling equilibrium becomes more likely as the number ofragéncreases. This agrees
with the approximate analysis presented in [19], and suggdaat truth-telling may
become a strategy adopted by more traders as the market gvewsarger.

In a cH market, we see that the most likely strategy to be playeddsti+-like
trading agent strategy, whereas ic@A, the most likely strategy is the human-like
strategy.

As expected from our discussion above, we see that payaffsriruthful bidding
in acDA are relatively low; 86% in this case. This might suggest thatpa itself has



a rather low efficiency. However, in order to assess the effiry of thecbA we must
take into account the fact that the truthtelling equililbniis not very likely to occur
compared to thé&2 £ equilibrium. In order to calculate efficiency for the 10-ageDA,
we can simply take the pure-strategy payoffs in Table 1 andht¢hem according to
the probability of each strategy occurring in equilibriufhus we have an efficiency of

0.05 x 0.86 + 0.70 x 0.97 4+ 0.25 x 0.94 = 0.96
compared with
0.38 x 1.00 + 0.11 x 0.99 4+ 0.51 x 0.99 = 0.99

for the cH. Although thecDA yields lower surplus, it is not as inefficient as we might
expect had we assumed that it was designed according toulkatien principle. As

[6] points out, the main reason for choosing@A rather than aH is to handle larger
volumes of trade, and our results here suggest that thi€as®mnable trade-off. Switch-
ing to acbA from acH as the New York Stock Exchange did in the 1860s, does not
seem likely to entail a large loss of efficiency.

The above analysis assumes that all initial points in theethistrategy phase-space
are equally likely to be selected. However, if we are in asdittn where we are propos-
ing to make changes to an existing “legacy” exchange witktig traders, our obser-
vations of current trading behavior in the legacy mechamsay influence our beliefs
about likely behavior in any proposed altered version ofrttezhanism. For example,
we may be tasked with assessing the likely impact in switghiom acH clearing rule
to an exchange with continuous clearing. If we observe thadetrs bid truthfully in the
existing mechanism, then when we come to perform the dynanatysis for the new
design, we may decide to weight our distribution of initiaked-strategies in favor of
truth-telling to reflect current observations.

8 Further work

What we have demonstrated in this paper is an approach theidps an approxi-
mate game-theoretic analysis, involving equilibria oveittiple heuristic strategies, for
mechanisms that do not admit an analytical solution. Thislig automated, and gives
us a means ainalyzingand hence comparing auction mechanisms. Our previous work
has demonstrated proof-of-concept for the ideawafivingauction mechanisms, for ex-
ample using genetic programming to evolve parts of themgioiechanism for a double
auction market [17], establishing the quality of the markshg a single heuristic strat-
egy.

Since all parts of the approach we have detailed here agedutbmated, it is pos-
sible to combine the these two lines of work. This will enalleto create new auction
mechanisms and then use the kind of analysis describeddeatetthem, thus search-
ing the space of possible mechanisms while rigorously airadythem. With our current
implementation running on a 1.4Ghz Athlon AMD processotakes approximately
24-hours to generate the heuristic payoff matrix and perfittre dynamic analysis for
a single 10-agent mechanism. We hope to significantly rethisevaluation cost by



— using a more selective sampling, as in [24] for example;

further optimizing our code, and

— reducing the number of samples at the expense of accuradstwhing an opti-

mization algorithm that will be robust to the additional smi

With these techniques we will move closer to our overall gdalompletely automated
mechanism design.
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