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Abstract—In collaborative missions, coalition members depend
on one another to deliver on different aspects of shared goals. In
such settings, task delegation decisions are complicated because
activities of coalition members may be regulated by policies.
Especially when such policies are private, learning these policies
become crucial to estimate the outcome of delegation decisions.
In this paper, we present an approach that utilises domain knowl-
edge in aiding the learning of policies. Our approach combines
ontological reasoning, machine learning and argumentation in
a novel way to accomplish this. Using our approach, decision
makers can reason about the policies that others are operating
with, and make informed decisions about to whom to delegate a
task. In a series of experiments, we demonstrate the utility of this
novel combination of techniques. Our empirical evaluation shows
that more accurate models of others’ policies can be developed
more rapidly using various forms of domain knowledge.

I. INTRODUCTION

In collaborative missions, members (whether human or
artificial) engage in joint activities, which often require them to
share resources, act on each others’ behalf, communicate and
coordinate individual acts, and so on. Such collaborations may
fail to achieve desired goals if joint plans are not properly re-
sourced and tasks delegated to appropriately competent agents.
Irrespective of the field of endeavour, coalition members
depend on one another to deliver on different aspects of shared
goals. However, they may operate under policies, and some
policies may prohibit a member from providing a resource
to another under certain circumstances. Such policies might
regulate what resources may be released to a partner from
some other organisation, under what conditions they may be
used, and what information regarding their use is necessary
to make a decision. In addition, policies may govern actions
that can be performed either to pursue individual goals or on
behalf of another.

Coalition members cannot assume that such policies are
public knowledge nor can they presume that others will be
willing to reveal their policies (at least, not directly). There
are many reasons why coalition members may be reluctant
to share (or reveal) their policies. Some of these include: (1)
they may not want others to know their internal motives; (2) in
some situations, they may have a policy that forbids them from
revealing their policies (or certain aspects of their policies)
directly to others; (3) fear of exploitation; and so on.

In such settings, it is very important to ascertain whether or
not the other party possesses constraints that will hinder him
from acting as requested or desired. In fact, coalition members

cannot presuppose that the policies of their peers will always
permit them to carry out tasks delegated to them. In addition,
agents must accept the fact that a number of constraints can
result in similar observable behaviours, or actions. So the
question is, “how can agents identify what (social) constraints
others are working with?" We envisage that one way to do this
is to learn the policy of others by observing their behaviours.
This approach is suitable for environments where there is a
one-to-one mapping between policy and behaviour. Another
way to do this is to use evidence derived from argumentation-
based dialogue. Here, behaviour is correlated with both policy
and other constraints, such as resource availability. Evidence
acquired during dialogue is then used to refine models of
others’ policies.

In Emele et al. [1], we show that intelligent agents can
determine what policies others are operating within by mining
the data gathered from past encounters with that agent (or
similar agents) as they collaborate to solve problems. This
prior research uses a novel combination of evidence derived
from argumentation-based dialogue (which we refer to as
ADE) and machine learning to build stable models of others’
policies. In this paper, we explore the question that given
agents may have access to some background (or ontological)
domain knowledge, how can we exploit such knowledge to
improve models of others’ policies? To do this, we propose
the use of ontological reasoning, argumentation and machine
learning to aid in making effective predictions about who
to approach if some other collaborator is to be delegated to
provide a resource or perform a task on the behalf of another.

The rest of this paper is organised as follows. Section
II discusses delegation in collaborative missions. Section III
presents our approach for learning others’ policies. Section IV
reports the results of our evaluations. Section V summarises
our findings, discusses related work and outlines future direc-
tions. Section VI concludes.

II. DELEGATING IN COLLABORATIVE MISSIONS

Task delegation, in general, is concerned with identifying a
suitable candidate (or candidates) to transfer authority to act
on one’s behalf [2]. In a collaborative settings, it entails finding
agents who possess the required expertise (or resources), and
whose policies permit the performance of the required action
(or provision of the required resource). If an agent is allowed
to perform an action (according to its policy) then we assume
it will be willing to perform it when requested, provided it



has the necessary resources and/or expertise, and that doing
so does not yield a negative utility.

We assume that there is a set T = {t1, · · · , tn} of tasks
which agents are assigned to fulfill. The fulfillment of each
task requires a number of resources to be used. We focus
on the resource acquisition (or allocation) necessary for the
successful completion of assigned tasks. Resources generally
refers to physical equipment, capabilities, expertise or infor-
mation that are required to carry out a task. For example,
helicopters, jeeps, etc. We define the set of resources as
follows:

Resources The set of resources, denoted as R, is a finite set
such that r1, r2, . . . rn ∈ R.

Resource Requirements The resource requirements of tasks
is a function which maps a task to a set of resources required
to carry out that task, and is defined as follows:

requirements : T → 2R

In our framework, an agent that has been assigned a task
is solely responsible for its fulfillment. However, an agent can
delegate an aspect of a task to another. For example, if agent
x is responsible for performing task tx, which requires the
use of some resource rx (i.e. rx ∈ requirements(tx)) then x
may choose to delegate the provision of rx to another agent
y1. Provided agent y1 has resource rx, and does not have any
policy that forbids the provision of rx then we assume y1 will
make rx available to x.

Since policies are private, agent x needs to find effective
ways of delegating the provision of resource rx if she is to
successfully resource task tx. To do so, our approach allows
agents to find out partners whose policy constraints will most
likely, according to a chosen metric, permit to execute the
delegated task — in this case, resource provision. In our
framework, whenever there is a task to be delegated, policy
predictions are generated alongside their confidence values
from the policy models that have been learned over time.
Confidence values of favourable policy predictions are easily
compared to determine which candidate to delegate the task to.
In our case, confidence values range from 0 to 1, with 0 being
no confidence in the prediction, and 1 being total confidence.

The delegating agent explores the candidate space to iden-
tify suitable candidates to whom it can delegate a task. In
these terms, our delegation problem is concerned with finding
potential candidates whose policies permit to perform the
delegated task, and thereafter, selecting the most promising
candidate from the pool of eligible candidates. Borrowing
ideas from economics, we assume that some payment will
be made to an agent for performing a delegated task (e.g.
payment for the provision of a service).

Example 1: Consider a situation where an agent x is col-
laborating with a number of agents, y1, y2, y3, and y4, to solve
an emergency response problem. Let us assume that agent x
does not have a helicopter in its resource pool, and that each of
agents y1, y2, y3, and y4 can provide helicopters, jeeps, vans,
bikes, fire extinguishers, and unmanned aerial vehicles (UAVs).

Agent x in Example 1 has to decide which of the potential
providers, y1, y2, y3, and y4 to approach to provide the heli-
copter. Let us assume that the four providers advertise similar
services. Agent x, at this point, attempts to predict the policy
of the providers with respect to task delegation (or resource
provision). This prediction is based on policy models built
from past experience with these providers (or similar agents).
Assuming the predictions are as follows: (i) y1 will accept to
provide the helicopter with 0.6 confidence; (ii) y2 will accept
with 0.9 confidence; (iii) y3 will accept with 0.7 confidence;
and (iv) y4 will decline with 0.8 confidence. If the decision to
choose a provider is based on policy predictions alone, then
y2 is the best candidate.

III. LEARNING OTHERS’ POLICIES

The framework we propose here enables agents to negotiate
and argue about task delegation, and use evidence derived from
argumentation to build more accurate and stable models of
others’ policies.

A. Policies

Agents have policies that govern how resources are de-
ployed to others. In our model, policies are conditional entities
(or rules) and so are relevant to an agent under specific
circumstances only. These circumstances are characterised by
a set of features, e.g., vehicle type, weather conditions, etc.

Features Let F be the set of all features such that f1, f2, . . . ∈
F . We define a feature as a characteristic of the prevailing
circumstance under which an agent is operating (or carrying
out an activity).

Our concept of policy maps a set of features into an
appropriate policy decision. In our framework, an agent can
make one of two policy decisions at a time, namely (1) grant,
which means that the policy allows the agent to provide the
resource when requested; and (2) deny, which means that the
policy prohibits the agent from providing the resource.

Policies A policy is defined as a function Π : ~F →
{grant, deny}, which maps feature vectors of agents, ~F , to
appropriate policy decisions.

Policy Id f1 f2 f3 f4 f5 Decision
P1 h trm grant
P2 av vc deny
P3 j grant
P4 c vc xx grant
. . . . . . . . . . . . . . . . . . . . .
Pn q yy w xx z deny

TABLE I
AN AGENT’S POLICY PROFILE.

In order to illustrate the way policies may be captured in
this model, we present an example. Let us assume that f1 is
resource, f2 is purpose, f3 is weather report (with respect to
a location), f4 is the affiliation of the agent, and f5 is the day



the resource is required, then P1, P2, and P3 in Table I will
be interpreted as follows:

P1: You are permitted to release a helicopter (h), to
an agent if the helicopter is required for the purpose
of transporting relief materials (trm);
P2: You are prohibited from releasing an aerial
vehicle (av) to an agent in bad weather conditions -
e.g. volcanic clouds (vc);
P3: You are permitted to release a jeep (j) to an
agent.

In the foregoing example, if helicopter is intended to be
deployed in an area with volcanic clouds then the provider is
forbidden from providing the resource but might offer a ground
vehicle (e.g. jeep) to the seeker if there is no policy prohibiting
this and the resource is available. Furthermore, whenever a
seeker’s request is refused, the seeker may challenge the
decision, and seek justifications for the refusal. This additional
evidence is beneficial, and could be used to improve the model,
hence, the quality of decisions made in future episodes.

B. Argumentation-based Dialogue

Figure 1 illustrates the protocol employed in this framework,
which guides dialogical moves. Our approach in this regard is
similar to the dialogue for resource negotiation proposed by
McBurney & Parsons [3].

START-
DIALOGUE REQUEST ACCEPT END-DIALOGUE

REFUSE

OFFER

REFUSE

CHALLENGE

JUSTIFY

QUERY

ASSERT

REFUSE

Fig. 1. The negotiation protocol.

To illustrate the sorts of interaction between agents, con-
sider the example dialogue in Table II. Let x and y be
seeker and provider agents respectively. Suppose we have an
argumentation framework that allows agents to ask for and
receive explanations (as in Table II, lines 11 and 12), offer
alternatives (counter-propose in Figure 1), or ask and receive
more information about the attributes of requests (lines 4 to 9
in Table II), then x can gather additional information regarding
the policy rules guiding y concerning provision of resources.

Negotiation for resources takes place in a turn-taking fash-
ion. The dialogue starts, and then agent x sends a request
(line 3, Table II) to agent y. The provider, y, may respond
by conceding to the request (accept), rejecting it, offering an
alternative, or asking for more information (query) such as
in line 4 in Table II. If the provider agrees to provide the
resource then the negotiation ends. If, however, the provider
rejects the proposal (line 10, Table II) then the seeker may

TABLE II
DIALOGUE EXAMPLE.

# Dialogue Sequence Locution Type
1 x: Start dialogue. START-DIALOGUE
2 y: Start dialogue. START-DIALOGUE
3 x: Can I have a helicopter for $0.1M reward? REQUEST
4 y: What do you need it for? QUERY
5 x: To transport relief materials. ASSERT
6 y: To where? QUERY
7 x: A refugee camp near Indonesia. ASSERT
8 y: Which date? QUERY
9 x: On Friday 16/4/2010. ASSERT
10 y: No, I can’t provide you with a helicopter. REFUSE
11 x: Why? CHALLENGE
12 y: I am not permitted to release a helicopter JUSTIFY

in volcanic eruption.
13 x: There is no volcanic eruption near Indonesia. CHALLENGE
14 y: I agree, but the ash cloud is spreading, and JUSTIFY

weather report advises that it is not safe
to fly on that day.

15 x: Ok, thanks. END-DIALOGUE

challenge that decision (line 11), and so on. If the provider
suggests an alternative then the seeker evaluates it to see
whether it is acceptable or not. Furthermore, if the provider
agent needs more information from the seeker in order to
make a decision, the provider agent would ask questions
that will reveal the features it requires to make a decision
(query, inform/refuse). The negotiation ends when agreement
is reached or all possibilities explored have been rejected.

C. Learning from past experience through dialogue

When an agent has a collection of experiences with other
agents described by feature vectors (see Section III-A), we
can make use of existing machine learning techniques for
learning associations between sets of discrete attributes (e.g.
f1, f2, . . . fn ∈ F) and policy decisions (i.e., grant and
deny). In previous research [4], we investigated three classes
of machine learning algorithms: (i) instance-based learning
(using k-nearest neighbours); (ii) rule-based learning (using
sequential covering); and (iii) decision tree learning (using
C4.5). Figure 2 shows an example decision tree representing
a model of the policies of some other agent learned from
interactions with that agent. Nodes of the decision tree capture
features of an agent’s policy, edges denote feature values,
while the leaves are policy decisions.

f4=xx
f4=ss

f2=yy
f2=trm

f1=jf1=cf5=ef5=z

f3=vc f3=w

f4
f4=aa

f2

grantdeny

f5

deny grant f3
grant

f1

grant

deny

Fig. 2. Example decision tree.

The machine learning algorithms were chosen to explore
the utility of different classes of learning techniques. Instance-
based learning is useful in this context because it can adapt to



and exploit evidence from dialogical episodes incrementally
as they accrue. In contrast, decision trees, and rule learning
are not incremental; the tree or the set of rules must be
reassessed periodically as new evidence is acquired1. Learning
mechanisms such as sequential covering, decision trees do
have a number of advantages over instance-based approaches;
in particular, the rules (or trees) learned are more amenable to
scrutiny by a human decision maker.

The training examples used in each learning mechanism
are derived from plan resourcing episodes (or interactions),
which involves resourcing a task t using provider y and may
result in ( ~Fy, grant) or ( ~Fy, deny). In this way, an agent
may build a model of the relationship between observable
features of agents’ and the policies they are operating under.
Subsequently, when faced with resourcing a new task, the
policy model can be used to obtain a prediction of whether
or not a particular provider has a policy that permits the
provision of the resource. In this paper, we take this aspect
of the research further by investigating semantic-enriched
decision trees (STree), which extend C4.5 decision trees
using ontological reasoning to explore how much domain
knowledge can improve learning.

D. Learning from domain knowledge

We argue that domain knowledge can be used to improve
the performance of machine learning approaches. Specifically,
in this section, we will describe how we can exploit domain
knowledge to improve C4.5 decision trees.

1) C4.5 Decision Tree Algorithm: In this section, we
shortly describe the induction of C4.5 decision trees. Then,
in the following section, we describe how domain knowledge
can be exploited during tree induction.

The well-known C4.5 decision tree algorithm [5] uses a
method known as divide and conquer to construct a suitable
tree from a training set S of cases. If all the cases in S belong
to the same class Ci, the decision tree is a leaf labeled with Ci.
Otherwise, let B be some test with outcomes {b1, b2, . . . , bn}
that produces a partition of S, and denote by Si the set of
cases in S that has outcome bi of B. The decision tree rooted
at B is shown in Figure 4, where Ti is the result of growing
a sub-tree for the cases in Si. The root node B is based on
an attribute that best classifies S. This attribute is determined
using information theory. That is, the attribute having the
highest information gain is selected.

Fig. 4. Tree rooted at the test B and its branches based on its outcomes.

1For these algorithms we define a learning interval, φ, which determines
the number of plan resourcing episodes (or interactions) an agent must engage
in before building (or re-building) models of others’ policies.

Information gain of an attribute is computed based on
information content. Assume that testing an attribute A in
the root of the tree will partition S into disjoint subsets
{S1, S2, . . . , St}. Let RF (Ci, S) denote the relative frequency
of cases in S that belong to class Ci. The information content
of S is then computed using Equation 1. The information gain
for A is computed using Equation 2.

I(S) = −
nX

i=1

RF (Ci, S)× log(RF (Ci, S)) (1)

G(S,A) = I(S)−
tX

i=1

|Si|
|S| × I(Si) (2)

Once the attribute representing the root node is selected based
on its information gain, each value of the attribute leads to a
branch of the node. These branches divide the training set used
to create the node into disjoint sets {S1, S2, . . . , St}. Then, we
recursively create new nodes of the tree using these subsets.
If Si contains training examples only from the class Ci, we
create a leaf node labeled with the class Ci; otherwise, we
recursively build a child node by selecting another attribute
based on Si. This recursive process stops either when the tree
perfectly classifies all training examples, or until no unused
attribute remains (see Algorithm 1).

Algorithm 1 The C4.5 Decision Tree Algorithm.
1: Input : the set of non-categorical attributes R
2: Input : the categorical attribute C
3: Input : a training set S
4: Output: a decision tree T
5: T = {}
6: if S = {} then
7: T = SingleNodeWithV alue(“Failure”)
8: Return T
9: end if

10: if ∀s ∈ Ssuch thatc = getV alueOfClass(s) then
11: T = SingleNodeWithV alue(c)
12: Return T
13: end if
14: if R = {} then
15: mostFrequent = getMostFrequentValueOfClass(S)
16: T = SingleNodeWithV alue(mostFrequent)
17: Return T
18: end if
19: D = AttributeWithLargestNormalisedGain(S,R)
20: Let dj be the values of D such that j = 1 · · ·m
21: Let Sj ⊂ S consist of instances with value dj for attribute D

such that j = 1 · · ·m
22: Create a tree, T , with root D, having edges labeled as

d1, d2, · · · , dm

23: Recurse on the sublists obtained by splitting on D
24: Add those nodes as children of the node that was splitted
25: Return T

Table III lists 10 training examples, where Type, Age, and
Price are the only features. C4.5 decision tree algorithm
makes induction only over numerical attribute values. How-
ever, it could not make induction or generalisation over the
nominal attribute values (i.e., terms). For instance, a decision
node based on the price test in Figure 5 can be used to classify
a new case with price $250, 000, even though there is no case
in the training examples with this price value. However, a new



GroundVehicle

Vehicle

WaterBorneTransport
AerialVehicle

speedBoatyacht

Boat

cruiser submarine

MilitaryShip

coach car

van
jeep
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hunter
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hawk

Thing

...

WeatherConditions

GoodWeatherBadWeather
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rainy

foggysnowy

windy

volcanicCloud

Fig. 3. A simple ontology for vehicles and weather conditions. Ellipsis and rectangles represent concepts and their instances respectively.

TABLE III
TRAINING EXAMPLES.

# Vehicle ID Type Age Price Class
1 Van789 Van 10 10,000 grant
2 Van999 Van 5 20,000 grant
3 Car767 Car 8 5,000 grant
4 Car777 Car 15 1,000 grant
5 Coach09 Coach 2 200,000 grant
6 Yacht121 Yacht 20 300,000 decline
7 Yacht123 Yacht 2 500,000 decline
8 Speedboat1 Speedboat 4 8,000 decline
9 Speedboat2 Speedboat 15 2,000 decline
10 Cruiser31 Cruiser 10 100,000 decline

case with an unseen type, for instance a submarine, cannot be
classified using the decision node based on the attribute Type.

Type=?

Car Van Coach
Yacht Speed

boat
Cruiser

{1,2,3,4,5,6,7,8,9,10}

{1,2} {3,4} {5} {6,7} {8,9} {10}

Price >= 100,000 ?

{1,2,3,4,5,6,7,8,9,10}

tr
u
e

false

{5,6,7,10} {1,2,3,4,8,9}

Fig. 5. Decision nodes created using the tests on Type (on left) and Price
(on right).2) Domain Knowledge: Domain knowledge consists of
such background information that an expert (in a field) would
deploy in reasoning about a specific situation. Semantic Web
technologies allow software agents to use ontologies to cap-
ture domain knowledge, and employ ontological reasoning to
reason about it [6]. Figure 3 shows a part of a simple ontol-
ogy about vehicles and weather conditions. The hierarchical
relationships between terms in an ontology can be used to
make generalisation over the values of features while learning
policies as demonstrated in Example 2. Policies are often spec-
ified using numerical features (e.g., vehicle price) and nominal
features (e.g., vehicle type). Each nominal feature may have a
large set of possible values. Without domain knowledge, the
agent may require a large training set containing examples with
these nominal values. However, domain knowledge allows
agents to reason about to the terms unseen in the training set
and learn more general policies with fewer number of training
examples.

Example 2: Suppose agent x in Example 1 has learned
from previous interactions with agent y1 that there is a policy
that forbids y1 from providing a helicopter when the weather

is rainy, foggy, snowy, or windy. In addition, suppose agent x
has learned from previous experience that agent y1 is permitted
to provide a jeep in these conditions. This information has
little value for x if it needs a helicopter when the weather
is not rainy, foggy, snowy, or windy but volcanic clouds are
reported. On the other hand, with the help of the ontology in
Figure 3, agent x can generalise over the already experienced
weather conditions and expect that “agent y1 is prohibited
from providing helicopters in bad weather conditions". Such
a generalisation allows x to reason about y1’s behavior for
the cases that are not experienced yet. That is, with the help
of the domain knowledge, agent x can deduce (even without
having training examples involving volcanic clouds directly)
that agent y1 may be prohibited from providing a helicopter
if there is an evidence of volcanic clouds in the region.

3) Semantic-enriched decision trees: Here, we present
semantic-enriched decision trees (STree) built upon the sub-
sumptions relationships between terms in the ontology. These
relationships can be derived automatically using an off-the-
shelf ontology reasoner [6]. The main idea of STree is to
replace the values of nominal attributes with more general
terms iteratively during tree induction, unless this replacement
results in any decrease in the classification performance.

Algorithm 2 summarises how the values of A are gener-
alised for S. First, we compute the original gain G(S, A) (line
3). Second, we create a set called banned, which contains the
terms that cannot be generalised further (line 4). Initially, this
set contains only the top concept Thing. Third, we create the
set T that contains A’s values in S (line 5). While there is a
generalisable term t ∈ T (lines 6-18), we compute its generali-
sation t′ using ontological reasoning (line 8) and create the set
T ′ by replacing more specific terms in T with t′ (line 9). If this
term is an instance of a concept, then the generalisation of the
term is the concept, e.g., Y acht is generalisation of Y acht121.
If the term is a concept, its generalisation is its parent concept,
e.g., WaterBorneTransport is generalisation of Y acht.
For instance, let S be the data in Table III, then T would
contain Y acht, Speedboat, Cruiser, V an, Car, Coach, and
Cruiser. If Car is selected as t, t′ would be GroundV ehicle.
In this case, T ′ would contain Y acht, Speedboat, Cruiser,
and GroundV ehicle. Next, we check if the generalisation
leads to any decrease in the information gain. This is done
by creating a temporary training set s from S by replacing



A’s values in S with the more general terms in T ′ (line 10)
and then comparing G(s, A) with the original gain g (line 11).
If there is no decrease in the information gain, S and T are
replaced with s and T ′ respectively; otherwise t is added to
banned. We iterate through until we cannot find any term in
T to generalise without any decrease in the information gain.
Algorithm 2 Generalising values of nominal attribute A in
training set S.

1: Input : S, A
2: Output: T
3: g = G(S,A)
4: banned = {Thing}
5: T = getAttributeV alues(S,A)
6: while true do
7: if ∃t such that t ∈ T ∧ t /∈ banned then
8: t′ = generalise(t)
9: T ′ = replaceWithMoreSpecificTerms(T, t′)

10: s = replaceAttributeV alues(S,A, T ′)
11: if G(s,A) = g then
12: S = s and T = T ′

13: else
14: banned = banned ∪ {t}
15: end if
16: else
17: break
18: end if
19: end while

The output of the algorithm would be
{SeaV essel,GroundV ehicle} for the examples in Table III,
because any further generalisation results in a decrease in
information gain. Hence, a decision node based on Type
attribute would be as shown in Figure 6 (left hand side). A
new test case (11, Submarine, 40years, $800, 000) would
be classified as deny using this decision node, because a
submarine is a sea vessel and all known sea vessels are
labeled as deny. If the actual classification of the case is
grant instead of deny, the decision node would be updated
as seen in Figure 6 (right hand side), because generalisation
of Submarine or Cruiser now results in a decrease in the
information gain.

Type=?

GroundVehicle WaterBorneTransport

{1,2,3,4,5,6,7,8,9,10}

{1,2,3,4,5} {6,7,8,910}

Type=?

GroundVehicle Boat

{1,2,3,4,5,6,7,8,9,10,11}

{1,2,3,4,5} {6,7,8,9}

Cruiser Submarine

{10} {11}

Fig. 6. Decision nodes using the generalisation of cases in Table III (left
hand) and after the addition of a new case (11, Submarine, 40, 800, 000,
grant) (right hand).

IV. EVALUATION

In evaluating our approach, we employed a simulated agent
society where a set of seeker agents interact with a set of
provider agents with regard to resourcing their plans over
a number of runs. Each provider is assigned a set of re-
sources. Providers also operate under a set of policy constraints
that determine under what circumstances they are permitted
to provide resources to seekers. In the evaluation reported
in this section, we demonstrate that it is possible to use
domain knowledge to improve models of others’ policies,

hence increase their predictive accuracy, and performance. We
hypothesize as follows:
• Hypothesis 1: In relatively small domains or in situations

where sufficiently large training data is available, agents
that incorporate domain knowledge will perform no worse
than those without domain knowledge.

• Hypothesis 2: In complex domains or in situations where
limited training data is available, exploiting appropriate
domain knowledge in learning policies mean that more
accurate and stable models of others’ policies can be
derived more rapidly than without exploiting such knowl-
edge.

A. Architecture

The architecture of our framework, sketched in Figure 7,
enables agents to learn the policies and resource availabili-
ties of others through evidence derived from argumentation,
and improve those models by exploiting domain knowledge.
The dialogue manager handles all communication with other
agents. The learning mechanism uses machine learning tech-
niques to reason over the dialogue and attempts to build mod-
els of other agents’ policies and resource availabilities based
on arguments exchanged during encounters. The arguments
include the features that an agent requires in order to make a
decision about accepting a task delegation or not. The agent
attempts to predict the policies of others by reasoning over
policy models (built from past experience). Such reasoning is
further improved by exploiting background domain knowledge
and concept hierarchies in an ontology (as described in Section
III-D).

B. Experimental Setup

We evaluate the performance of background domain knowl-
edge in refining models of others’ policies in situations where
agents’ policies are relatively small or large training data is
available (which we refer to as the closed world scenario)
and in situations where agents’ policies are relatively large or
limited training data is available (which we refer to as the
open world scenario).

TABLE IV
EXPERIMENTAL PARAMETERS

Parameter Closed Open Description
Seeker 1 1 No. of consumer agents
Provider 4 4 No. of provider agents
φ 100 100 Learning interval
Task 800 800 No. of tasks per experiment
Resources 5 20 No. of resource types
Locations 5 20 No. of locations
Purposes 5 20 No. of purposes
Days 3 3 No. of simulated days

There are five features that are used to capture agents’
policies, namely resource type (Resource), affiliation, purpose
(Purpose), location (Location), and day (Day). In each
scenario, five agent configurations (SM , C4.5, kNN , SC,
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Fig. 7. Agent reasoning architecture.

and STree) are investigated. In SM , simple memorisation of
outcomes is used. In C4.5, C4.5 decision tree classifier [7] is
used. In kNN , k-nearest neighbour algorithm [8] is used. In
SC, sequential covering rule learning algorithm [9] is used.
Lastly, in STree, agents use semantic-enriched decision trees
to learn policies of others. The experimental parameters are
summarised in Table IV.

These attributes provide the possible task context for each
agent in the system. In the closed scenario, there are 375 (that
is, 3 × 5 × 5 × 5) possible task configurations. Thus, given
4 providers, the consumer is faced with a problem domain
in which there are (potentially) 1,500 individual policies for
different task configurations (that is, 375 × 4). In the open
scenario, however, there are 3×20×20×20 = 24, 000 possible
task configurations, and the problem domain can (potentially)
have 96,000 individual policies for different task configu-
rations (considering the 4 providers). Seeker agents were
initialised with random models of the policies of providers.
100 runs were conducted in 10 rounds for each case, and
tasks were randomly created during each run from the possible
configurations. In the control condition (SM configuration),
the seeker simply memorises outcomes from past interactions.
Since there is no generalisation in SM, the confidence (or
prediction accuracy) is 1.0 if there is an exact match in
memory, else the probability is 0.5.

C. Results

Figure 8 illustrates the performance of the five configu-
rations we considered in predicting agents’ policies in the
closed scenario. The results show that STree, SC, kNN and
C4.5 consistently outperform SM . Furthermore, STree, SC
and kNN consistently outperform C4.5. It is interesting to see
that, with relatively small training set, SM performed better
than C4.5. This is, we believe, because the model built by
C4.5 overfit the data.

The decision trees (i.e. STree and C4.5) was pruned after
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Fig. 8. The effectiveness of exploiting domain knowledge in learning policies
(closed scenario).

each set of 100 tasks and after 300 tasks the accuracy of the
C4.5 model rose to about 83% to tie with SM and from then
C4.5 performed better than SM. Similarly, STree performed
much better than SC with relatively small training set. We
believe, this is because STree takes advantage of domain
knowledge and so can make informed inference (or guess) with
respect to feature values that do not exist in the training set.
After 400 tasks the accuracy of STree, SC, and kNN remained
unchanged at about 97% from 400 to 800 tasks. We believe, at
this point, almost all the test instances have been encountered
and so have been learned (and now exist in the training set
for future episodes). This confirms hypothesis 1.

Figure 9 illustrates the effectiveness of exploiting domain
knowledge in learning policies in the open scenario. The
results show that the technique that exploits domain knowledge
(STree) significantly outperforms the other techniques that did
not. After 300 tasks the accuracy of the STree model had
exceeded 82% while that of SM, C4.5, kNN, and SC were
just approaching 53%, 64%, 65% and 67% respectively. For
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(open scenario).

the sake of clarity, we omit the error bars from the graphs.
However, tests of statistical significance were applied to all
results presented in this evaluation and they have been found
to be statistically significant by t-test with p < 0.05. This
confirms hypothesis 2.

Overall, these results confirm that exploiting appropriate do-
main knowledge in learning policies mean that more accurate
and stable models of others’ policies can be derived more
rapidly than without exploiting such knowledge.

V. DISCUSSION

Our results show that background domain knowledge can
be exploited to refine and further improve models of others’
policies. Of all the approaches examined, the semantically-
enriched decision tree learner (STree) built consistently more
accurate models of others policies. This is, we believe, as a
result of the use of background domain knowledge in making
appropriate generalisations/specialisations. When an agent en-
counters a new term, without domain knowledge, there is no
way for the agent to make any useful inference regarding that
term/concept on the basis of other terms/concepts. However,
had the agent been aware of certain background domain
information that relates to that term/concept then it could
utilise ontological reasoning to see if there is a semantic link
between the new term and any of the other terms that it had
encountered before.

In a related work, [10] attempts to learn from, and classify
partially specified datasets. In their work, the authors extended
C4.5 decision trees [5] with attribute-value taxonomies (AVT).
In their approach, classification is done using taxonomies
defined over attribute values, which may be specified at
different levels of precision. However, our approach is different
from theirs because we directly incorporate existing domain
ontologies and exploit these ontologies during policy learn-
ing. Unlike their approach, which does not allow ontological
reasoning during tree induction.

In future, we plan to extend other machine learning methods
with domain knowledge and explore how much this extension
improves policy learning and enhances agents’ support for
human decision-making.

VI. CONCLUSIONS

We have presented an agent decision-making mecha-
nism where models of other agents are refined through
argumentation-derived evidence from past dialogues, and these
models are used to guide future task delegation. We have also
empirically evaluated our approach and shown that accurate
models of others’ policies could be learned by exploiting do-
main knowledge. We believe that this research contributes both
to the understanding of how policies may affect delegation in
collaborative missions, and applications of evidence derived
from argumentation and background domain knowledge to
support human decision-making.
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