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Abstract—Developing and resourcing coalition plans require an
understanding of the policy and resource availability constraints
under which coalition members operate. Policies and resource
availability information are not necessarily public knowledge
within the coalition. Also, it is difficult to keep track of the
policies and resource availabilities of others. What is required
is agent support for keeping track of who might have and
be willing to provide the resources required for enacting a
plan and modeling the policies of others regarding resource
use, information provision, etc. We propose a technique that
combines machine learning and argumentation for identifying
and modeling the policies of others and advising on how a plan
may be resourced using this model. Also, we present the results
of the initial evaluation of this model.

I. INTRODUCTION

In today’s critical mission scenarios such as emergency
response, coalitions are often formed because stakeholders
may not have (or be willing to solely provide) all the resources,
capabilities and logistics necessary for the mission. The for-
mation of these alliances are predicated on members agreeing
to collaborate and perform joint activities in a mutually
acceptable fashion. Arguably, coalition members representing
different organisations, nations, etc., share in the common
goal of the coalition. Needless to say, they possess individual
interests and constraints which they seek to satisfy as well.
These individual interests and constraints largely determine
the way and manner in which coalition partners carry-out the
tasks assigned to them during the mission.

In this paper, we focus on policy and resource availability
constraints of coalition members, and define policy constraints
as explicit obligations, permission and prohibitions (sometimes
called norms in some other contexts [1] [2]) that members
of the coalition are required to adhere to. These policy con-
straints may be coalition-wide or individual. Coalition policy
guidelines are global and are expected to be public knowledge
within the coalition. On the other hand, individual policies
are often private to that individual member or subset of the
coalition. In order to develop effective plans, an understanding
of the policy and resource availability constraints of other
members in the coalition is required. Tracking and reasoning
about such information is non-trivial.

We introduce a system that uses agent technology to keep
track of who might have and be willing to provide the
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resources required for enacting a plan. The system also models
the policies of other coalition members regarding resource
use, information provision, etc., and evidence acquired with
respect to their policies. This knowledge is used to learn
behavioural patterns of others and thereby enhance future
decisions about which coalition member is most appropriate
for the provision of a resource given other constraints and
prevailing circumstances.

In this paper, we propose a technique that combines machine
learning and argumentation for identifying and modeling the
policies of others and advising on how a plan may be resourced
using this model. We present our work in the area of agent
support for coalition missions under policy constraints. In this
framework, we employ argumentation as a mechanism for
teasing out vital information from partners and using that to
aid the learning of underlying constraints (e.g. policies). We
describe an experimental framework and present initial results
of our evaluation showing that argumentation-based mecha-
nisms combined with a standard machine learning technique
out-performs the machine learning technique on its own in the
learning of policy constraints in a coalition.

The remainder of this paper is organised as follows: In
Section II we introduce the problem domain. In Section III
we briefly describe our simulation environment. We present
the learning mechanism in Section IV and Section V discusses
argumentation. In Section VI we present the initial results
of the experiments and discuss related work in Section VII.
We outline future directions in Section VIII and Section IX
concludes.

II. PROBLEM DOMAIN

Problem solving activities often require the interplay of
many units, logistics and expertise, and are rarely carried out
in isolation. Many nations and organizations are motivated
to form coalitions as the basis for future operations (be it
peace-keeping, humanitarian relief, disaster response, warfare,
or otherwise). Such alliances are heterogeneous in nature
and introduce various constraints to the theatre of operations.
Similar constraints are evident in many team problem solving
activities. These constraints introduce complications in the
process of planning and coordinating joint activities. One



such example in team-based problem solving contexts is
constraints due to the policies of individual team members.
Team members may also be constrained in terms of resource
availability, but these constraints tend to be shorter term; policy
constraints being medium to long term. Some examples of
policy constraints are given below:

1) A coalition partner may be forbidden from releasing a
specific type of resource to some other partner but may
be permitted to release the same resource to a third if
requested.

2) A coalition partner may be permitted to share intelligence
with another but might be prohibited from revealing the
source of that intelligence.

3) A coalition partner P may be forbidden from flying un-
manned aerial vehicles (UAVs) in bad weather conditions.
Therefore, if intelligence reveals that the weather is bad
then P is not allowed to include UAVs as resources to
be used in the plan.

The task of planning for joint action in coalition operations
is a complex problem on its own and could be further
complicated by the various constraints that partners in the
coalition may have, the prevailing circumstances and the goals
to be achieved. In such scenarios, human planners are faced
with huge challenges and are usually over-loaded with various
details, some of which are important and may be critical to
the success or failure of the operation. In this paper, we focus
on policy and resource availability constraints. Our conjecture
is that machine learning techniques may be employed to aid
human decision making. Although this is not a new claim (see
[3]), it is novel to combine it with argumentation analysis.

What is argumentation? We define argumentation as the
process whereby arguments are exchanged and evaluated in the
light of their interactions with other arguments. By arguments,
we refer to explanations offered in support of an action.
Consider the following snippet of dialogue that may occur
between two agents ¢ and j:

Example 1:
2: Can I have R1?
j: No.

What can be inferred from the interaction? Why did agent
7 say no to agent ¢’s request?

1) Could it be that there exist some policy X that forbids

agent j from providing R1 to agent :?

2) Could it be that R1 is not available at the moment?
There is very little that we can learn from the dialogue. On
the other hand, suppose we have an argumentation framework
that allows agents to ask for and provide explanations as in
examples 2 and 3 below then agent ¢ can gather more evidence
regarding why agent j did not provide R1.

Example 2: Example 3:

4: Can I have R1? 4: Can I have R1?

7: No j: No.

2. Why? 4. Why?

7: I’'m not permitted to release R1. | j: RI1 is not available.

From the above snippets, we see that example 1 is not
very helpful in terms of learning the underlying constraints

of agent j. However, employing argumentation mechanisms
(see examples 2 and 3), agent ¢ could disambiguate the reason
for the refusal. This is a very simple example but in richer
dialogical contexts further evidence may be acquired through,
for example, suggestions of alternative resources to use for the
same goal.

Integrating learning techniques into the agent support frame-
work will provide a level of support to human planners.
However, can the use of argumentation mechanisms improve
the effectiveness and accuracy of the information learned
about the policy constraints of others? We hypothesize that
argumentation can be used to disambiguate between policy
and resource availability constraints.

Generally, we envisage a framework whereby software
agents aid human decision makers, possibly distributed in
space, to communicate, collaborate and coordinate their activi-
ties during joint operations. This system of support for human
teams is not only interesting but realistic and can be inves-
tigated in real world team-based activities like warfare. One
area of agent support that has been identified as important in
this context is guidance in making policy-compliant decisions
[4]. This prior research focuses on giving guidance to humans
regarding their own policies. An important and open question,
however, is how can agents support human decision makers
in developing models of others’ policies and using these in
guiding the decision maker?

In this paper, we present a system where agents learn from
practical dialogue by automatically extracting useful informa-
tion from the dialogue and using these to model the policies,
preferences and priorities of others in order to adapt their
behaviour in the future. We, therefore, propose a technique that
combines machine learning and argumentation for identifying
and modeling the policies of others and advising on how a
plan may be resourced taking resource availability constraints
into consideration. We describe an experimental framework
and present initial results of our evaluation which shows that
an argumentation-based mechanism combined with a standard
machine learning technique out-performs the machine learning
technique on its own.

Fig. 1 presents an overview of the proposed system.
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Fig. 1.

General overview of the framework.
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Fig. 2. Architecture of the framework for learning policy constraints in team-based activities using dialogue.

III. SIMULATION ENVIRONMENT

Each agent has two main layers, the communication layer
and the planning and reasoning layer (See Fig. 2). The
communication layer embodies the dialogue controller, which
handles the communication with other agents in the domain.
The planning and reasoning layer consists of three modules:
the planner, the policy modeller, and the learner. The planning
module of the agent uses heuristics (not covered in this paper)
to generate a plan that is consistent with the individual policies
of the agent (we assume this plan is a sub-plan of the joint plan
constructed collaboratively by the coalition). This assumption
is reasonable because planning is often done in hierarchies,
therefore, higher level plans need to be refined (or replanned)
at the lower level. For the sake of brevity, the term plan
will be used to mean a complete plan, partial plan, and/or
a plan step. Once a plan of action is constructed, the agent
is ready to communicate with other agents in the domain to
identify and gain commitments for the resources required to
execute the plan. The dialogue controller module sends (and
receives) messages to (and from) other agents and reasons over
the dialogue. The policy modeller looks up policy constraints
from the knowledge-base and generates appropriate utterance
(or action) for the agent. Policy constraints are stored in
the policy constraint knowledge-base while other (non-policy)
constraints (e.g. resource constraints) are captured in the “other
constraints” knowledge-base. The learner uses decision trees
to learn policies based on the perceived actions of other
agents (See Section IV for details). The knowledge from this

experience is used to update the constraint knowledge base so
that future planning will take that knowledge into account.

To test our hypothesis, we have developed a simulation envi-
ronment for agent support in coalition missions and integrated
learning mechanism and argumentation into the framework.
The environment is implemented in Java [5]. The policies
were captured as rules and implemented in a production engine
(Jess [6]). The application programming interface provided in
Weka [7] was used to integrate a standard machine learning
algorithm into the framework. We note that although decision
trees were used, the simulation environment is configured such
that other machine learning algorithms can be plugged in.

Agents in this domain could play the role of a seeker,
provider, or both in different interactions. For simplicity, we
consider a setup with one seeker and a number of providers.
The seeking agent simulates an agent that has come up with
some plans to execute a task (the planning mechanism of the
agent is beyond the scope of this paper) and needs to find
the best way (or best partner to collaborate with in order) to
resource these plans. The plans are resourced by convincing a
providing agent to release some resources from its resource
pool. The seeking agent identifies the resources required
for a task and sends a request message to the providing
agent. The providing agent evaluates the request and responds
accordingly. If the resource is available for use and doing so
does not conflict with policies then the providing agent agrees,
otherwise it refuses. By availability we mean, the resource is
not committed to another task (or agent) at the time requested



for and also the resource is in a usable state.

Suppose a seeker A sends a request for resource R to
provider P, then we can represent the decision function of
the provider generally as follows:

IF (is—available(R) A NOT (forbidden(release(R, A)) )
THEN
ELSE

Fig. 3.

agree( release(R, A))
refuse( release(R, A))

A simple decision function

We note that in reality there are a number of factors, other
than policies and the availability of resources, that might be
vital in determining whether a resource is made available
or not. However, as a first step towards investigating these
factors we concentrate on policies and resource availabilities,
and hope to explore other factors like the cost of lending a
resource, the risk of losing the resource, etc., subsequently.

IV. LEARNING MECHANISM

Despite the recent progress in advanced induction algo-
rithms such as Support Vector Machines [8], decision trees
are still considered attractive for many real-life applications.
Perhaps, the attraction stems from the fact that Decision Tree
Classifiers have the ability to break down a complex decision-
making process into a collection of simpler decisions, thus
providing a solution which is often easier to interpret [9].
In terms of accuracy, decision trees have been shown to be
competitive with other classifiers for several learning tasks
[10]. By Occam’s Razor [11], smaller trees should generally
have better predictive power. The C4.5 algorithm uses gain
ratio as a heuristic for predicting which attribute will yield a
smaller tree. However, in general, the problem of finding the
smallest consistent tree! is known to be NP-complete [12],
[13].

Our multi-agent learning framework is based on the decision
tree learner, which applies the C4.5 algorithm [14] on a given
set of examples and generates a decision tree model. C4.5
builds decision trees from a set of training data, using the
concept of information entropy [15] (beyond the scope of this
paper). The training data is a set S = s1, So, ..., s,, of already
classified samples. Each sample s; = x1, 2, ..., T, 1S a vector
where z1, s, ..., x,, represent attributes of the sample. The
training data is augmented with a vector C' = c1,c¢a, ..., ¢y
where ¢y, ca, ..., ¢, represent the class to which each sample
belongs. Agent policies are represented as a vector of attributes
(e.g. resource, purpose, location, etc.) and the C4.5 algorithm
is used to classify each policy instance into a class.

The C4.5 algorithm has three base cases.

o All the samples in the list belong to the same class. When
this happens, it simply creates a leaf node for the decision
tree saying to choose that class.

e None of the features provide any information gain. In
this case, C4.5 creates a decision node higher up the tree
using the expected value of the class.

'A consistent decision tree is a tree that correctly classifies all training
examples.

« Instance of previously-unseen class encountered. Again,
C4.5 creates a decision node higher up the tree using the
expected value.

In pseudocode the C4.5 algorithm is presented in Fig. 4:

Step 1. Check for base cases
Step 2. For each attribute D,
Find the normalized information gain from
splitting on D
Step 3. Let D_best be the attribute with the highest
normalized information gain
Step 4. Create a decision node that splits on D_best
Step 5. Recurse on the sublists obtained by splitting on
D_best , and add those nodes as children of node

Fig. 4. The C4.5 algorithm for building decision trees [16].

In other words, at each node of the tree, the C4.5 algorithm
chooses one attribute of the data that most effectively splits
its set of samples into subsets enriched in one class or the
other. Its criterion is the normalized information gain (that
is, difference in entropy [15]) that results from choosing an
attribute for splitting the data. The attribute with the highest
normalized information gain is chosen to make the decision.
The C4.5 algorithm then recurses on the smaller sublists.

V. ARGUMENTATION

Resource-bounded reasoning situations, such as planning,
are complex to model and this become even more complicated
when the reasoning mechanism of the other agent is partially
known, or in some cases not known at all. Agent reasoning
mechanisms are usually private, therefore, it is non-trivial
to model. One way that one could attempt to model it is
by obtaining additional evidence (through explanations) to
indicate what constraints others may be operating with. We
adopt this approach and utilise the power of arguments (in
this case, explanations/justifications) in aiding the learning
process. In circumstances where knowledge is incomplete or
imperfect, argumentation has proven to be effective in reaching
some goals that would have otherwise, been unreachable
[17], [18]. From the results, we can show that embedding
an argumentation layer into the framework made a significant
improvement on the performance of our agents in learning the
policies of others. (See Section VI for experimental results)

Many argumentation-based studies have involved the use
of some form of game built using language[19], rules [20]
and conventions [21], [22] such that the actions of the players
were guided and informed by structures often referred to as
a protocol. Dialogue games have proven extremely useful for
modeling various forms of reasoning in many domains, for
example, in the legal domain [23], [24], medicine [25], [26],
and many more. In this work we develop a dialogue game that
involves two players only. The players take turns to play and
a move in the game involves making an utterance (e.g request
for some resource) and could also be modified to include an
action (e.g allocate a resource to an agent).

In order to specify the game protocol, we need to define
some terms. Let 4 be the set of agents in the domain such



that 7,j € A. Assume agent ¢ has a plan (a subset of the
joint plan) requiring the use of a set of resources R in order
to achieve a goal G.

Definition: A resource allocation, denoted as A?L? is a
collection of resources that an agent i has at its disposal at
time t, where t denotes the time step in the dialogue.

e« NMCR andt=1{0 1,2, ..n}

The game starts with an agent, say ¢ sending a request to
another agent, say j for the use of some resources needed to
fulfill a plan. The other agent can then respond with an agree
or refuse (based on certain issues, e.g policy constraints). The
requesting agent could ask for reasons and explanations, and
so on until the game ends.

Fig. 5 captures the protocol for the dialogue game developed
in this work and Fig. 6 shows an example of the kind of
dialogue that may occur between two agents, ¢ and j using
the protocol. However, we note that although this is presented
as a dialogue between two agents, in reality the initiator (agent
i, the agent that wishes to resource its plan) may engage
in multiple instances of this dialogue with other agents. The
dialogue in Fig. 6 is an instantiation of example 3 given earlier
in Section II.

VI. EXPERIMENTS AND RESULTS

A variety of experiments were conducted to test the per-
formance and behavior of our framework. In this section, we
describe our experimental scenario and present the results.

A. Experimental scenario

We present an illustrative scenario that will serve as a
vehicle for testing our hypotheses. The scenario involves two
software agents collaborating to complete a mission in the
same region over a period of three days. The region of the
mission is divided into five zones. There are five resource types
and five purposes that a resource could be used to fulfill. A
task involves the seeker identifying resource needs for a plan
and collaborating with the provider to see how that plan can
be resourced.

For the purpose of the experiment, the seeker simulates
an agent that has a plan and needs to collaborate with the
provider to resource it. The seeker predicts (based on the
model of the provider) whether the provider has a policy that
forbids/permits the provision of such a resource in that context.
The seeker requests the resource from the provider and the
provider uses a simple decision function (described earlier)
to decide whether to grant or deny the request. The dialogue
follows the protocol specified in Fig. 5 and at the end of the
interaction the outcome is learned by the seeker and the model
of the provider is updated accordingly.

1) Policies: The providing agents operate under set of
policies which govern how resources are deployed to others
(See Fig. 7 for an example). In other words, the providing
agent can make resources available to other agents if the
resources are available and there is no policy forbidding that

Assume agent ¢ has a plan (a subset of the joint plan) requiring

the use of a set of resources R in order to achieve a goal G.

Agent i starts with initial allocation Ay at time ¢ = 0.
At time ¢t > 0:
1. request(z, j, ): agent ¢ requests agent j to provide
resource r such that A = AL U {r}
where r € R and has not been requested of j before.
2. At the next time step (' = ¢ + 1), agent j either:
(a). agree(j, 1, r): agrees, and resource r is allocated to <.
(b). refuse(y, ¢, r): refuses, and r is not allocated to 1,
in which case A!' = AT 1,
3. At the next time step (t/ =t/ + 1),
if last received locution was agree(j, ¢, r) then agent ¢
records the evidence in its knowledgebase, and
moves to step 6.
otherwise (switches to argumentation-based dialogue.)
why(z, j, refuse(r)): ¢ asks j for underlying interests
or reasons why it has refused to provide resource r.
4. At the next time step (t° = t" + 1),
if last received locution was why(z, j, r) then
agent j either:
(a). inform(y, ¢, r, reason(x)): gives the reason for
refusing to allocate r to i; or
(b). inform(j, ¢, r, cant-tell): gives no reason for
refusing to allocate r to 7.
otherwise inform(j, 7, r, not-allowed): informs 7 that
the message is invalid in this context.
5. At the next time step (¢* = t° + 1),
if last received locution was inform(j, ¢, r, reason(z))
then agent ¢ records evidence in its knowledgebase,
and moves to step 6.
otherwise moves to step 6.
6. At the next time step (t* =t°* + 1),
if there are resources in R that are yet to be requested
then move to step 1 with the current allocation, At
otherwise
close-dialogue(z, j): terminates the dialogue.

Fig. 5. Dialogue Game Protocol

request(z, j, Jeep)

refuse(y, i, Jeep)

why(i, 7, refuse (Jeep))

inform(j, ¢, reason(resource-unavailable))
close-dialogue(i, j)

e O I

Fig. 6. Simple dialogue between agents 7 and j

course of action. The policies in this framework are based on
a number of factors enumerated as follows:

o Organisation - refers the country/organisation of the re-
questing agent. In this framework, an agent is associated



with the organisation it represents. Therefore, the policies
that relate to that organisation are enacted whenever that
agent makes a request for resources from the providing
agent.

o Resources - generally denote physical equipment, capa-
bilities or information that are required to carry out a task.
The providing agent may be prohibited from deploying a
missile or lending a UAV.

« Purpose - indicates the purpose for which the resource is
being requested. For example, the providing agent may
be obliged to release any resource to a member of the
coalition if the resource is required for reconnaissance.

o Location - denotes the particular location or zone where
the resource is to be deployed.

o Day - refers to the day the resource is to be deployed.
This could be Dayl, Day2 or Day3.

You are permitted to release resource R to team member X
if his affiliation is O and the resource is to be deployed
at location L for purpose P on day D.

Fig. 7.  An example of a policy

2) Setup: In the experiment, resource seekers attempt to
acquire resource types needed to fulfill the tasks assigned to
them during the joint mission. The resource providers operate
under strict policies, which are randomly generated at the
beginning of each round, and these guide how resources may
be made available to seeking agents upon request. Three agent
support configurations were tested and the performance of the
seeking agent was evaluated. The configurations include:

i. Random Selection (RS): Here, the seeker does not employ
any machine learning nor argumentation technique, rather
it randomizes its choice of attributing the refusal to policy
or resource availability constraints.

ii. Learning without Argumentation (LOA): In this setup, the
seeker applies the C4.5 decision tree learner to learn the
provider’s policy. This setup does not use argumentation
in any way.

iii. Learning with Argumentation (LWA): Here, argumenta-
tion is employed as a mechanism to augment the C4.5
learner in learning the policy of the provider. In other
words, dialogue is used to gather additional evidence that
serves to improve the quality of the models learned by
disambiguating between underlying constraints that may
have similar observable actions.

Ten rounds of the experiment was conducted, each consist-
ing of six runs of one hundred tasks executed by the agents.
Each task involves the seeking agent identifying resource
needs for a plan (or sub-plan) and collaborating with the
provider to see how that plan can be resourced.

B. Results

This section presents the results of the experiments carried
out to evaluate this work.

Fig. 8 illustrates the effectiveness of learning policies in the
three configurations outlined earlier. These include: (1) random

TABLE I
AVERAGE PERCENTAGE OF POLICIES CLASSIFIED CORRECTLY AT THE END
OF THE 10 ROUNDS OF 6 RUNS EACH

Tasks RS LOA LWA

1000 | 50.0 &£ 1.8 | 573 £ 11.7 | 57.3 £ 11.7
2000 | 500 £ 14 | 68.04+94 | 70.5 4+ 10.3
3000 | 499 £ 0.8 | 73.7 £ 4.8 774 £ 6.1
4000 | 50.1 + 1.7 | 745+ 49 80.6 £ 5.0
5000 | 500+ 1.6 | 739 £ 7.0 843 £3.5
6000 | 499 £2.0 | 679 5.0 84.3 + 4.7

selection (RS), (2) standard machine learning approach only
(LOA), and (3) combining machine learning with argumenta-
tion (LWA). It shows the percentage of the policies that the
seeker predicted correctly in each configuration. The graph
also shows that the argumentation-based approach enabled the
agent to learn and build a more accurate model of the other
agent’s policies and thereby increased the accuracy of predic-
tions. It is easy to see that the argumentation-based approach
constantly out-performs the standard learning approach.
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Fig. 8. Graph showing the effectiveness of learning policies using the three
configurations (RS, LOA & LWA).
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Fig. 9. Graph showing the convergence of the policy predictions using LOA
& LWA respectively.

The standard deviations of the results were plotted and



the trend line (using linear regression) shows that as the
number of tasks increases, the argumentation-based approach
(y = 12.5333 — 0.0016x) consistently converges at 95%
confidence interval, with a F' value of 18.9133 and signifi-
cance p = 0.0122. (See Fig. 9). On the other hand, with a
significance p = 0.0808, there is no statistical significance
as to whether the standard machine learning approach (y =
11.1933 — 0.0012z) converges or not.

VII. DISCUSSION AND RELATED WORK

Learning techniques have been applied in many fields, rang-
ing from artificial intelligence, multi-agent system, medicine,
etc., and argumentation has received much attention in the
recent past. However, to the best of our knowledge no other
work has attempted to combine machine learning and argu-
mentation in the way this work does. This work is novel in that
it is a first attempt at using argumentation enriched approaches
to learn underlying social characteristics (e.g policies) without
assuming that those underlying features are public knowledge.
Having said that, there are several related works that warrant
discussion here. We discuss some recent works in argumenta-
tion and machine learning that impact on this work.

Rahwan et al. [18] present a formal framework for analysing
the outcomes of interest-based negotiation (IBN) dialogues
and established that providing further information (especially
about underlying interests) improves the likelihood and qual-
ity of an outcome. Policy constraints can be captured as
underlying goals that agents are hoping to achieve (by ad-
hering to them) and so argumentation can be used to tease
out information regarding those constraints. In circumstances
where knowledge is incomplete or imperfect, argumentation
has proven to be effective in reaching some goals that would
have otherwise been unreachable [17], [18]. It is worth noting
that our work differs from Rahwan et al. [18] in that while
the authors are interested in gathering meta-information and
using it to support interest-based negotiation, we are interested
in learning the policies that other agents are operating with and
using this knowledge to guide how a plan is resourced. An-
other major difference stems from the fact that the framework
proposed in [18] was demonstrated via examples rather than
vigorous evaluation. We, however, present empirical evaluation
of our framework with experimental results. Our framework
neatly combines machine learning and argumentation in pre-
dicting what the other’s policies are. Furthermore, our work
is aimed at supporting human decision making in team-based
activities.

Mozina et al. [27] combined machine learning with con-
cepts of argumentation to produce a new machine learn-
ing technique called Argumentation-Based Machine Learning
(ABML). With this framework, an expert can provide argu-
ments for some learning examples and thereby enhancing the
predicting power of the learner. The work implemented an
argument-based extension of CN2 rule learning (ABCN2) and
was able to show that ABCN2 out-performed CN2 in most
tasks. However, the framework is another kind of learning
algorithm (even though arguments could be added to it) and
will struggle to disambiguate between subtle constraints that

may produce similar outcome/effect and that is the main issue
we are addressing in our work.

Atkinson and Bench-Capon [28] treated reasoning about
what action an agent should select as presumptive argumen-
tation. The framework captured situations where the effect of
an action is partially dependent upon the choices of another
agent. In other words, an agent chooses a move, proposes
presumptive reasons for the action and subjects it to critiquing
in order to establish suitability or otherwise. This kind of
framework is useful in our work as we argue that policy
constraints impact on the behaviour (or action) of an agent
and that, in turn, could be learned and used to infer what the
policies of that agent are.

VIII. FUTURE DIRECTIONS

In our future work, we plan to develop strategies for
advising human decision makers on how a plan may be
resourced and who to talk to on the basis of policy and
resource availability constraints learned from previous interac-
tions [29]. Parsons et al. [30], [31] investigated the properties
of argumentation-based dialogues and examined how different
classes of protocols can have different outcomes. We plan to
explore ideas from this work to see which class of protocol
will yield the “best” result in this kind of task. We are hoping
that some of these ideas will drive the work on developing
strategies for choosing who to talk to (and also which class of
protocol to present first, and so on). Furthermore, we plan to
incorporate the ability to suggest alternative resources based
on the preferences of team members and to see what effect
this will have on the learning of policies.

IX. CONCLUSIONS

In this paper, we have presented an approach that combines
machine learning and argumentation for learning policies in
a coalition mission. Individual policies are private and local
to the individual agent and are not necessarily public, but
using argumentation we have been able to tease out certain
information that can improve the performance in learning the
policies of other agents. In our approach, an argumentation
layer was built over a traditional learning mechanism (decision
trees) such that arguments were passed back and forth and
these enabled our agents to disambiguate between resource
and policy constraints, thereby fine-tuning the policies learned.
We have also shown that integrating argumentation capability
into systems, potentially, empowers agents with incomplete or
imperfect knowledge to perform better than they would have
without argumentation in learning.

ACKNOWLEDGEMENTS

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and



U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation hereon.

[2

—

[3

[t

[4

=

[5]
[6
[7]

[8]

[9

—

[10]
[11]

[12]

[13]

[14]

[15]
[16]

REFERENCES

W. Vasconcelos, M. J. Kollingbaum, and T. J. Norman, “Resolving
conflict and inconsistency in norm-regulated virtual organizations,” in
Proc. of the 6th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2007), Hawaii, USA, 2007.

D. Gaertner, A. Garcia-Camino, P. Noriega, J. A. Rodriguez-Aguilar,
and W. Vasconcelos, “Distributed norm management in regulated multi-
agent systems,” in Proc. of the 6th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2007), Hawaii,
USA, 2007.

A. Kelemen, Y. Liang, and S. Franklin, “A comparative study of different
machine learning approaches for decision making,” in Recent Advances
in Simulation, Computational Methods and Soft Computing, N. E.
Mastorakis, Ed. Piraeus, Greece: WSEAS Press, 2002, pp. 181-186.
G. Sukthankar and K. Sycara, “Analyzing team decision-making in tacti-
cal scenarios,” The Computer Journal, p. bxp038, 2009. [Online]. Avail-
able: http://comjnl.oxfordjournals.org/cgi/content/abstract/bxp038v1
Sun Microsystems Inc., “Java,” uRL: http://www.java.sun.com/.

E. Friedman-Hill, Jess in Action. Manning, 2003.

I. H. Witten and E. Frank, Data Mining: Practical machine learning
tools and techniques, 2nd ed. San Francisco: Morgan Kaufmann, 2005.
D. Meyer, F. Leisch, and K. Hornik, “The support vector machine
under test,” Neurocomputing, vol. 55, no. 1-2, pp. 169-186, 2003. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6V10-
49CRCBP-1/2/346ddc665b1b67be089a7d5d46edcal7

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York: Springer-
Verlag, 2001.

S. Esmeir and S. Markovitch, “Anytime learning of decision trees,” J.
Mach. Learn. Res., vol. 8, pp. 891-933, 2007.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, “Occam’s
razor,” Information Processing Letters, vol. 24, no. 6, pp. 377-380, 1987.
L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees is
np-complete,” Information Processing Letters, vol. 5, no. 1, pp. 15-17,
1976.

O. J. Murphy and R. L. McCraw, “Designing storage efficient decision
trees,” IEEE Transactions onComputers, vol. 40, no. 3, pp. 315-320,
1991.

J. R. Quinlan, C4.5: programs for machine learning.
CA, USA: Morgan Kaufmann Publishers Inc., 1993.
T. M. Mitchell, Machine Learning. McGraw Hill, 1997.

S. B. Kotsiantis, “Supervised machine learning: A review of classifica-
tion techniques,” Informatica, vol. 31, no. 3, pp. 249-268, 2007.

San Francisco,

(17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

S. Parsons and N. R. Jennings, “Negotiation through argumentation-A
preliminary report,” in Proc. of the Second International Conference
Multi-Agent Systems (ICMAS’96), Kyoto, Japan, 1996, pp. 267-274.
[Online]. Available: citeseer.ist.psu.edu/parsons96negotiation.html

I. Rahwan, P. Pasquier, L. Sonenberg, and F. Dignum, “On the benefits
of exploiting underlying goals in argument-based negotiation,” in Proc.
of the 22nd International Conference on Artificial Intelligence (AAAI).
California, USA: AAAI Press, 2007.

L. Wittgenstein, Philosophical Investigations. Oxford: Blackwell, 1957.
C. L. Hamblin, Fallacies. London, UK: Methuen, 1970.

J. Levin and J. Moore, “Dialogue-games: meta communication structure
for natural language interaction,” Cognitive Science, vol. 1, no. 4, pp.
395-420, 1980.

W. C. Mann, “Dialogue games: conventions of human interaction,”
Argumentation, vol. 2, no. 4, pp. 511-532, 1988.

T. J. M. Bench-Capon, J. B. Freeman, H. Hohmann, and H. Prakken,
“Computational models, argumentation theories and legal practice,” in
Argumentation Machines. New Frontiers in Argument and Computation,
C. Reed and T. J. Norman, Eds. Dordrecht, The Netherlands: Kluwer
Academic Publishers, 2003, pp. 85-120.

P. Dijkstra, F. J. Bex, H. Prakken, and C. N. J. De Vey Mestdagh,
“Towards a multi-agent system for regulated information exchange in
crime investigations,” Artificial Intelligence and Law, vol. 13, pp. 133—
151, 2005.

L. Perrussel, S. Doutre, J. Thevenin, and P. McBurney, “A persuasion
dialog for gaining access to information,” in Proc. of the AAMAS Inter-
national Workshop on Argumentation in Multi-Agent Systems (ArgMAS
2007), Hawaii, USA, 2007.

P. Tolchinsky, P. McBurney, S. Modgil, and U. Cortés, Agents deliber-
ating over action proposals using the ProCLAIM Model, ser. Lecture
Notes in Artificial Intelligence (LNAI). Berlin: Springer, 2007, vol.
4696, pp. 32-41.

M. Motzina, J. Zabkar, and I. Bratko, “Argument based machine learn-
ing,” Artif. Intell., vol. 171, no. 10-15, pp. 922-937, 2007.

K. Atkinson and T. Bench-Capon, “Action-based alternating transition
systems for arguments about action,” in Proc. of the 22nd Conference on
Artificial Intelligence (AAAI 2007). Vancouver, Canada: AAAI Press,
2007, pp. 24-29.

N. Oren, T. J. Norman, and A. Preece, “Loose lips sink ships: A
heuristic for argumentation,” in In Proceedings of the Third International
Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2006,
2006, pp. 121-134.

S. Parsons, M. Wooldridge, and L. Amgoud, “Properties and com-
plexities of some formal inter-agent dialogues,” Journal of Logic and
Computation, vol. 13, no. 3, pp. 347-376, 2003.

S. Parsons, P. McBurney, and M. Wooldridge, “The mechanics of some
formal inter-agent dialogues,” in Advances in Agent Communication, ser.
LNCS, F. Dignum, Ed., vol. 2922. Springer-Verlag, 2004, pp. 329-348.



