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ABSTRACT
Task allocation is an important topic in multiagent and
multi-robot teams. In recent years, there has been much
research on the use of auction-based methods to provide a
distributed approach to task allocation. Team members bid
on tasks based on local information, and the allocation is
based on these bids. The focus of prior work has been on
optimal allocations and has established that auction-based
methods perform well in comparison with optimal methods,
with the advantage of scaling better. Here we take a dif-
ferent approach, comparing auction-based methods not on
the optimality of the allocation, but on the efficient execu-
tion of the allocated tasks. This approach factors in aspects
such as the utilisation of the team members and the degree
to which they interfere with each others’ progress, giving a
fuller picture of the practical use of auction-based methods.
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I.2.11 [Artificial Intelligence]: Distributed Artificial In-
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1. INTRODUCTION
This paper is concerned with the multi-robot routing prob-

lem. This is a task allocation problem in which multiple
robots are required to reach particular target locations, and
each target must be visited by one robot only. The problem
is computationally hard: the number of ways of allocating m
targets to n robots quickly defeats attempts to use standard
optimisation techniques. This has led researchers to look
for more efficient solutions [1, 3, 4]. For example, [3] ap-
plied auction mechanisms to allocate the target points and
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demonstrated that multi-round auctions performed exper-
imentally close to optimal allocations. Later work consid-
ered the sequential single-item auction [2] as an alternative
to combinatorial auctions for multi-robot routing.

Our extension to this work evaluates the effectiveness of
auction mechanisms using metrics that measure how tasks
are executed in practice. This reveals the trade-offs between
mechanisms in different scenarios, and allows us to draw
conclusions about the applicability of those mechanisms.

2. APPROACH
Previously, we developed the HRTeam environment in

which to conduct experiments with multi-robot teams, both
in simulation and with physical robots [5]. The HRTeam sys-
tem logs data that we use to compute a range of performance
metrics, such as distance travelled by individual robots and
overall runtime to complete a multi-robot routing mission.
We measure the distance travelled as the actual distance
moved by the robots rather than the shortest distances be-
tween the target points. As Figure 1 shows, the resulting
paths show plenty of variation from straight line paths. We
also measure run time, the time between the start of an ex-
periment and the point at which the last robot on the team
completes the tasks allocated to it. This includes both the
deliberation time, the time to determine which tasks are al-
located to which robots, as well as the execution time, the
time during which robots travel to points.

We considered four different mechanisms for task alloca-
tion. In round robin (rr), the first target point is allocated
to the first robot, the second point to the second robot and
so on. In an ordered single item auction (osi), each robot
makes a bid for the first point, where the bid is the dis-
tance that the robot estimates (using an A* path planner)
it will have to travel from its current location. The point
is allocated to the robot that makes the lowest bid and the
remaining points are auctioned in the same manner. In a se-
quential single item auction (ssi) [2], all of the target points
are presented to all the robots simultaneously. Each bids
on the target point with the lowest cost and the point with
the lowest bid is assigned to the robot that made the bid.
The remaining points are then re-auctioned, until all points
have been allocated. A parallel single item auction (psi) [2]
starts like ssi with all robots bidding on all points, but all
of the target points are allocated in one round, with each
point going to whichever robot made the lowest bid on it.
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Figure 1: Example paths taken by robots

3. RESULTS
We conducted experiments using two different starting

configurations for 3 robots and four different task point con-
figurations, comparing each of the four different allocation
mechanisms mentioned above. Each was run multiple times.
Representative results are presented here. Note that robots
visited task points in the order in which they were allocated,
which wasn’t necessarily the shortest path amongst the com-
plete set of points allocated to a given robot. Figure 1 shows
paths taken by the robots in runs across different scenarios
as solved by different allocation mechanisms. The propen-
sity for ssi to produce tight groupings is clear in its handling
of the distributed start points. Figure 2 plots the average
values of total distance traveled, deliberation and run times
over 10 runs for each of the four mechanisms, covering both
the clustered and distributed start points.
Overall, our analysis supports the results in [2], show-

ing the effectiveness of ssi in finding solutions to the multi-
robot routing problem when the overall distance covered is
the most important performance metric. For both the clus-
tered and distributed start points, ssi generated solutions
which required the team to travel the smallest combined
distance on average, and thus produced the shortest run
time. As [2] points out, psi can come up with arbitrarily
poor allocations because it does not take synergies between
target points into account. It can also skew the distribution
of tasks between robots. Figure 1 (upper right plot) reveals
that in the clustered start case, it allocates all the target
points to one robot. This skew means that although psi

is not much worse than ssi or osi on overall distance, the
runtime for psi is more than twice that for ssi and osi.
The one area in which ssi performs worse than other mech-

anisms, particularly psi, is in deliberation time. For the
scenarios we consider here, the cost of carrying out the al-
location is negligible, with the deliberation time being less
than 1% of the total time for completing the mission. The
total number of bids to allocate m tasks to n robots is:
n∗(m(m+1))/2 and it is conceivable that this could become
problematic. For example, consider allocating 500 targets to
100 robots: ssi would require over 12 million bids; enough
to make deliberation time a significant contributor to the
time for task completion. This might make osi or psi worth
considering for larger deployments.

4. SUMMARY
This paper has studied the performance of a number of

auction mechanisms on a version of the multi-robot routing
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Figure 2: Metrics: mean, standard deviation (blue),
distribution (red); column order: rr, osi, ssi, psi.

problem, measuring how the mechanisms will perform on a
fleet of real robots. The main result is that the sequential
single item (ssi) auction broadly outperforms other single
item auctions by our metrics, though it does not perform
best on all of them for all scenarios and the order in which
allocated points are visited is a significant factor (discussion
of this aspect is beyond the scope of this short paper). How-
ever, there do seem to be trade-offs, especially in terms of
the total number of bids required by the mechanisms. This
suggests that the ssi auction might have issues with scaling
to larger routing problems than we study here, especially
if communication bandwidth is restricted. In other words,
the high performance of the ssi comes at a cost that might
be hard to pay for some scenarios. Other mechanisms we
tested, which can scale better, might be preferable on such
scenarios despite their poorer performance. This topic is
something we plan to study next in more detail.
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