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ABSTRACT
We introduce and investigate a natural extension of Dung’s well-
known model of argument systems in which attacks are associated
with a weight, indicating the relative strength of the attack. A key
concept in our framework is the notion of aninconsistency bud-
get, which characterises how much inconsistency we are prepared
to tolerate: given an inconsistency budgetβ, we would be prepared
to disregard attacks up to a total cost ofβ. The key advantage of
this approach is that it permits a much finer grained level of analy-
sis of argument systems than unweighted systems, and gives useful
solutions when conventional (unweighted) argument systems have
none. We begin by reviewing Dung’s abstract argument systems,
and present the model of weighted argument systems. We then
investigate solutions to weighted argument systems and theassoci-
ated complexity of computing these solutions, focussing inpartic-
ular on weighted variations of grounded extensions.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory

Keywords
Argumentation, handling inconsistency, complexity

1. INTRODUCTION
Inconsistency between the beliefs and/or preferences of agents is
ubiquitous in everyday life, and yet coping with inconsistency re-
mains an essentially unsolved problem in artificial intelligence [8].
One of the key aims ofargumentationresearch is to provide prin-
cipled techniques for handling inconsistency.

Although there are several different perspectives on argumenta-
tion (for a review see [9]), a common view is that argumentation
starts with a collection of statements, calledarguments, which are
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typically related through the notions ofsupportandattack. Typi-
cally, argumentα1 supporting argumentα2 would be grounds for
acceptingα2 if one acceptedα1, while argumentα1 attacking ar-
gumentα2 would be grounds fornot acceptingα2 if one accepted
α1. Now, if we allow arguments to attack one-another, then such
collections of arguments may be inconsistent; and the key question
then becomes how to obtain a rationally justifiable positionfrom
such an inconsistent argument set. Various solutions have been
proposed for this problem, such asadmissible sets, preferred ex-
tensions, andgrounded extensions[13]. However, none of these
solutions is without drawbacks. A typical problem is that, while
a solution may guaranteed to give an answer, the answer may be
the empty set. Conversely, several answers may be provided,with
nothing to distinguish between them. These drawbacks limitthe
value of these solutions as argument analysis tools.

In part to overcome these difficulties, there is a trend in theliter-
ature on formalizations of argumentation towards considering the
strength of arguments. In this work, which goes back at leastas far
as [16], it is recognized that not all arguments are equal in strength,
and that this needs to be taken into account when finding extensions
of a collection of arguments and counterarguments. We review this
literature in Section 3, and we conclude that whilst it is clear that
taking the strength of arguments into account is a valuable devel-
opment, it is not just the strength of the arguments, per se, that is
important. The strength of the attack that one argument (which may
itself be very strong) makes on another, can be weak.

In this paper, we introduce, formalise, and investigate a natural
extension of Dung’s well-known model of argument systems [13],
in which attacks between arguments are associated with a numeric
weight, indicating the relative strength of the attack, or, equiva-
lently, how reluctant we would be to disregard the attack. For ex-
ample, consider the following arguments:

α1: The house is in a good location, it is large enough for our
family and it is affordable: we should buy it.

α2: The house suffers from subsidence, which would be pro-
hibitively expensive to fix: we should not buy it.

These arguments are mutually attacking: both arguments arecred-
ulously accepted, neither is sceptically accepted, and thegrounded
extension is empty. Thus the conventional analysis is not very use-
ful for this scenario. However, the representation we are using
surely misses a key point: the attacks arenot of equal weight. We
would surely regard the attack ofα2 onα1 as being much stronger
than the attack ofα1 onα2, though both are very strong arguments



in their own right. Our framework allows us to take these differing
weights of attack into consideration.

By using weights on attacks, we may be able to capture the rel-
ative strength of different attacks between arguments in a constel-
lation. The use of strength of attack is wide-spread in informal ar-
gumentation, and real-world information is often available to judge
the strength of the relations between arguments. To illustrate, in
order to classify a compound according to potential toxicity, the
U.S. Environmental Protection Agency needs to collect available
scientific evidence on the compound and related compounds, and
use this to construct arguments for and against a particularclas-
sification being applicable to the compound. Often, the evidence
available is incomplete, and perhaps inconsistent, and to address
this they systematically judge the result of attacks between argu-
ments based on the nature of the evidence used. So for example, in
their guidelines for the assessment of the health impacts ofpoten-
tial carcinogens, an argument for carcinogenicity that is based on
human epidemiological evidence is considered to outweigh argu-
ments against carcinogenicity that are based only on animalstudies
[32, 17]. This example indicates both the naturalness of consider-
ing strength of attack and of the availability of appropriate infor-
mation for systematically evaluating the strength. Furthermore, in
general, as we will discuss in Section 4, there are various semantics
that we can apply to the weights assigned, and that these usefully
reflect some of the usages of attack strength in real-world informal
argumentation.

A key concept in our framework is the notion of aninconsistency
budget, and this also distinguishes our approach from other meth-
ods of attaching weights to arguments. The inconsistency budget
characterises how much inconsistency we are prepared to tolerate:
given an inconsistency budgetβ, we would be prepared to disre-
gard attacks up to a total cost ofβ. By increasing the inconsis-
tency budget, we get progressively more solutions, and thisin turn
gives a preference ordering over solutions: we prefer solutions ob-
tained with a smaller inconsistency budget. This approach permits
a much finer-grained level of analysis of argument systems than
is typically possible, and gives useful, non-trivial solutions when
conventional (unweighted) argument systems have none. We be-
gin by reviewing Dung’s abstract argument systems, and present
the framework of weighted argument systems. We then investi-
gate solutions for weighted argument systems and the complexity
of computing such solutions, focussing in particular on weighted
variations of grounded extensions. Finally, we relate our work to
the most relevant examples of systems that incorporate strengths.

2. ABSTRACT ARGUMENT SYSTEMS
Since weighted argument systems and their associated solutions
generalise Dung’s well-known abstract argument systems model,
we begin by recalling some key concepts from this model. A Dung-
styleabstract argument systemis a pairD = 〈X,A〉 whereX =
{α1, . . . , αk} is a finite set ofarguments, andA ⊆ X × X is
a binaryattack relationonX [13]. Given a set of argumentsX,
let D(X) denote the set of all abstract argument systems overX,
i.e.,D(X) = {〈X,A〉 : A ⊆ X × X}. Note that Dung’s model
does not assume any internal structure for arguments, or give any
concrete interpretation for them. The intended interpretation of the
attack relation in Dung’s model is also not completely defined, but
intuitively, (α1, α2) ∈ A means that if one accepts (in whatever
solution one considers)α1, then one should not acceptα2. In other
words,it would be inconsistent to acceptα2 if one acceptedα1.

The next step is to definesolutionsfor such argument systems.
A solution for an argument system (over a set of argumentsX)
is a functionf : D(X) → P(P(X)) i.e., a function that, given

function ge(X, A) returns a subset of X
1. in← out← ∅
2. while in 6= X do
3. in← {α ∈ X : 6 ∃α′ ∈ X s.t. (α′, α) ∈ A}
4. out← {α ∈ X : ∃α′ ∈ in s.t. (α′, α) ∈ A}
5. X ← X \ out
6. A← A restricted to X
7. end-while
8. return X.

Figure 1: The function ge(· · · ).

〈X,A〉, will return a set of sets of arguments, such that each set
represents a “position” that is in some sense rationally justifiable.
GivenD = 〈X,A〉 andS ⊆ X, we say thatS is: consistentif
6 ∃α1 ∈ S s.t. ∃α2 ∈ X and(α2, α1) ∈ A; internally consistent
(or conflict free) if 6 ∃α1 ∈ S s.t. ∃α2 ∈ S and (α2, α1) ∈ A;
defensiveif ∀α1 ∈ X s.t. ∃α2 ∈ S and(α1, α2) ∈ A, ∃α3 ∈ S
for which (α3, α1); admissibleif it is both internally consistent
and defensive; and apreferred extensionif it is a maximal (wrt⊆)
admissible set.

Consistency is the least problematic type of solution. However,
while every argument system contains a consistent set of argu-
ments, it may be that the only consistent set is the empty set.Such
trivial solutions are typically unhelpful. If we do not havea non-
empty consistent set of arguments, (which is the more general case),
then we might look at the admissible sets, and the preferred exten-
sions: a preferred extension is a maximal set of arguments that
is both internally consistent and defends itself against all attacks.
There will always be at least one preferred extension, although,
again, this may be the empty set [13, p.327]. Note that non-empty
preferred extensions may exist in argument systems for which the
only consistent set of arguments is the empty set, and so we can
usefully apply this solution in some situations where consistency is
not a useful analytical concept. We say an argument iscredulously
acceptedif it forms a member of at least one preferred extension,
andsceptically acceptedif it is a member of every preferred exten-
sion. Clearly, sceptical acceptance represents a strongersolution
than credulous acceptance. Determining whether a given setof ar-
guments is consistent or admissible can be solved in polynomial
time; however, determining whether a set of arguments is a pre-
ferred extension is co-NP-complete, checking whether an argument
is credulously accepted isNP-complete, while checking whether an
argument is sceptically accepted isΠp

2-complete [11, 15].
The final solution we consider is thegrounded extension[13,

p.328]. Roughly, the idea with grounded extensions is to iteratively
compute the arguments whose status is beyond question, by first
starting with arguments that have no attackers: we regard these
as being unquestionably “in”. Then, we eliminate argumentsthat
these “in” arguments attack: since they are attacked by an argu-
ment whose status is unquestioned, we regard them as “out”. We
then eliminate the “out” arguments, and iterate, until we reach no
change. The algorithm to compute the grounded extension of an ar-
gument system is given in Figure 1; basic properties of fixpoint al-
gorithms tell us this algorithm is guaranteed to terminate in polyno-
mial time. As a solution, grounded extensions are intuitively very
appealing; an argument system will always have a unique grounded
extension, although, again, this may be the empty set.

Notice that, while all of these solutions are guaranteed to give
some “answer”, it is possible that the only answer they give is the
empty set. This is a key limitation of conventional systems.



3. TOWARDS ARGUMENT STRENGTH
There have been a number of proposals for extending Dung’s

framework in order to allow for more sophisticated modelling and
analysis of conflicting information. A common theme among some
of these proposals is the observation that not all argumentsare
equal, and that the relative strength of the arguments needsto be
taken into account somehow.

The first such extension of Dung’s work that we are aware of is
[27], where priorities between rules are used to resolve conflicts
([16] was not based on Dung). These priorities seem best inter-
preted as relating to the strength of the arguments — indeed the
strength of arguments are inferred from the strengths of therules
from which the arguments are constructed. A similar notion is at
the heart of the argumentation systems in [1, 2], though herethere
is a preference order over all an agent’s beliefs, and an argument
has a perference level equal to the mimum level of the beliefsfrom
which it is constructed.

Another early development of Dung’s proposal with weights was
Value-based Argumentation Frameworks (VAFs) [5]. In the VAF
approach, the strength of an argument depends on the social val-
ues that it advances, and determining whether the attack of one ar-
gument on another succeeds depends on the comparative strength
of the values advanced by the arguments concerned. Furthermore,
some arguments can be shown to be acceptable whatever the rela-
tive strengths of the values involved are. This means that the agents
involved in the argumentation can concur on the acceptance of ar-
guments, even when they differ as to which social values are more
important. One of the interesting questions that arise fromthis pro-
posal is whether the notion of argument strength can be generalised
from representing social values to representing other notions, and
if so in what ways can the strength be harnessed for analysingar-
gument graphs.

In a sense, a more general approach to developing Dung’s pro-
posal is that of bipolar argumentation frameworks (BAFs) which
takes into account two kinds of interaction between arguments:
a positive interaction (an argument can help, support another ar-
gument) and a negative interaction (an argument can attack an-
other argument) [10]. The BAF approach incorporates a gradual
interaction-based valuation process in which the value of each ar-
gumentα only depends on the value of the arguments which are
directly interacting withα in the argumentation system. Various
functions for this process are considered but each value obtained is
only a function of the original graph. As a result, no extra infor-
mation is made available with which to ascertain the strength of an
argument.

Recently, a game-theoretic approach, based on the minimax the-
orem, has been developed for determining the degree to whichan
argument is acceptable given the counterarguments to it, and by
recursion the counterarguments to the counterarguments [19]. So
given an abstract argument system, this game-theoretic approach
calculates the strength of each argument in such a way that ifan ar-
gument is attacked, then its strength falls, but if the attack is in turn
attacked, then the strength in the original argument rises.Further-
more, the process for this conforms to interpretation of game theory
for argumentation. Whilst this gives an approach with interesting
properties, and appealing behaviour, the strength that is calculated
is a function of the original graph, and so like the BAF approach,
no extra information is made available with which to determine the
strength of each argument.

In another recent proposal for a developing Dung’s proposal, ex-
tra information representing the relative strength of attack is incor-
porated [18]. This is the only other approach that we are aware of
which distinguishes thestrength of attackfrom the strength of an

argument. In this proposal, which we refer to as varied-strength at-
tacks (or VSA) approach, each arc is assigned a type, and there is a
partial ordering over the types. As a simple example, consider the
following argument graph conforming to Dung’s proposal where
α1 is attacked byα2 which in turn is attacked byα3.

α3 → α2 → α1

Here,α3 defends the attack onα1, and as a result{α3, α1} is the
preferred, grounded and complete extension. Now, considerthe
following VSA version of the graph, where the attack byα3 is of
typei and the attack byα2 is of typej.

α3 →i α2 →j α1

This gives us a finer grained range of defence depending on whether
typej is higher, or lower, or equally, ranked than typei, or incom-
parable with it. Furthermore, this allows for a finer definition of
acceptable extension that specifies the required level of the defence
of any argument in the extension. For instance, it can be insisted
in the VSA approach that every defence of an argument should be
by an attack that is stronger, so in the above graph that wouldmean
that the type of→i needs to stronger than the type of→j in order
for {α3, α1} to be the preferred, grounded and complete extension.

From these proposals for developing Dung’s original proposal,
there is a common theme that arguments, or attacks by arguments,
have variable strength. Some of these proposals are restricted to
determining that strength is based on the other arguments available
in the graph, together their connectively, and so the strength of an
argument is a function solely of the graph. Others, in particular the
VAF approach [5] and the VSA approach [18], use explicit rank-
ing information over the arguments or the attacks by arguments.
This ranking information requires extra information to be given
along with the set of arguments and the attack relation. So, whilst
there is gathering momentum for representing and reasoningwith
the strength of arguments or their attacks, there is not a consen-
sus on the exact notion of argument strength or how it should be
used. Furthermore, for the explicit representation of extra informa-
tion pertaining to argument strength, we see that the use of explicit
numerical weights is under-developed. So for these reasons, we
would like to present weighted argument systems as a valuable new
proposal that should further extend and clarify aspects of this trend
towards considering strength, in particular the explicit considera-
tion of strength of attack between arguments..

4. WEIGHTED ARGUMENT SYSTEMS
We now introduce our model of weighted argument systems, and
the key solutions we use throughout the remainder of the paper.
Weighted argument systems extend Dung-style abstract argument
systems by adding numeric weights to every edge in the attack
graph, intuitively corresponding to the strength of the attack, or
equivalently, how reluctant we would be to disregard it. Formally,
a weighted argument systemis a tripleW = 〈X,A,w〉 where
〈X,A〉 is a Dung-style abstract argument system, andw : A →
R> is a function assigning real valued weights1 to attacks. IfX is
a set of arguments, then we letW(X) denote the set of weighted
argument systems overX. (In what follows, when we say simply
“argument system”, we mean “Dung-style (unweighted) abstract
argument system”.)

Notice that we require attacks to have a positivenon-zeroweight.
There may be cases where it is interesting to allow zero-weight
attacks, in which case some of the analysis of this paper doesnot

1We letR> denote the real numbers greater than0, andR≥ denote the real numbers
greater than or equal to 0.



go through. However, given our intuitive reading of weights(that
they indicate the strength of an attack) allowing 0-weight attacks is
perhaps counter-intuitive. For suppose by appealing to a particular
0-weight attack you were able to support some particular argument,
then an opponent could discard the attackat no cost. So, we will
assume attacks must have non-zero weight.

4.1 Where do Weights Come From?
We will not demand any specific interpretation of weights, and the
technical treatment of weighted argument systems in the remainder
of the paper does not require any such interpretation. However,
from the point of view of motivation, it is important to consider
this issue seriously (if only to convince the reader that weights are
not a purely technical device). Note that these three examples do
not exhaust the possibilities for the meaning of weights on attacks.

Weighted Majority Relations: In a multi-agent setting, one nat-
ural interpretation is that a weight representsthe number of votes
in support of the attack. This interpretation makes a link between
argumentation andsocial choice theory– the theory of voting sys-
tems and collective decision making [3, 28].

Weights as Beliefs:Another interpretation would be to interpret
weights as subjective beliefs. For example, a weight ofp ∈ (0, 1]
on the attack of argumentα1 on argumentα2 might be understood
as the belief that (a decision-maker considers)α2 is false whenα1

is true. This belief could be modelled using probability, orany
other model of belief [24].

Weights as Ranking:A simple and obvious interpretation is to use
weights to rank the relative strength of attacks between arguments.
In other words, a higher weight denotes a stronger attack, and so the
absolute weight assigned to an attack is not important, justthe rel-
ative weight compared to the weights assigned to other attacks. In
this interpretation, we can consider subjective or objective criteria
for ranking attacks.

For instance, in the earlier example concerning arguments about
the potential carcinogenicity of chemicals, arguments based on hu-
man epidemiological evidence are more compelling (at leastto the
USA EPA) than those based on animal studies, which are in turn
more compelling than those based on bioassay evidence [32].We
might assign a weight of (say) 100 to an attack between two argu-
ments which are both based on the same type of evidence, i.e.,both
human epidemiological studies, or both animal studies, or both
bioassays. In the case where the attacking argument is basedon
human epidemiological studies and the attacked argument onan-
imal studies, we may assign a weight of 125. In the case where
the attacking argument is based on human epidemiological studies
and the attacked argument on bioassay experiments, we may assign
a weight of 150. For attacks between two such arguments in the
reverse directions, we could assign weights of 75 and 50 (respec-
tively). As mentioned, the absolute numbers here are not impor-
tant; rather the weights are aiming to capture the relative degree of
persuasive compulsion which a decision-maker believes when con-
sidering each type of attack. Clearly this interpretation has scope
for a more finely-grained allocation of weights, for exampleto dis-
tinguish between attacks by arguments based on studies of different
species of animals, or by arguments based on experimental studies
with different levels of statistical power.

4.2 Inconsistency Budgets andβ-Solutions
A key idea in what follows is that of aninconsistency budget, β ∈
R≥, which we use to characterisehow much inconsistency we are
prepared to tolerate. The intended interpretation is that, given an
inconsistency budgetβ, we would be prepared todisregard attacks
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Figure 2: Weighted argument systemW1 from Example 1.

up to a total weight ofβ. Conventional abstract argument systems
implicitly assume an inconsistency budget of0. However, by relax-
ing this constraint, allowing larger inconsistency budgets, we can
obtain progressively more solutions from an argument system.

To make this idea formal, we first define a functionsub(· · · ),
which takes an attack relationA, weight functionw : A → R>,
and inconsistency budgetβ ∈ R≥, and returns the set of sub-graphs
R of A such that the edges inR sum to no more thanβ:

sub(A,w, β) = {R : R ⊆ A &
X

e∈R

w(e) ≤ β}.

We now use inconsistency budgets to introduce weighted variants
of the solutions introduced for abstract argument systems,above.
Given a weighted argument system〈X,A,w〉, a solutionf : D(X) →
P(P(X)), and a set of argumentsS ⊆ X, we say thatS is β-f if
∃R ∈ sub(A,w, β) such thatS ∈ f(〈X,A\R〉). So, for example,
S is β-admissibleif ∃R ∈ sub(A,w, β) such thatS is admissible
in the argument system〈X,A \ R〉.

EXAMPLE 1. Consider the weighted argument systemW1, il-
lustrated in Figure 2. The only consistent set of arguments in W1

is the empty set; however,{α5} is 1-consistent, since we can delete
the edge(α4, α5) with β = 1. If β = 2, we have two consistent
sets: {α4} and {α5}. Table 1 shows consistent sets (and other
β-solutions) for some increasing values ofβ.

Now, weighted argument systems straightforwardly generalise
unweighted argument systems: each unweighted solutionf is di-
rectly realised by the weighted solution0-f . However, weighted
solutions have a number of advantages over unweighted solutions.
Consider for example the notion of consistency. We know thatin
unweighted systems, there is always a consistent set, but this could
be empty. As we noted above, this may be undesirable – if an
argument system only has a trivial solution, then we obtain no in-
formation from it. In contrast, weighted argument systems have the
following, (readily proved), property:

PROPOSITION 1. LetW = 〈X,A,w〉 be a weighted abstract
argument system. For every set of argumentsS ⊆ X, ∃β such that
S is contained in aβ-consistent set inW .

Thus, intuitively, every set of arguments is consistent at some cost,
and the cost required to make a set of arguments consistent imme-
diately gives us a preference ordering over sets of arguments: we
prefer sets of arguments that require a smaller inconsistency bud-
get. Notice that a similar observation holds true for admissibility,
preferred extensions, credulous acceptance, and sceptical accep-
tance.

Now, consider how grounded extensions are genealised within
weighted systems. The first observation to make is that whilein
unweighted argument systems the grounded extension is unique,
this will not necessarily be the case in weighted argument systems:



β =? β-consistent sets β-preferred extensions β-grounded extensions

0 {∅} {{α1, α2, α4, α6}, {α3, α5, α7, α8}} {∅}
1 {∅, {α5}} {{α1, α2, α4, α6}, {α3, α5, α7, α8}} {∅, {α3, α5, α7, α8}}
2 {∅, {α4}, {α5}} {{α1, α2, α4, α6}, {α3, α5, α7, α8}} {∅, {α3, α5, α7, α8}, {α1, α2, α4, α6}}
3 {∅, {α4}, {α5}, {α4, α5}} {{α1, α2, α4, α6}, {α3, α5, α7, α8}, {∅, {α3, α5, α7, α8}, {α1, α2, α4, α6},

{α1, α2, α4, α5, α7, α8}} {α1, α2, α4, α5, α7, α8}}

Table 1: Solutions forW1, for some increasing values ofβ.

in weighted systems there may be manyβ-grounded extensions.
Formally, letwge(X,A,w, β) denote the set ofβ-grounded ex-
tensions of the weighted argument system〈X,A,w〉 (recall that
the functionge(· · · ), which computes the unweighted grounded
extension, is defined in Figure 1):

wge(X,A,w, β) = {ge(X,A \ R) : R ∈ sub(A,w, β)}.

Table 1 showsβ-grounded extensions for some increasing values
of β for systemW1 of Figure 2.

We conclude this section with another possible interpretation for
weights, and an associated example.

EXAMPLE 2. Suppose we interpret the weight on an edge(αi, αj)
as acosted risk. By this, we mean that the weight of(αi, αj) is the
cost/penalty that is incurred ifαi is true, normalized by the proba-
bility that αi actually is true. To illustrate, consider the following
arguments whereα2 attacksα1, α3 attacksα2, andα4 attacksα2.

(α1) The patient needs bypass surgery now
(α2) The patient will die in theatre
(α3) The patient will die within a week without surgery
(α4) The patient will have impaired heart functionality

Assume a probability functionp over arguments, sop(α) is the
probability thatα is true. Now, supposep is such thatp(α2) = 0.5,
p(α3) = 0.9, and p(α4) = 1. Let the penalty ofα2 (respec-
tively α3 and α4) being true be 100 (resp.99.9 and 5). Then
w(α2, α1) = 50, w(α3, α2) = 89.9, andw(α4, α2) = 5. For
all β < 94.9, α1 is in everyβ-grounded extension. This seems
reasonable, sinceα3 has a sufficiently high penalty and probability
of occurrence to defeatα2 hence allowα1 to be undefeated.

Now, let us changeα2 toα′
2 andα3 toα′

3, withp givingp(α′
2) =

0.9 andp(α′
3) = 0.1, and let the penalty ofα′

2 be the same asα2

and the penalty ofα′
3 be the same asα3. Thenw(α′

2, α1) = 90,
andw(α′

3, α2) = 10, and hence, for anyβ ≥ 15, α1 there is some
β-grounded extension not containingα1. This also is reasonable,
since if we are prepared to overlook some costed risk, then weare
safe against the much greater costed risk that comes fromα2. In a
sense, via inconsistency tolerance, we are trading one costed risk
against another.

From this example, we can see how the uncertainty and poten-
tial negative ramifications of counterarguments can be intuitively
captured using weighted argument systems.

5. COMPLEXITY OF SOLUTIONS
An obvious question now arises.Prima facie, it appears that weighted
argument systems offer some additional expressive power over un-
weighted argument systems. So, does this apparently additional
power come with some additional computational cost? Theβ ver-
sions of the decision problems for consistency, admissibility, check-
ing preferred extensions, sceptical, and credulous acceptance are in
fact no harder (although of course no easier) than the corresponding
unweighted decision problems – these results are easy to establish.

However, the story forβ-grounded extensions is more complicated,
since there may bemultipleβ-grounded extensions. Since there are
multiple β-grounded extensions, we can consider credulous and
sceptical variations of the problem, as with preferred extensions.
Consider the credulous case first:

PROPOSITION 2. Given weighted argument system〈X,A,w〉,
inconsistency budgetβ, and argumentα ∈ X, the problem of
checking whether∃S ∈ wge(X,A,w, β) such thatα ∈ S is NP-
complete. The problem remainsNP-complete even if the attack re-
lation is planar and/or tripartite and/or has no argument which is
attacked by more than two others.

PROOF. For membership, a conventional “guess and check” ap-
proach suffices. ForNP-hardness, we reduce from3-SAT. Given
an instanceϕ(Zn) of 3-SAT with m clausesCj over propositional
variablesZn = {z1, . . . , zn}, form the weighted argument sys-
tem 〈Xϕ, Aϕ, wϕ〉, illustrated in Figure 4. Specifically,Xϕ has
3n+m+1 arguments: an argumentCj for each clause ofϕ(Zn);
arguments{zi,¬zi, ui} for each variable ofZn, and an argument
ϕ. The relationship,Aϕ, contains attacks(Cj , ϕ) for each clause
of ϕ, (zi,¬zi), (¬zi, zi), (zi, ui), (¬zi, ui), and(ui, ϕ) for each
1 ≤ i ≤ n. Finally,Aϕ contains an attack(zi, Cj) if zi is a literal
in Cj , and(¬zi, Cj) if ¬zi occurs inCj . The weighting function
wϕ assigns cost1 to each of the attacks{(zi,¬zi), (¬zi, zi)} and
costn + 1 to all remaining attacks. To complete the instance the
available budget is set ton and the argument of interest toϕ. We
claim thatϕ ∈ S for someS ∈ wge(Xϕ, Aϕ, wϕ, n) if and only
if ϕ(Zn) is satisfiable. We first note thatϕ is credulously accepted
in the (unweighted) system〈Xϕ, Aϕ〉 if and only if ϕ(Zn) is sat-
isfiable.2 We deduce that ifϕ(Zn) is satisfied by an instantiation
〈a1, a2, . . . , an〉 of Zn thenϕ is a member of thegroundedex-
tension of theacyclicsystem〈Xϕ, Aϕ \ B〉 in whichB contains
(¬zi, zi) (if ai = ⊤) and (zi,¬zi) (if ai = ⊥). Noting thatB
has total weightn, and that the subset{y1, y2, . . . , yn} in which
yi = zi (if ai = ⊤) and¬zi (if ai = ⊥) is unattacked, it follows
that fromϕ(Zn) satisfiable we may identify a suitable costn set of
attacks,B, to yieldϕ ∈ ge(Xϕ, Aϕ \ B)

On the other hand, suppose thatϕ ∈ S for someS belonging to
wge(Xϕ, Aϕ, wϕ, n). Consider the set of attacks,B, eliminated
fromAϕ in order to form the system〈Xϕ, Aϕ\Bϕ〉 with grounded
extensionS. Sinceϕ ∈ S, exactly one of(zi,¬zi) and(¬zi, zi)
must be inB for everyi. Otherwise, if for somei, neither attack is
inB then{zi,¬zi}∩S = ∅, and thusϕ has no defence to the attack
by ui, contradictingϕ ∈ S; similarly if bothattacks are inB then,
from the factB has total cost at mostn, for some other variable,
zk, both (zk,¬zk) and(¬zk, zk) would be inAϕ \ B. In total,
from S in wge(Xϕ, Aϕ, wϕ, n) andϕ ∈ S for each1 ≤ i ≤ n
we identify exactly one unattacked argument,yi from {zi,¬zi},
so thatS = {ϕ, y1, . . . , yn}. That the instantiationzi = ⊤ (if

2This follows from [11] which uses a similar construction forwhich theui arguments
and associated attacks do not occur.
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Figure 3: The reduction used in Proposition 2.

yi = zi) andzi = ⊥ (if y = ¬zi) satisfiesϕ(Zn) is immediate
from [11].

The remaining cases (for planar, tripartite graphs, etc.) can be
derived from the reductions from3-SAT given in [14].

Now consider the “sceptical” version of this problem.

PROPOSITION 3. Given weighted argument system〈X,A,w〉,
inconsistency budgetβ, and argumentα ∈ X, the problem of
checking whether,∀Y ∈ wge(X,A,w, β), we haveα ∈ Y is
co-NP-complete.

PROOF. Membership of co-NP is immediate from the algorithm
which checks for everyB ⊆ A that if

P

e∈B w(e) ≤ β then
x ∈ ge(X,A \ B). For co-NP-hardness, we use a reduction from
UNSAT, assuming w.l.o.g. that the problem instance is presented in
CNF. Given anm-clause instanceϕ(Zn) of UNSAT, we construct a
weighted argument system〈Xϕ, Aϕ, wϕ〉 as follows. The setXϕ

contains4n+m+3 arguments:{ϕ,ψ, χ}; {zi, ¬zi, ui, vi : 1 ≤
i ≤ n}; and{Cj : 1 ≤ j ≤ m}. The attack setAϕ comprises:
{(ϕ, ψ), (χ,ϕ)}; {(vi, zi), (vi,¬zi), (zi, ui), (¬zi, ui), (ui, ϕ)}
for each1 ≤ i ≤ n; {(Cj , ϕ) : 1 ≤ j ≤ m}; {(zi, Cj) : zi ∈
Cj} and{(¬zi, Cj) : ¬zi ∈ Cj} The attacks are weighted so that
wϕ((χ,ϕ)) = 1; wϕ((vi, zi)) = wϕ((vi,¬zi)) = 1; all remain-
ing attacks have weightn + 2. The instance is completed usingψ
as the relevant argument and an inconsistency tolerance ofn + 1.
(See Figure 4 for an illustration of the construction.)

Now, suppose thatϕ(Zn) is satisfied by an instantiationα =
〈a1, . . . , an〉 ofZn. Consider the subsetBα ofAϕ given by{(χ,ϕ)}
together with∪{(vi, zi) : ai = ⊤} ∪ {(vi,¬zi) : ai =
⊥}. The weight ofBα is n + 1 and (sinceα satisfiesϕ(Zn)
it follows that ge(Xϕ, Aϕ \ Bα) contains exactly the arguments
{χ, ϕ} ∪ {v1, . . . , vn} ∪ {zi : ai = ⊤} ∪ {¬zi : ai = ⊥}.
Henceψ 6∈ ge(Xϕ, Aϕ \Bα) as required.

Conversely, suppose〈〈Xϕ, Aϕ, w〉, ψ, n + 1〉 is not accepted.
We show that we may construct a satisfying instantiation ofϕ(Zn)
in such cases. ConsiderB ⊆ Aϕ of cost at mostn + 1 for which
ψ 6∈ ge(Xϕ, Aϕ \ B). It must be the case that(χ,ϕ) ∈ B for
otherwise the attack byϕ on ψ is defended so thatψ would be-
long to the grounded extension. The remaining elements ofB
must form a subset of the attacks{(vi, zi), (vi,¬zi)} (since all
remaining attacks are too costly). Furthermore, exactly one of
{(vi, zi), (vi,¬zi)} must belong toB for each1 ≤ i ≤ n: oth-
erwise, someui will be in ge(Xϕ, Aϕ \ B), thus providing a de-
fence to the attack onψ by ϕ and contradicting the assumption

φ

C1 C2 Cm

n+2 n+2n+2

z1 ¬z1

v1

u1

zn ¬zn

vn

un

...

...
n+2

n+2

n+2
n+2

1 1

n+2n+2n+2n+2

11

n+2

χΨ

n+2 1

n+2

n+2

Figure 4: The reduction used in Proposition 3.

ψ 6∈ ge(Xϕ, Aϕ \ B). Now consider the instantiation,α, with
ai = ⊤ if (vi, zi) ∈ B, ai = ⊥ if (vi,¬zi) ∈ B. We now see that
α must satisfyϕ(Zn): in order forψ 6∈ ge(Xϕ, Aϕ \ B) to hold,
it must be the case thatϕ ∈ ge((Xϕ, Aϕ \ B), i.e. each of the
Cj attacks onϕ must be counterattacked by one of its constituent
literal (arguments)yi. Noting thatvi is always inge(Xϕ, Aϕ \B),
if ai = ⊤ clauses containing¬zi cannot be attacked (since the
attack(vi,¬zi) is still present). It follows that the instantiation,
α, attacks each clause so thatϕ ∈ ge(Xϕ, Aϕ \ B). In sum, if
〈〈Xϕ, Aϕ, w〉, ψ, n+ 1〉 is not accepted thenϕ(Zn) is satisfiable,
so completing the proof.

Note that in some cases, considering sceptical grounded exten-
sions is of limited value. Letunch(X,A) denote the set of argu-
ments inX that are unchallenged (have no attackers) according to
A. Then we have:

PROPOSITION 4. Let 〈X,A,w〉 be a weighted argument sys-
tem andβ be an inconsistency budget. Thenunch(X,A) 6= ∅ iff
(
T

Y ∈wge(X,A,w,β) Y ) 6= ∅.

6. HOW MUCH INCONSISTENCY DO WE
NEED?

An obvious question now arises. Suppose we have a weighted argu-
ment system〈X,A,w〉 and a set of argumentsS. Thenwhat is the
smallest amount of inconsistency would we need to tolerate in or-
der to makeS a solution? Now, when considering consistency and
admissibility, the answer is easy: we know exactly which attacks
we would have to disregard to make a set of arguments admissible
or consistent — we have no choice in the matter. However, when
considering grounded extensions, the answer is not so easy.As we
saw above, there may be multiple ways of getting a set of arguments
into a weighted extension, each with potentially differentcosts; we
are thus typically interested in solving the following problem:

minimiseβ∗ such that
∃Y ∈ wge(X,A,w, β∗) : S ⊆ Y

(1)



What can we say about (1)? First, consider the following prob-
lem. We are given a weighted argument system〈X,A,w〉 and an
inconsistency budgetβ ∈ R≥, and asked whetherβ is minimal,
i.e., whether∀β′ < β and∀Y ∈ wge(X,A,w, β′), we have that
S 6⊆ Y . (This problem doesnot require thatS is contained in a
someβ-grounded extension of〈X,A,w〉.)

PROPOSITION 5. Given a weighted argument system〈X,A,w〉,
set of argumentsS ⊆ X, and inconsistency budgetβ, checking
whetherβ is minimal w.r.t.〈X,A,w〉 andS is co-NP-complete.

PROOF. Consider the complement problem, i.e., the problem of
checking whether∃β′ < β and ∃Y ∈ wge(X,A,w, β′) such
thatS ⊆ Y . Membership inNP is immediate. ForNP-hardness,
we can reduceSAT, using essentially the same construction for the
weighted argument system as Proposition 2; we ask whethern+ 1
is not minimal for argument set{ϕ}.

This leads very naturally to the following question: isβ thesmall-
est inconsistency budget required to ensure thatS is contained in
someβ-grounded extension. We refer to this problem aschecking
whetherβ is the minimal budget forS.

PROPOSITION 6. Given a weighted argument system〈X,A,w〉,
set of argumentsS ⊆ X, and inconsistency budgetβ, checking
whetherβ is the minimal budget forS isDp-complete.

PROOF. For membership ofDp, we must exhibit two languages
L1 andL2 such thatL1 ∈ NP, L2 ∈ co-NP, andL1 ∩L2 is the set
of instances accepted by the minimal budget problem. Language
L1 is given by Proposition 2, while languageL2 is given by Propo-
sition 5. For hardness, we reduce the Critical Variable Problem
(CVP) [7, p.66]. An instance ofCVP is given by a propositional for-
mulaϕ in CNF, and a variablez fromϕ. We are asked if, under the
valuationz = ⊤ the formulaϕ is satisfiable, while under the val-
uationz = ⊥ it is unsatisfiable. We proceed to create in instance
of the minimal budget problem by using essentially the same con-
struction as Proposition 2, except that the attack(z,¬z) is given
a weight of0.5. Now, in the resulting system,n is the minimal
budget for{ϕ} iff z is a critical variable inϕ.

We noted above that one way of deriving a preference order over
sets of arguments is to consider the minimal inconsistency budget
required to make a set of arguments a solution. A related ideais to
count the number of weighted extensions that an argument set ap-
pears in, for a given budget: we prefer argument sets that appear in
more weighted grounded extensions. Formally, we denote therank
of an argument setS, given a weighted argument system〈X,A,w〉
and inconsistency budgetβ, by ρ(S,X,A,w, β):

ρ(S,X,A,w, β) = |{Y ∈ wge(X,A,w, β) : S ⊆ Y }|.

PROPOSITION 7. Given weighted argument system〈X,A,w〉,
argument setS ⊆ X, and inconsistency budgetβ, computing
ρ(S,X,A,w, β) is #P-complete.

PROOF. (Outline) For membership, consider a non-deterministic
Turing machine that guesses some subsetR of A, and verifies that
both

P

e∈R w(e) ≤ β andS ⊆ ge(X,A \ R). The number of
accepting computations of this machine will beρ(S,X,A,w, β).
For hardness, we can reduce #SAT [23, p.439], using the construc-
tion of Proposition 2. It is straightforward to see that the reduction
is parsimonious.

7. RELATED WORK
We have already described some of the work that is most closely

related to ours in the brief survey of Section 3 but there is additional
work that should be mentioned and which does not fit into the broad
historical sweep we were describing there.

To begin, there are other interesting developments of abstract ar-
gumentation such as a framework for defeasible reasoning about
preferences that provides a context dependent mechanism for de-
termining which argument is preferred to which [20, 21]. This also
offers a valuable solution to dealing with multiple extensions, but
conceptually and formally the proposal is complementary toours.
Also of interest are the proposals for introducing information about
how the audience views each argument [6].

The framework we present is also clearly related to preference-
based argument systems such as that described in [1]. However,
while our approach disregards attacks whose combined weight is
less than the inconsistency budget, systems such as that in [1] dis-
regard all attacks whose individual weight is below that of the ar-
gument being attacked. This is broadly equivalent, in our terms,
to setting the inconsistency budget to the weight of the argument
being attacked, and taking the combined weights of the attacking
arguments to be the maximum of the weights rather than the sum.
Our work is also related to work on possibilistic truth-maintenance
systems [12] where assumptions are weighted, conclusions based
on the assumptions inherit the weights, and consistent “environ-
ments” are established. What is particularly reminsicent about the
work in [12] is that, again in our terms, it makes use of inconsis-
tency budget — this is exactly the weight with which the incon-
sistency⊥ can be inferred. Anything that can be inferred with a
greater weight than⊥ is then taken to hold, anything with a lesser
weight is taken to be unreliable, which is broadly the effectof the
inconsistency budget in our work.

Finally, we should point out that there has been a good deal
of work on incorporating numerical and non-numerical strengths
(though not strengths of attack) into systems of argumentation that
are not based on Dung’s work. [16], to take the earliest example,
describes the use of probability measures and beliefs in thesense
of Shafer’s theory of evidence [29]. [25] presents an argumenta-
tion system that uses weights which are qualitative abstractions of
probability values, while in [31] the weights are infinitesimal prob-
abilities in the sense of [30].

There is also much work on combinations of logic and probabil-
ity such as [4], [22] and [26], which, while they don’t explictly take
the form of argumentation, have much in common with it.

8. DISCUSSION AND CONCLUSIONS
Our proposal in this paper, namely weighted argument systems
(WAS), is a further contribution to the development of formalisms
for abstract argumentation that started with the seminal work by
Dung. The WAS approach uses a numerical weight on the attacks
between arguments, as do the proposals based on game theory [19]
and bipolar argumentation [10], but those proposals are restricted
to determining the strength based on the other arguments available
in the graph, together with connectively, and so the strength of an
argument is a function solely of the graph. In contrast, our pro-
posal allows for the weight to be given as an extra piece of infor-
mation. There are other proposals that allow for extra information
to be given about the strength of arguments in a constellation, in
particular the VAF approach [5] and the VSA approach [18], but
they are restricted to using explicit ranking information over the
arguments or the attacks by arguments, rather than numerical in-
formation. By introducing numerical weights, we can simplify and



generalize some of the underlying conceptualization of handling
the strength of attackss, and furthermore, we can introducethe in-
teresting and potentially valuable idea of inconsistency budgets for
finer grained analysis of inconsistent information.

Several possibilities suggest themselves for future research. One
is to investigate specific interpretations for weights, as suggested
in the paper. Another is to investigate the framework experimen-
tally, to obtain a better understanding of the way the approach be-
haves. One obvious issue here is to look for “discontinuities” as the
inconsistency budget grows, in other words points where large in-
creases in the number of accepted arguments occur for only a small
increase in the inconsistency budget. A third avenue of future re-
search is to investigate the question, mentioned above, of the exact
relationship between the strength of arguments and the strength of
attacks.
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