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ABSTRACT

We introduce and investigate a natural extension of DungH8-w
known model of argument systems in which attacks are agdsdcia
with aweight indicating the relative strength of the attack. A key
concept in our framework is the notion of @mconsistency bud-
get which characterises how much inconsistency we are prépare
to tolerate: given an inconsistency budgetve would be prepared
to disregard attacks up to a total cost@®f The key advantage of
this approach is that it permits a much finer grained levehaly

sis of argument systems than unweighted systems, and gieéd u
solutions when conventional (unweighted) argument systesave
none. We begin by reviewing Dung’s abstract argument system

and present the model of weighted argument systems. We then

investigate solutions to weighted argument systems andstheci-
ated complexity of computing these solutions, focussingairtic-
ular on weighted variations of grounded extensions.

Categories and Subject Descriptors

1.2.11 Distributed Artificial Intelligence ]: Multiagent Systems;
1.2.4 [Knowledge representation formalisms and methods

General Terms
Theory
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1. INTRODUCTION

Inconsistency between the beliefs and/or preferences aftads
ubiquitous in everyday life, and yet coping with inconsiste re-
mains an essentially unsolved problem in artificial ingedtice [8].
One of the key aims ofirgumentatiorresearch is to provide prin-
cipled techniques for handling inconsistency.

Although there are several different perspectives on aegtaa
tion (for a review see [9]), a common view is that argumentati
starts with a collection of statements, calEdumentswhich are
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typically related through the notions efipportandattack Typi-
cally, argumenty; supporting arguments would be grounds for
acceptingos if one acceptedv;, while argumenty; attacking ar-
gumentas would be grounds fonot acceptingxs if one accepted
a1. Now, if we allow arguments to attack one-another, then such
collections of arguments may be inconsistent; and the kegtipn
then becomes how to obtain a rationally justifiable posifimm
such an inconsistent argument set. Various solutions haee b
proposed for this problem, such admissible setgpreferred ex-
tensions andgrounded extensiond3]. However, none of these
solutions is without drawbacks. A typical problem is thatyile

a solution may guaranteed to give an answer, the answer may be
the empty set. Conversely, several answers may be prowd#d,
nothing to distinguish between them. These drawbacks timeit
value of these solutions as argument analysis tools.

In part to overcome these difficulties, there is a trend initee-
ature on formalizations of argumentation towards congidethe
strength of arguments. In this work, which goes back at lasiéar
as [16], it is recognized that not all arguments are equatangth,
and that this needs to be taken into account when finding sxites
of a collection of arguments and counterarguments. Wewetties
literature in Section 3, and we conclude that whilst it isacléhat
taking the strength of arguments into account is a valuaeleld
opment, it is not just the strength of the arguments, perhs,i$
important. The strength of the attack that one argumentgfwmay
itself be very strong) makes on another, can be weak.

In this paper, we introduce, formalise, and investigatetarah
extension of Dung’s well-known model of argument systen$,[1
in which attacks between arguments are associated with anwm
weight indicating the relative strength of the attack, or, equiva
lently, how reluctant we would be to disregard the attack: 56
ample, consider the following arguments:

The house is in a good location, it is large enough for our
family and it is affordable: we should buy it.

Q.

. The house suffers from subsidence, which would be pro-
hibitively expensive to fix: we should not buy it.

These arguments are mutually attacking: both argumentsrade
ulously accepted, neither is sceptically accepted, andrhended
extension is empty. Thus the conventional analysis is not wee-
ful for this scenario. However, the representation we aiagus
surely misses a key point: the attacks aot of equal weightWe
would surely regard the attack af on a; as being much stronger
than the attack ofi; on a2, though both are very strong arguments



in their own right. Our framework allows us to take theseatifig
weights of attack into consideration.

By using weights on attacks, we may be able to capture the rel-
ative strength of different attacks between arguments ionstel-
lation. The use of strength of attack is wide-spread in imigrar-
gumentation, and real-world information is often avaiéata judge
the strength of the relations between arguments. To idtestin
order to classify a compound according to potential toyidihe
U.S. Environmental Protection Agency needs to collectlakbe
scientific evidence on the compound and related compoumds, a
use this to construct arguments for and against a particldsr
sification being applicable to the compound. Often, the evie
available is incomplete, and perhaps inconsistent, andidoeas
this they systematically judge the result of attacks betwergu-
ments based on the nature of the evidence used. So for example
their guidelines for the assessment of the health impagieteh-
tial carcinogens, an argument for carcinogenicity thatasea on
human epidemiological evidence is considered to outweigh-a
ments against carcinogenicity that are based only on arsitudies
[32, 17]. This example indicates both the naturalness osicen-
ing strength of attack and of the availability of appropeiatfor-
mation for systematically evaluating the strength. Furtiare, in
general, as we will discuss in Section 4, there are varionseécs
that we can apply to the weights assigned, and that thesellysef
reflect some of the usages of attack strength in real-woftdrimal
argumentation.

A key concept in our framework is the notion of econsistency
budget and this also distinguishes our approach from other meth-
ods of attaching weights to arguments. The inconsistendgédu
characterises how much inconsistency we are preparedeiatel
given an inconsistency budggt we would be prepared to disre-
gard attacks up to a total cost Gf By increasing the inconsis-
tency budget, we get progressively more solutions, andrntisn
gives a preference ordering over solutions: we prefer swisitob-
tained with a smaller inconsistency budget. This approasmits
a much finer-grained level of analysis of argument systeras th
is typically possible, and gives useful, non-trivial sadas when
conventional (unweighted) argument systems have none. éAle b
gin by reviewing Dung’s abstract argument systems, andeptes
the framework of weighted argument systems. We then investi
gate solutions for weighted argument systems and the caityple
of computing such solutions, focussing in particular onghéd
variations of grounded extensions. Finally, we relate oarkuto
the most relevant examples of systems that incorporategitre.

2. ABSTRACT ARGUMENT SYSTEMS

Since weighted argument systems and their associatedos™ut
generalise Dung's well-known abstract argument systemdemo
we begin by recalling some key concepts from this model. Addun
style abstract argument systei® a pairD = (X, A) whereX =
{aa,...,ax} is a finite set ofargumentsand A C X x X is
a binaryattack relationon X [13]. Given a set of argumentX,
let D(X) denote the set of all abstract argument systems &ver
ie.,D(X) = {(X,A) : AC X x X}. Note that Dung’s model
does not assume any internal structure for arguments, eragy
concrete interpretation for them. The intended interpi@teof the
attack relation in Dung’s model is also not completely defjrmut
intuitively, (a1, a2) € A means that if one accepts (in whatever
solution one considers);, then one should not accept. In other
words, it would be inconsistent to accept if one accepted;.

The next step is to defingolutionsfor such argument systems.
A solution for an argument system (over a set of argumen)s
is a functionf : D(X) — P(P(X)) i.e., a function that, given

function ge(X, A) returns a subset of X

in <« out — ()

while in # X do
in—{aeX:Ad € Xst (¢,a) € A}
out —{a € X : 3o/ €in st (¢/,a) € A}
X — X\ out
A «— Arestricted to X

end-while

1
2
3
4,
5.
6.
7
8. return X.

Figure 1: The function ge(-- - ).

(X, A), will return a set of sets of arguments, such that each set
represents a “position” that is in some sense rationallgifiable.
GivenD = (X, A) andS C X, we say thatS is: consistentf

Aoy € Sst.Jdaz € X and(az,a1) € A; internally consistent

(or conflict fre§ if Aar € S s.t. Jaz € S and (a2, 1) € A;
defensivaf Vo, € X s.t. Jas € S and(al,az) € A, Jaz € S

for which (as, a1); admissibleif it is both internally consistent
and defensive; and preferred extensioif it is a maximal (wrtC)
admissible set.

Consistency is the least problematic type of solution. Hare
while every argument system contains a consistent set af arg
ments, it may be that the only consistent set is the emptySaeth
trivial solutions are typically unhelpful. If we do not haaenon-
empty consistent set of arguments, (which is the more gkecasa),
then we might look at the admissible sets, and the preferttthe
sions: a preferred extension is a maximal set of argumets th
is both internally consistent and defends itself agairishtéhcks.
There will always be at least one preferred extension, ahp
again, this may be the empty set [13, p.327]. Note that noptgm
preferred extensions may exist in argument systems fortwihie
only consistent set of arguments is the empty set, and so we ca
usefully apply this solution in some situations where cstesicy is
not a useful analytical concept. We say an argumeattgidulously
acceptedf it forms a member of at least one preferred extension,
andsceptically accepted it is a member of every preferred exten-
sion. Clearly, sceptical acceptance represents a straajgtion
than credulous acceptance. Determining whether a giveof set
guments is consistent or admissible can be solved in poliaiom
time; however, determining whether a set of arguments isea pr
ferred extension is ceP-complete, checking whether an argument
is credulously accepted ise-complete, while checking whether an
argument is sceptically accepted1§-complete [11, 15].

The final solution we consider is trgrounded extensiofil3,
p.328]. Roughly, the idea with grounded extensions is raiteely
compute the arguments whose status is beyond question,sby fir
starting with arguments that have no attackers: we regaseth
as being unquestionably “in”. Then, we eliminate argumdimas
these “in” arguments attack: since they are attacked by g ar
ment whose status is unquestioned, we regard them as “owd”. W
then eliminate the “out” arguments, and iterate, until wacreno
change. The algorithm to compute the grounded extension af-a
gument system is given in Figure 1; basic properties of fixpal-
gorithms tell us this algorithm is guaranteed to terminatedglyno-
mial time. As a solution, grounded extensions are intuiivery
appealing; an argument system will always have a uniquengiexi
extension, although, again, this may be the empty set.

Notice that, while all of these solutions are guaranteedite g
some “answer”, it is possible that the only answer they givihe
empty set. This is a key limitation of conventional systems.



3. TOWARDS ARGUMENT STRENGTH

argument. In this proposal, which we refer to as variedrstite at-

There have been a number of proposals for extending Dung’s tacks (or VSA) approach, each arc is assigned a type, anelithar

framework in order to allow for more sophisticated modejland
analysis of conflicting information. A common theme amongneo
of these proposals is the observation that not all argumams
equal, and that the relative strength of the arguments niecbis
taken into account somehow.

partial ordering over the types. As a simple example, candite
following argument graph conforming to Dung’s proposal vehe
a1 is attacked byys which in turn is attacked byts.

a3 — Q2 — a1

The first such extension of Dung’s work that we are aware of is Here,«as defends the attack om,, and as a resulfas, a1 } is the

[27], where priorities between rules are used to resolvdlictm

preferred, grounded and complete extension. Now, consiger

([16] was not based on Dung). These priorities seem begt inte following VSA version of the graph, where the attack dy is of

preted as relating to the strength of the arguments — indeed t
strength of arguments are inferred from the strengths ofutes
from which the arguments are constructed. A similar not®ati
the heart of the argumentation systems in [1, 2], though tiene
is a preference order over all an agent'’s beliefs, and amzgti
has a perference level equal to the mimum level of the bdiiefs
which it is constructed.

Another early development of Dung’s proposal with weightésw
Value-based Argumentation Frameworks (VAFs) [5]. In theFVA

typei and the attack by is of typej.
Qa3 —4 Q2 —5

This gives us afiner grained range of defence depending otihahe
type is higher, or lower, or equally, ranked than typ@r incom-
parable with it. Furthermore, this allows for a finer defimitiof
acceptable extension that specifies the required levebaldfence

of any argument in the extension. For instance, it can betei

in the VSA approach that every defence of an argument shauld b

approach, the strength of an argument depends on the satial v by an attack that is stronger, so in the above graph that woekh

ues that it advances, and determining whether the attackeofo

that the type of—; needs to stronger than the type-ef; in order

gument on another succeeds depends on the comparativgtstren for {5 o, } to be the preferred, grounded and complete extension.

of the values advanced by the arguments concerned. Fudherm

From these proposals for developing Dung'’s original prapos

some arguments can be shown to be acceptable whateverahe rel there is a common theme that arguments, or attacks by argsmen

tive strengths of the values involved are. This means tieeagients
involved in the argumentation can concur on the acceptahae o
guments, even when they differ as to which social values amem
important. One of the interesting questions that arise fitampro-
posal is whether the notion of argument strength can be gksweal
from representing social values to representing otheonstiand
if so in what ways can the strength be harnessed for analgsing
gument graphs.

have variable strength. Some of these proposals are tesittic
determining that strength is based on the other argumeaiiable

in the graph, together their connectively, and so the stheafian
argument is a function solely of the graph. Others, in paldicthe
VAF approach [5] and the VSA approach [18], use explicit Frank
ing information over the arguments or the attacks by argusnen
This ranking information requires extra information to bigen
along with the set of arguments and the attack relation. ®dstv

In a sense, a more general approach to developing Dung’s pro-there is gathering momentum for representing and reasawiig

posal is that of bipolar argumentation frameworks (BAFsjolrh
takes into account two kinds of interaction between argusen
a positive interaction (an argument can help, support anaih

the strength of arguments or their attacks, there is not aeten
sus on the exact notion of argument strength or how it shoeld b
used. Furthermore, for the explicit representation ofextforma-

gument) and a negative interaction (an argument can attack a tjgn pertaining to argument strength, we see that the useptité

other argument) [10]. The BAF approach incorporates a gadu
interaction-based valuation process in which the valueachear-

numerical weights is under-developed. So for these reasoas
would like to present weighted argument systems as a vad unadoV

gumenta only depends on the value of the arguments which are proposal that should further extend and clarify aspecthisfttend

directly interacting witha in the argumentation system. Various
functions for this process are considered but each valuserat is
only a function of the original graph. As a result, no extrioin
mation is made available with which to ascertain the stieofan
argument.

Recently, a game-theoretic approach, based on the minimeax t
orem, has been developed for determining the degree to vaimch
argument is acceptable given the counterarguments todt,bsn
recursion the counterarguments to the counterargume8is §o
given an abstract argument system, this game-theoretioagp
calculates the strength of each argument in such a way taatif-
gument is attacked, then its strength falls, but if the &ttadn turn
attacked, then the strength in the original argument rigesther-
more, the process for this conforms to interpretation ofg#meory
for argumentation. Whilst this gives an approach with iesting
properties, and appealing behaviour, the strength thatlcsiated
is a function of the original graph, and so like the BAF appiga
no extra information is made available with which to deterenthe
strength of each argument.

In another recent proposal for a developing Dung’s propeasal
tra information representing the relative strength ofcitta incor-
porated [18]. This is the only other approach that we are ewér
which distinguishes thetrength of attackrom the strength of an

towards considering strength, in particular the expliohgidera-
tion of strength of attack between arguments..

4. WEIGHTED ARGUMENT SYSTEMS

We now introduce our model of weighted argument systems, and
the key solutions we use throughout the remainder of therpape
Weighted argument systems extend Dung-style abstractrengu
systems by adding numeric weights to every edge in the attack
graph, intuitively corresponding to the strength of theaelt or
equivalently, how reluctant we would be to disregard it. rirally,
a weighted argument systeis a tripleW = (X, A, w) where
(X, A) is a Dung-style abstract argument system, and A —
R is a function assigning real valued weights attacks. IfX is
a set of arguments, then we Mé¢(X) denote the set of weighted
argument systems ovéf. (In what follows, when we say simply
“argument system”, we mean “Dung-style (unweighted) alustr
argument system”.)

Notice that we require attacks to have a positiva-zeroneight.
There may be cases where it is interesting to allow zerodweig
attacks, in which case some of the analysis of this paper nloies

Twe letR~. denote the real numbers greater tilaandR > denote the real numbers
greater than or equal to 0.



go through. However, given our intuitive reading of weigfiteat
they indicate the strength of an attack) allowing O-weigtacks is
perhaps counter-intuitive. For suppose by appealing tatcpkar
0-weight attack you were able to support some particularrasnt,
then an opponent could discard the attatkio cost So, we will
assume attacks must have non-zero weight.

4.1 Where do Weights Come From?

We will not demand any specific interpretation of weights] &éme
technical treatment of weighted argument systems in thaireter
of the paper does not require any such interpretation. Heuyev
from the point of view of motivation, it is important to codsir
this issue seriously (if only to convince the reader thatghes are
not a purely technical device). Note that these three exesnhb
not exhaust the possibilities for the meaning of weightsttarcés.

Weighted Majority Relations: In a multi-agent setting, one nat-
ural interpretation is that a weight represetite number of votes
in support of the attackThis interpretation makes a link between
argumentation andocial choice theory the theory of voting sys-
tems and collective decision making [3, 28].

Weights as Beliefs: Another interpretation would be to interpret
weights as subjective beliefs. For example, a weight ef (0, 1]
on the attack of argument; on argumentw. might be understood
as the belief that (a decision-maker considers)s false whernx,

is true. This belief could be modelled using probability, asy
other model of belief [24].

Weights as Ranking: A simple and obvious interpretation is to use
weights to rank the relative strength of attacks betweenragnts.

In other words, a higher weight denotes a stronger attacksaihe
absolute weight assigned to an attack is not importanthestel-
ative weight compared to the weights assigned to otherlattdn
this interpretation, we can consider subjective or obyectriteria
for ranking attacks.

For instance, in the earlier example concerning argumédiasta
the potential carcinogenicity of chemicals, argumentetas hu-
man epidemiological evidence are more compelling (at leatste
USA EPA) than those based on animal studies, which are in turn
more compelling than those based on bioassay evidence \[22].
might assign a weight of (say) 100 to an attack between twoe-arg
ments which are both based on the same type of evidencdgtb.,
human epidemiological studies, or both animal studies, ath b
bioassays. In the case where the attacking argument is lomsed
human epidemiological studies and the attacked argumeanen
imal studies, we may assign a weight of 125. In the case where
the attacking argument is based on human epidemiologigdiest
and the attacked argument on bioassay experiments, we 15igy as

a weight of 150. For attacks between two such arguments in the

reverse directions, we could assign weights of 75 and 5@€res
tively). As mentioned, the absolute numbers here are nobimp
tant; rather the weights are aiming to capture the relatagree of
persuasive compulsion which a decision-maker believesiwbe-
sidering each type of attack. Clearly this interpretatias kcope
for a more finely-grained allocation of weights, for examialelis-
tinguish between attacks by arguments based on studiefertdit
species of animals, or by arguments based on experimenthést
with different levels of statistical power.

4.2 Inconsistency Budgets and-Solutions

A key idea in what follows is that of aimconsistency budget ¢
R>, which we use to characteri®w much inconsistency we are
prepared to tolerate The intended interpretation is that, given an
inconsistency budget, we would be prepared wisregard attacks

O 2 O

Figure 2: Weighted argument systemi?; from Example 1.

up to a total weight ofs. Conventional abstract argument systems
implicitly assume an inconsistency budgeboHowever, by relax-
ing this constraint, allowing larger inconsistency budgete can
obtain progressively more solutions from an argument gyste

To make this idea formal, we first define a functiemb(- - - ),
which takes an attack relatiof, weight functionw : A — R,
and inconsistency budggte R, and returns the set of sub-graphs
R of A such that the edges iR sum to no more thap:

sub(A,w,f) ={R: RC A& Y w(e) < B}.

eER

We now use inconsistency budgets to introduce weightecesi
of the solutions introduced for abstract argument systexbeye.
Given aweighted argument systénd, A, w), a solutionf : D(X) —
P(P(X)), and a set of arguments C X, we say thaiS is 3-f if
3R € sub(A,w, f) suchthatS € f((X, A\R)). So, for example,
S is f-admissibldf R € sub(A, w, 3) such thatS is admissible
in the argument systerfiX, A \ R).

ExaMPLE 1. Consider the weighted argument syst&r, il-
lustrated in Figure 2. The only consistent set of argumemfd’i
is the empty set; howeveixs } is 1-consistent, since we can delete
the edge(au, as) with 3 = 1. If 3 = 2, we have two consistent
sets: {aa} and {as}. Table 1 shows consistent sets (and other
(B-solutions) for some increasing values®f

Now, weighted argument systems straightforwardly gerszal
unweighted argument systems: each unweighted soltisndi-
rectly realised by the weighted solutiorf. However, weighted
solutions have a number of advantages over unweighted@uut
Consider for example the notion of consistency. We know ithat
unweighted systems, there is always a consistent set,ibutahld
be empty. As we noted above, this may be undesirable — if an
argument system only has a trivial solution, then we obtailina
formation from it. In contrast, weighted argument systegetthe
following, (readily proved), property:

PropPosSITION 1. LetW = (X, A, w) be a weighted abstract
argument system. For every set of argumehts X, 35 such that
S is contained in g3-consistent set ifl.

Thus, intuitively, every set of arguments is consistenbate cost,
and the cost required to make a set of arguments consistemg-im
diately gives us a preference ordering over sets of argsneve
prefer sets of arguments that require a smaller inconsigtead-
get. Notice that a similar observation holds true for adihibty,
preferred extensions, credulous acceptance, and sdeaticep-
tance.

Now, consider how grounded extensions are genealisedrwithi
weighted systems. The first observation to make is that while
unweighted argument systems the grounded extension isi@niq
this will not necessarily be the case in weighted argumestesys:



B8 =7 [(-consistent sets B-preferred extensions (-grounded extensions
0o {0} Ha1, a2, 04,06}, {as, a5,a7, 05} {0}
1 {®7 {&5}} {{0417(12,(14,(16},{(13,(15,(17,(18}} {@7 {(13,(15,(17,(18}}
2 {0, {oa}, {as}} Ho1, a2, a4, a6}, {as, a5, a7, a8} {0, {as, a5, a7, as}, {a1, a2, a4, a6} }
3 {0, {aa}, {as}, {aa,a5}}  {{o1, 02,04, 06}, {3, 05, a7, 08}, {0, {as, a5, a7, a8}, {1, a2, 04, a6},

{ar, a2, 04,05, a7, s} }

{a1, a2, 04,05, a7, as}}

Table 1: Solutions for W7, for some increasing values of.

in weighted systems there may be mahgrounded extensions
Formally, letwge(X, A, w, 3) denote the set off-grounded ex-
tensions of the weighted argument systéi, A, w) (recall that
the functionge(---), which computes the unweighted grounded
extension, is defined in Figure 1):

wge(X, A, w,3) = {ge(X,A\ R) : R € sub(A,w, 3)}.

Table 1 shows3-grounded extensions for some increasing values
of 3 for systemi¥; of Figure 2.

We conclude this section with another possible interpicatidbr
weights, and an associated example.

EXAMPLE 2. Suppose we interpret the weight on an eflgg «;)
as acosted risk By this, we mean that the weight(af;, ;) is the
cost/penalty that is incurred i; is true, normalized by the proba-
bility that «; actually is true. To illustrate, consider the following
arguments wheres attacksa:, as attacksaz, anday attacksas.

(a1) The patient needs bypass surgery now

(a2) The patient will die in theatre

(a3) The patient will die within a week without surgery
(aa) The patient will have impaired heart functionality

Assume a probability functiop over arguments, sp(«) is the
probability thatw is true. Now, supposeis such thap(az) = 0.5,
plag) = 0.9, andp(as) = 1. Let the penalty ofv, (respec-
tively a3 and a4) being true be 100 (res®9.9 and 5). Then
w(az,a1) = 50, w(as,a2) = 89.9, andw(as, a2) = 5. For
all B < 94.9, oy is in everyg-grounded extension. This seems
reasonable, sinces has a sufficiently high penalty and probability
of occurrence to defeat, hence allown; to be undefeated.

Now, let us changes to a5 andas to o, with p givingp(as)
0.9 andp(aj4) = 0.1, and let the penalty aof5 be the same as»
and the penalty of; be the same ass. Thenw(ah, 1) = 90,
andw(aj, a2) = 10, and hence, for ang > 15, a; there is some
B-grounded extension not containimg. This also is reasonable,
since if we are prepared to overlook some costed risk, theareve
safe against the much greater costed risk that comes fronin a
sense, via inconsistency tolerance, we are trading oneedassk
against another.

From this example, we can see how the uncertainty and poten-
tial negative ramifications of counterarguments can beifiviely
captured using weighted argument systems.

5. COMPLEXITY OF SOLUTIONS

An obvious question now ariseBrima facieg it appears that weighted
argument systems offer some additional expressive poveruowv
weighted argument systems. So, does this apparently aoaliti
power come with some additional computational cost? Flver-
sions of the decision problems for consistency, admissijtheck-
ing preferred extensions, sceptical, and credulous aageptare in
fact no harder (although of course no easier) than the quonetng
unweighted decision problems — these results are easydbliskt

However, the story foB-grounded extensions is more complicated,
since there may beultiple 5-grounded extensions. Since there are
multiple S-grounded extensions, we can consider credulous and
sceptical variations of the problem, as with preferred msitns.
Consider the credulous case first:

PROPOSITION 2. Given weighted argument systénd, A, w),
inconsistency budgef, and argument € X, the problem of
checking whetheBS € wge(X, A, w, 8) such thata € S is NP-
complete. The problem remain®-complete even if the attack re-
lation is planar and/or tripartite and/or has no argument sk is
attacked by more than two others.

ProOF For membership, a conventional “guess and check” ap-
proach suffices. Forp-hardness, we reduce froBasat. Given
an instancep(Z,) of 3-sAT with m clauses”; over propositional
variablesZ, = {zi,...,z,}, form the weighted argument sys-
tem (X, Ay, w,), illustrated in Figure 4. SpecificallyX, has
3n +m+ 1 arguments: an argumeg; for each clause ap(Z.,,);
arguments{ z;, -z, u; } for each variable of,,, and an argument
. The relationshipA,, contains attackéC';, ) for each clause
of o, (zi, 72:), (24, 2:), (zisus), (—zi,us), and(u,, ) for each
1 <14 < n. Finally, A, contains an attackz;, C;) if z; is aliteral
in C;, and(—z;, C;) if —z; occurs inC;. The weighting function
w,, assigns cost to each of the attack§ z;, —z;), (—z:,z2;)} and
costn + 1 to all remaining attacks. To complete the instance the
available budget is set to and the argument of interest o We
claim thaty € S for someS € wge(X,, Ay, w,,n) if and only
if o(Z,) is satisfiable. We first note thatis credulously accepted
in the (unweighted) systeiX,,, A,) if and only if ¢(Z,) is sat-
isfiable? We deduce that if>(Z,,) is satisfied by an instantiation
(a1,az2,...,an) of Z, theny is @ member of thgroundedex-
tension of theacyclicsystem(X,, A, \ B) in which B contains
(—zi,2:) (if a; = T) and(z;, —z;) (if a; = L). Noting thatB
has total weight:, and that the subséty., y2, ...,y } in which
yi = z; (if a; = T) and—z; (if a; = 1) is unattacked, it follows
that fromep(Z,,) satisfiable we may identify a suitable cesset of
attacks,B, to yieldy € ge(X,, A, \ B)

On the other hand, suppose that S for someS belonging to
wge(X,, Ap,w,,n). Consider the set of attack®, eliminated
from A, in order to form the systeriX.,, A, \ B,,) with grounded
extensionS. Sincep € S, exactly one of(z;, —z;) and(—zi, z;)
must be inB for everyi. Otherwise, if for some, neither attack is
in B then{z;, —z; }NS = 0, and thusp has no defence to the attack
by u;, contradictinge € S; similarly if bothattacks are irB then,
from the factB has total cost at most, for some other variable,
zk, both (zx, —zx) and (—zg, zx) would be inA, \ B. In total,
from S in wge(X,, Ay, we,n) andy € S foreachl < i < n
we identify exactly one unattacked argument,from {z;, —z;},
so thatS = {¢,y1,...,yn}. That the instantiation; = T (if

This follows from [11] which uses a similar construction f@hich thew, arguments
and associated attacks do not occur.



Figure 3: The reduction used in Proposition 2.

Yi = Zz) andzi =
from [11].

The remaining cases (for planar, tripartite graphs, etarn lee
derived from the reductions froB8tSAT given in [14]. [

1 (if y = —z;) satisfiesp(Z,,) is immediate

Now consider the “sceptical” version of this problem.

PROPOSITION 3. Given weighted argument systéid, A, w),
inconsistency budget, and argumenta € X, the problem of
checking whethelyY € wge(X, A, w,3), we havea € Y is
co-NP-complete.

PrROOF Membership of cavp is immediate from the algorithm
which checks for evenfB C A that if 3 _,w(e) < g then
x € ge(X, A\ B). For coNp-hardness, we use a reduction from
UNSAT, assuming w.l.0.g. that the problem instance is presented i
CNF. Given anm-clause instance(Z,, ) of UNSAT, we construct a
weighted argument syste(iX ., A,, w,) as follows. The seX,
containsin +m+ 3 arguments{p, ¥, x}; {zi, 2z, wi,vi : 1 <
t < n};and{C; : 1 < j < m}. The attack sefl,, comprises:
{(Wv 1#)7 (X7 W)}; {(’Uiv Zi)7 ('Uiv ﬁzi)v (zi7 ui)7 (ﬁziv ui)7 (uiv @)}
foreachl < i < n; {(Cj,p) : 1 <j<m} {(2,Cj) : z €
C;}and{(—z;,Cj) : -z € C;} The attacks are weighted so that
wo (X, 9)) = 1wy (v, 21)) = wy((vi, ) = 1; all remain-
ing attacks have weight + 2. The instance is completed usigg
as the relevant argument and an inconsistency toleranaetof.
(See Figure 4 for an illustration of the construction.)

Now, suppose thap(Z,) is satisfied by an instantiatiom =
(a1, ..., an) of Z,. Consider the subsét, of A, given by{(x, ¢)}
together WithU{(’Uz‘,Zi) a; = T} U {(Ui,—‘zi) a; =
L}. The weight of B, is n + 1 and (sincea satisfiesp(Zy,)
it follows that ge(X,, A, \ Ba) contains exactly the arguments
{GetU{vy,..,omtU{zi + as =TrU{—2 : a; = L}
Hencey ¢ ge(X,, A, \ Ba) as required.

Conversely, supposg X, A, w), ¥, n + 1) is not accepted.
We show that we may construct a satisfying instantiatiop df.,)
in such cases. Considé& C A, of cost at mosk + 1 for which
P & ge(Xy, Ay \ B). It must be the case thgk, ) € B for
otherwise the attack by on 1 is defended so thap would be-
long to the grounded extension. The remaining element® of
must form a subset of the attackév;, z;), (vi, —z:)} (since all
remaining attacks are too costly). Furthermore, exactly of
{(vi, 2i), (vi,nz;)} must belong taB for eachl < i < n: oth-
erwise, somey; will be in ge(X,, A, \ B), thus providing a de-
fence to the attack oy by ¢ and contradicting the assumption

n+2

D

n+2 n+2

Ol

n+2

2
n+2
n+2

o bt ()
1

)
3 ¥

n+2

n+
1
¥
Figure 4: The reduction used in Proposition 3.

Y & ge(X,, A, \ B). Now consider the instantiatiomy, with

a; = Tif (vi,zi) € B,a; = Lif (vi, —2;) € B. We now see that
a must satisfyp(Z,): in order fory ¢ ge(X,, A, \ B) to hold,

it must be the case that € ge((X,, A, \ B), i.e. each of the
C; attacks onp must be counterattacked by one of its constituent
literal (argumentsy;. Noting thatv; is always inge(X,, A, \ B),

if a; = T clauses containingrz; cannot be attacked (since the
attack (v;, —z;) is still present). It follows that the instantiation,
«a, attacks each clause so thate ge(X,, A, \ B). In sum, if
(X, Ap,w),,n + 1) is not accepted thep(Z,) is satisfiable,
so completing the proof. [

Note that in some cases, considering sceptical groundesh-ext
sions is of limited value. Letinch(X, A) denote the set of argu-
ments inX that are unchallenged (have no attackers) according to
A. Then we have:

PROPOSITION 4. Let (X, A, w) be a weighted argument sys-
tem andg be an inconsistency budget. Thench(X, A) # ( iff

(nYEM)ge(X,A,w,ﬂ) Y) ?é (Z)

6. HOW MUCH INCONSISTENCY DO WE
NEED?

An obvious question now arises. Suppose we have a weigtgad ar
ment system X, A, w) and a set of argumenfs Thenwhat is the
smallest amount of inconsistency would we need to tolerate-i
der to makeS a solutior? Now, when considering consistency and
admissibility, the answer is easy: we know exactly whiclacks
we would have to disregard to make a set of arguments adneissib
or consistent — we have no choice in the matter. However, when
considering grounded extensions, the answer is not so Aasye
saw above, there may be multiple ways of getting a set of aegiten
into a weighted extension, each with potentially differemsts; we
are thus typically interested in solving the following plein:

minimise* such that

Y € wge(X, A, w,5"): SCY @



What can we say about (1)? First, consider the following prob
lem. We are given a weighted argument system A, w) and an
inconsistency budgef € R, and asked whethe$ is minimal,
i.e., whethevs’ < g andvY € wge(X, A, w, "), we have that
S ¢ Y. (This problem doesot require thatS is contained in a
someg-grounded extension @fX, A, w).)

PROPOSITION 5. Given a weighted argument systém, A, w),
set of arguments C X, and inconsistency budggt, checking
whether is minimal w.r.t.(X, A, w) and.S is coNP-complete.

PrROOF Consider the complement problem, i.e., the problem of
checking whethed3’ < B and3Y € wge(X, A,w,3’) such
thatS C Y. Membership inNP is immediate. FonpP-hardness,
we can reducesaAT, using essentially the same construction for the
weighted argument system as Proposition 2; we ask whethet
is not minimal for argument sdtp}. [

This leads very naturally to the following question;dshe small-
estinconsistency budget required to ensure thias contained in
someg-grounded extension. We refer to this problencthscking
whetherg is the minimal budget fo§.

PROPOSITION 6. Given a weighted argument systém, A, w),
set of arguments C X, and inconsistency budggt, checking
whetherg is the minimal budget fof is DP-complete.

PrRooOFR For membership aD?, we must exhibit two languages
L; andL» such thatl,; € NP, Lo € co-NP, andL; N Ls is the set
of instances accepted by the minimal budget problem. Laggua
L1 is given by Proposition 2, while languads is given by Propo-
sition 5. For hardness, we reduce the Critical Variable Rrab
(cvP) [7, p.66]. Aninstance ofvPis given by a propositional for-
mulay in CNF, and a variable from ¢. We are asked if, under the
valuationz = T the formulay is satisfiable, while under the val-
uationz = L it is unsatisfiable. We proceed to create in instance
of the minimal budget problem by using essentially the saame c
struction as Proposition 2, except that the attaek-z) is given
a weight of0.5. Now, in the resulting system is the minimal
budget for{¢} iff z is a critical variable inp. [

We noted above that one way of deriving a preference order ove
sets of arguments is to consider the minimal inconsistendygét
required to make a set of arguments a solution. A relatedigliza

7. RELATED WORK

We have already described some of the work that is most glosel
related to ours in the brief survey of Section 3 but there dhitamhal
work that should be mentioned and which does not fit into tbadbr
historical sweep we were describing there.

To begin, there are other interesting developments of adtisr-
gumentation such as a framework for defeasible reasoningtab
preferences that provides a context dependent mechanisdefo
termining which argument is preferred to which [20, 21]. Saiso
offers a valuable solution to dealing with multiple extems, but
conceptually and formally the proposal is complementarguirs.
Also of interest are the proposals for introducing inforima&about
how the audience views each argument [6].

The framework we present is also clearly related to prefaren
based argument systems such as that described in [1]. Hogweve
while our approach disregards attacks whose combined Wwisigh
less than the inconsistency budget, systems such as tHgtdis{
regard all attacks whose individual weight is below thathaf ar-
gument being attacked. This is broadly equivalent, in oumge
to setting the inconsistency budget to the weight of the raequt
being attacked, and taking the combined weights of the kittgc
arguments to be the maximum of the weights rather than the sum
Our work is also related to work on possibilistic truth-ntaimance
systems [12] where assumptions are weighted, conclusiasesdb
on the assumptions inherit the weights, and consistentir@amyv
ments” are established. What is particularly reminsicéoué the
work in [12] is that, again in our terms, it makes use of inéens
tency budget — this is exactly the weight with which the incon
sistencyL can be inferred. Anything that can be inferred with a
greater weight thad_ is then taken to hold, anything with a lesser
weight is taken to be unreliable, which is broadly the effefcthe
inconsistency budget in our work.

Finally, we should point out that there has been a good deal
of work on incorporating numerical and non-numerical sijtes
(though not strengths of attack) into systems of argumiemtaat
are not based on Dung’s work. [16], to take the earliest ex@amp
describes the use of probability measures and beliefs isd¢hse
of Shafer’s theory of evidence [29]. [25] presents an argume
tion system that uses weights which are qualitative ahtsres of
probability values, while in [31] the weights are infinitexil prob-
abilities in the sense of [30].

There is also much work on combinations of logic and probabil

countthe number of weighted extensions that an argument set ap-ity such as [4], [22] and [26], which, while they don’t exlictake

pears in, for a given budget: we prefer argument sets thatzapp
more weighted grounded extensions. Formally, we denoteattie
of an argument sef, given a weighted argument systéii, A, w)
and inconsistency budggt by p(S, X, A, w, 3):

p(S, X, A,w, B) = {Y € wge(X, A,w,3): S CY}.

PROPOSITION 7. Given weighted argument systéid, A, w),
argument setS C X, and inconsistency budggét, computing
(S, X, A, w, B) is #P-complete.

PrROOF (Outline) For membership, consider a non-deterministic
Turing machine that guesses some suliseft A, and verifies that
both}” ., w(e) < BandS C ge(X, A\ R). The number of
accepting computations of this machine will peS, X, A, w, 3).

For hardness, we can reduceat [23, p.439], using the construc-
tion of Proposition 2. It is straightforward to see that teduction
is parsimonious. [

the form of argumentation, have much in common with it.

8. DISCUSSION AND CONCLUSIONS

Our proposal in this paper, namely weighted argument system
(WAS), is a further contribution to the development of folisms

for abstract argumentation that started with the seminakvey
Dung. The WAS approach uses a numerical weight on the attacks
between arguments, as do the proposals based on game th@pry [
and bipolar argumentation [10], but those proposals arteictsl

to determining the strength based on the other argumeritalaiea

in the graph, together with connectively, and so the stienfan
argument is a function solely of the graph. In contrast, awr p
posal allows for the weight to be given as an extra piece @frinf
mation. There are other proposals that allow for extra mfdion

to be given about the strength of arguments in a constellatio
particular the VAF approach [5] and the VSA approach [18], bu
they are restricted to using explicit ranking informatiovepthe
arguments or the attacks by arguments, rather than nurharica
formation. By introducing numerical weights, we can sirfypind



generalize some of the underlying conceptualization ofdlag
the strength of attackss, and furthermore, we can introtheé-
teresting and potentially valuable idea of inconsistengygets for
finer grained analysis of inconsistent information.

Several possibilities suggest themselves for future reke®ne
is to investigate specific interpretations for weights, aggested
in the paper. Another is to investigate the framework expen-
tally, to obtain a better understanding of the way the apgrdze-
haves. One obvious issue here is to look for “discontinsiités the
inconsistency budget grows, in other words points wheigelan-
creases in the number of accepted arguments occur for ontak s
increase in the inconsistency budget. A third avenue ofréute-
search is to investigate the question, mentioned abovegatact
relationship between the strength of arguments and thegitref
attacks.
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