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Abstract

The IST-CONTRACT project is in the process of creat-
ing an electronic contracting language. One of the goals
of this language is that it has formal underpinnings, and
formalizations at a number of levels have been created.
One of the lowest levels, upon which the other levels are
built is the normative level. At this level, we identify
how contract clauses (modeled as norms) may evolve
over time. In this paper, we describe this formalization,
and show how we may associate various states with a
norm throughout its lifecycle. We also show how more
complex evaluations may be carried out over a norm,
and conclude with an example showing the applica-
tion of the framework over a contract and its associated
norms.

Introduction
With the increasing popularity of online transactions, the
need for electronic contracting has become apparent. While
generic contracts are applicable in many situations, and vi-
olations sufficiently rare that a human may resolve disputes,
the appearance of web-services, and the need to regulate in-
teractions between them highlights the desirability of fully
automated contracting. Such fully automated contracting re-
quires the ability to describe a contract in a machine inter-
pretable way, ideally in a form over which inference may be
performed. Additionally, techniques for automatically gen-
erating and enforcing contracts are also required, as well as
protocols allowing agents to create and modify contracts.

Work dealing with some of these areas already exists; for
example, (Jennings et al. 2001) discusses automated ne-
gotiation in various contexts, including in contracts, while
(Grosof and Poon 2004; Kollingbaum 2005) and (Dignum
et al. 2002) all suggest different types of contracting lan-
guages. At their core, contracts are primarily normative
documents; that is they impose a set of (possibly condi-
tional) requirements on an agent behavior. These require-
ments may range from actions that the agent may, or should,
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undertake, to states of affairs within the environment that an
agent may, should, or should not, allow to occur. To formal-
ize a contracting language, one must thus first formalize its
normative components. As discussed later, researchers have
provided many such formalizations, often in the context of
deontic logic. Our interest in norms is more focused; as
part of a contracting language, we are interested in tracking
their changing state (for example, when they are “active”, as
well as the more traditional “violated”). Furthermore, our
application domain requires slightly different philosophical
assumptions when compared to those made in the deontic
tradition, as we assume that norms can be violated, but may
then, in some cases, be “un-violated”.

In this paper, we present a formal normative framework
that allows us to track the changing status of norms. The
remainder of the paper is structured as follows: we begin
by providing an informal overview of our normative model.
We then describe a typical case in which norms may be used
within a contract. This serves as a running example through-
out the remainder of the paper. The normative model is then
formalized. This is carried out in two parts. We begin by
structurally describing the various elements of our model,
and then show how we may capture their dynamic behavior.
After illustrating our model via an example, we conclude by
discussing related and future work.

Norms for modeling Contract Clauses
We assume that a contract is made up of various descriptive
elements, for example, stating which ontologies may be used
to explain the terms found within it. Most importantly, it
specifies a set of clauses, each of which represents a norm.

Norms can be interpreted as socially derived prescriptions
specifying that some set of agents (the norm’s targets) may,
or must, perform some action, or see that some state of af-
fairs occurs. Norms can be understood as regulating the be-
havior of agents. This is their role when encoded in con-
tracts.

Norms are social constructs, and we believe that it is
meaningless to consider norms independently of their social
aspect. This is because a norm is imposed on the target by



some other entity (the imposer) which must be granted, via
the society, some power to impose the norm. Without this
power, the norm’s target is free to ignore the norm’s pre-
scriptions. With the presence of power, a penalty may be
imposed on an agent violating a norm. These penalties take
on the form of additional norms, giving certain agents within
a society permission to impose penalties (or obliging them
to do so).

When designing our normative model, we attempted to
meet the following requirements, imposed upon us by the
contracting domain in which we operate:

• The model should allow for the monitoring of norms.
That is, it should allow for the determination of whether a
violation took place and, if possible, who was responsible
for causing the violation.

• Verification of norms should also be supported, i.e. de-
termining whether conflicts between norms could occur,
or whether a norm could never / sometimes / always be
complied with.

• Agents should be able to make use of the normative model
to support their own practical reasoning, i.e. deciding
which action they should undertake.

• Norms should be able to cope with contrary to duty obli-
gations as well as conditions based on the status of other
norms. For example, consider the pair of norms “One is
obliged to park legally”, and “If one parks illegally, one
is obliged to pay a fine”. The second norm carries norma-
tive weight only if the first norm is violated. These types
of norms commonly appear within contracts, and it is thus
critical that our model is able to represent them.

• The model should be extensible, allowing different
knowledge representations and reasoning mechanisms to
make use of it.

No requirement was placed on detecting and resolving
normative conflict. Many such techniques exist, each hav-
ing a different view of what constitutes normative conflict
(e.g., (Vasconcelos, Kollingbaum, and Norman 2007)). It is
intended that these techniques make use of our framework
for their underlying representation of norms. Similarly, our
model should not prescribe what must occur when a viola-
tion is detected. Instead, we assume that the contract would
contain clauses dealing with such situations.

Since norms may have normative force only in certain sit-
uations, we associate norms with an activation condition.
Norms are thus normally abstract, and are instantiated when
the norm’s activation condition holds. Once a norm has been
instantiated, it remains active, irrespective of its activation
condition, until a specific expiration condition holds. When
it occurs, the norm is assumed to no longer have norma-
tive force. Finally, independent of these two conditions is
the norm’s normative goal, which is used to identify when
the norm is violated (in the case of an obligation), or what
the agent is actually allowed to do (in the case of a permis-
sion). Obligations and permissions are the two norm types
on which our framework focuses. Like others, we assume
that additional norm types may be constructed from these

basic types (e.g. a prohibition could be seen as an obligation
with a negated normative goal).

Norms may be activated, met and discharged based on a
number of factors including the status of other norms, the
state of the environment (and the actions performed by other
agents therein), and the status of contracts.

Example: Car Insurance Brokerage
As a running example, we make use of a simplified version
of a use case scenario from the IST-CONTRACT project.
This scenario models the agreements between several parties
in the car insurance domain. The goal of this use case is to
enhance the quality and efficiency of the total damage claims
handling process between parties.

After the repair company receives a damaged car and con-
sents to the repair, two parties, a car insurance broker (Dam-
age Secure) and a repair company, officially commit to a
short term contract which specifies the details of the repair-
ing procedure, including the invoice etc. Then, the repair
company repairs the car and notifies Damage Secure when
it is complete. Damage Secure handles the payment agreed
to in the contract provided there is no dispute over the qual-
ity of the repair (in which case an expert is called to perform
a quality assessment).

The focus of interest of this example is to show how a re-
pair contract and a set of instantiated norms over the repair
of a car function within the the domain and normative envi-
ronment environment. Such a case is useful to demonstrate
how a contract and the norms attached to it can be monitored
throughout its execution.

Formalization
In this section, we formalize our notions of norms. We do so
in a number of steps: first, we define their structure; after this
is done, we show how the status of a norm may change over
time. Before examining norms, we must define a number of
related concepts.

Formal Preliminaries
We assume the use of a predicate based first order language
L containing logical symbols: connectives {¬,∧,∨,→},
quantifiers {∀,∃}, an infinite set of variables, and the non-
logical predicate, constant and function symbols. The stan-
dard definitions for free and bound variables, as well as
ground formulas are assumed. Finally, the set of well formed
formulas of L are denoted as wff (L). A single well-formed
formula from this set is denoted wff.

We make use of the standard notions of substitution of
variables in a wff , where S = 〈t1/v1, . . . , tn/vn〉 is a sub-
stitution of the terms t1, . . . , tn for variables v1, . . . , vn in a
wff . If no variables exist in a wff resulting from a substitu-
tion, it is said to be fully grounded, and is partially grounded
otherwise.

Our model allows us to infer predicates based on the sta-
tus of the environment, clauses, and norms. We assume that
other predicates may exist whose truth value may be inferred
from other sources such as ontologies, or an action model.
Each of these sources thus generates a theory, denoted by Γ.



For example, we label the theory generated by the environ-
ment as ΓEnv . We label the union of all theories as Γ.

Formally, a contract document contains a set of clauses
representing norms imposed on agents. A contract docu-
ment that has been agreed to by those agents has norma-
tive force, and the agents affected by a contract document’s
norms are the parties to that contract. Since a contract doc-
ument may be instantiated more than once with different
agents playing similar roles, agents are identified within a
contract using an indirection mechanism: a contract docu-
ment imposes norms on a set of roles, and agents are associ-
ated with these roles before the contract is agreed to.

While not mentioned in this document, additional types
of contract documents, such as contract proposals (which
represent contract documents to be agreed upon and with no
normative weight), may exist. References to contracts in the
rest of this paper refer to contract documents which have
been agreed upon, and thus carry normative weight.

Structural Definitions
We may now define the structure of norms and contract doc-
uments. Since these concepts act upon agents, we begin by
defining these entities, as well as roles, which are names ref-
erenced to identify the agent upon which a norm acts.

Agent Names and Roles Agents in our framework are left
unspecified; we only assume that they are associated with a
unique agent name.

A contract role may have one or more parent roles. This
means that whenever an agent is assigned to a role, it is
also assigned to that role’s parent roles, and so assumes the
clauses applying to those parents. If a role r1 is a parent of
role r2, then r2 may be referred to as the child role of r1.

Definition 1 (Roles) A role is a constant. We assume that
the set of all roles is called Roles. Then a role hierarchy def-
inition RoleHierarchyDefinition is a binary relation of
the form (Parent, Child) where Parent, Child ∈ Roles.
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For example, the car insurance brokerage contract de-
scribed earlier contains two roles, that of the broker, and that
of the repairer. One of the clauses obliges the repairer to re-
pair a car, while another assigns a permission to the agent
taking on the broker role, allowing it to demand a penalty
from the repairer if a car is not fixed by the end of a period
specified within the contract.

If we would like to specify that the role of a repairer exists
in a contract, and also include the fact that any car repairer
also acts as a repairer (i.e. repairer is a parent role of car re-
pairer), then (repairer, carRepairer) would be contained
within RoleHierarchyDefinition.

Norms A contract contains a set of clauses, represented
by norms. Norms may bind an agent to a certain course of
action in all situations, or may only affect an agent when
certain activation conditions apply. Similarly, once an agent
achieves a certain state of affairs, a norm may no longer ap-
ply. Finally, norms affect only a specific set of target agents.
A norm thus consists of the following.

• A type identifier, stating whether the norm is an obligation
or a permission.

• An activation condition stating when the norm must be
instantiated.

• A normative goal or state (condition) used to identify
when the norm is violated (in the case of obligations) or
what the agent is allowed to do (in the case of permis-
sions).

• An expiration condition used to determine when the norm
no longer affects the agent.

• A target, identifying which agents the norm affects.

Norms may be activated, met, and discharged based on
various factors including the environment, the status of con-
tracts, and the status of other norms. We assume the exis-
tence of Γ, a theory (or possibly a set of theories) allowing
one to interpret the status of norms1. To represent the sta-
tus of a norm, we define a normative environment theory
ΓNEnv below, and assume that it is part of Γ.

A norm that may apply to a number of situations is, in a
sense, abstract. When a situation to which it applies does
arise, the norm is instantiated and exerts a normative force
on the agents that are beholden to it. We may thus infor-
mally define an abstract norm as a norm that, when the con-
ditions are right, comes into effect (i.e. is instantiated) and
only then has normative force over one or more agents. As
the name suggests, an instantiated norm is an instantiated ab-
stract norm, which has normative power over a set of agents,
until it is discharged.

A group of abstract norms (which, in our case, are the
clauses of a contract) is gathered into an abstract norm store.
Norms may be represented as a tuple of wffs.

Definition 2 (Abstract Norms and Abstract Norm Store)
An Abstract Norm Store, denoted ANS, consists of a set of
abstract norms, each of which is a tuple of the form

〈NormType, NormActivation, NormCondition,

NormExpiration, NormTarget〉

where:
1. NormType ∈ {obligation, permission}
2. for N ∈ {NormActivation, NormCondition,
NormExpiration, NormTarget}, N is a wff (denoted by
φN ) 2

We may further divide NormCondition into
a state based maintenance condition (labeled
SMaintenanceCondition) and an action based mainte-
nance condition (labeled (AMaintenanceCondition)).
A truth value for NormCondition may be computed
as the truth value of (AMaintenanceCondition ∧
SMaintenanceCondition).

NormActivation is some wff φNA which, when entailed
by the theory, must be entailed as the fully grounded φ′NA
in order that the abstract norm can be instantiated and thus

1For example, Γ may include references to the environment, an
ontology, an action model, and normative environment.



come into force. The substitution of variables S such that
φ′NA = S(φNA) is then applied to the other components of
the abstract norm, thus specifying the instantiated norm.

Instantiating Abstract Norms We now define how ab-
stract norms are instantiated with respect to the domain en-
vironment theory and normative environment theory.

An instantiated norm has the same overall form as an ab-
stract norm but its activation condition is grounded, and its
remaining parameters are partially grounded using the same
grounding as the activation condition.

Definition 3 (Instantiation of Abstract Norms)
The abstract norm

〈NormType, NormActivation, NormCondition,

NormExpiration, NormTarget〉

instantiated by the Environment ΓEnv and Normative Envi-
ronment Theory ΓNEnv , obtains an instantiated norm:

〈NormType, NormActivation′, NormCondition′,

NormExpiration′, NormTarget′〉

where:

• Γ ` NormActivation′, where NormActivation′

is fully grounded such that NormActivation′ =
S(NormActivation)

• NormCondition′ = S(NormCondition)
• NormExpiration′ = S(NormExpiration).
• NormTarget′ = {X | Γ ∪ {NormActivation′} ∪
{S(NormTarget)} ` X},
where NormTarget′ ⊆ AgentNames

2

Notice that NormTarget′ is the set of individuals X
to whom the instantiated norm applies. These individu-
als are identified with reference to (entailed by) the do-
main environment theory, normative environment2, and
the NormActivation and NormTarget wffs that are
grounded with respect to the former environments. In the
context of a contract clause, the norm’s targets are iden-
tified by using the RoleHierarchyDefinition relation.
Note also that NormCondition′ an NormExpiration′

may only be partially grounded.
Given a set of abstract norms ANS, together with a Γ,

we define the set of norms that may be instantiated from Γ
as inst(ANS).

Contracts Given the definition of roles, we may specify a
contract document as follows:

2The normative environment may be used when a target should
be identified based on the status of another norm. For example, in
the case of a contrary to duty obligation, a penalty must be paid by
the agent(s) violating some other norm.

Definition 4 (Contract Document) A Contract Document
is a tuple

ContractDocument = 〈Γ, CDNorms, CDRoles,

CDRoleMapping〉

where CDNorms is a set of abstract norms. CDRoles is
a set of role definitions, and CDRoleMapping maps these
role definitions to the set of agents names which are the con-
tract parties within the contract document. We identify a set
ContractParties ⊆ AgentNames as those agents named
within the contract. This means that the following condition
must be satisfied:

Γ ∪ CDRoles ∪ CDRoleMapping ` X where X ⊆
ContractParties. 2

The qualification on X requires that a contract document
only imposes norms on contract parties.

Being an identifiable data item, a contract document, or
any element of it, may have additional metadata which may
be included in the contract document itself or stored sepa-
rately. One common piece of metadata associated with most
contracts is a contract status. Metadata may be viewed as an
additional theory from which the agent can infer informa-
tion, and is labeled Γmetadata.

A contract may refer to other contracts, requiring that
these additional contracts hold when the referring contract
holds. Such additional contracts may also be considered part
of the contract’s context, and may among other things repre-
sent societal regulations imposed on the contracting parties.

Contexts (i.e. ontologies, descriptions and regulations im-
posed on contract parties) may be shared between multiple
contracts. Context provides full meaning to the terms, ac-
tions and processes described in the contract.

When an agent reasons about a contract, it makes use of
the contract’s context. Such an agent is said to be operating
within the appropriate context. Agents within a common
context share a common vocabulary. This implies that each
context has to be associated with a domain ontology defining
the meaning of the terms used in the interactions. Therefore,
the ontology bound to a context must contain at least all the
predicates, roles, role hierarchies, actions and processes that
are part of its domain.

However, the ontology may not be enough to express the
whole context domain semantics. An extra model is needed
for dealing with all the aspects of the domain, especially
those that are dynamic. We will call this the world model,
which contains sets of conditional rules that use predicates
and actions from the ontology. The domain ontology and
world model also form part of Γ.

Contract Proposal Until agreed on by the contract par-
ties, a contract document has no normative weight. At this
stage, it is referred to as a contract proposal. Once agreed to,
the contract becomes binding, and its norms are then consid-
ered to come into effect.

Operational Semantics
So far, we have described the structure of contract docu-
ments and norms. Usually, we will be interested not in the



semantics of the documents themselves, but how they affect
the contract parties, i.e. how, given the evolution of the en-
vironment, various norms are instantiated, fulfilled, violated
and discharged.

To do this, we now describe the normative environment
theory ΓNEnv . This structure defines predicates that may
be used to identify the status of norms as they progress
through their lifecycle. A normative environment theory is
built around a normative environment, which is itself a (pos-
sibly infinite) sequence of normative states NS1, NS2, . . ..
Each normative state NSi in the sequence is defined with re-
spect to the overarching theory Γ (which includes ΓNEnv),
and a given set of abstract norms ANS.

Each normative state keeps track of four basic events:
a)when an abstract norm is instantiated; b)when an instan-
tiated norm expires; c)when a norm’s normative condition
holds; d)when a norm’s normative condition does not hold.

In order to formally define a normative state we first de-
fine evaluation of an instantiated norm’s NormCondition
and ExpirationCondition:

Definition 5 (The holds() Predicate) Let in be an instanti-
ated norm

〈NormType, NormActivation, NormCondition,

NormExpiration, NormTarget〉

Then, for N ∈ {NormCondition, NormExpiration}:

holds(in,N ) evaluates to true if Γ ` N ′, where N ′

is entailed with all variables in N grounded; otherwise
holds(in,N ) evaluates to false. 2

Our formal definition of a normative state then identifies
those instantiated norms whose normative condition evalu-
ates to true, those whose normative condition evaluates to
false, and those whose expiration condition evaluates to true:

Definition 6 (Normative State) Let INS be a set of instan-
tiated norms. A normative state NS, defined with respect
to a set INS of instantiated norms, and domain environment
theory ΓEnv and normative environment theory ΓNEnv , is a
tuple of the form:

〈NSTrue,NSFalse, NSExpires〉

where:

• NSTrue = {in ∈ INS | holds(in,NormCondition) is
true}

• NSFalse = {in ∈ INS | holds(in,NormCondition) is
false}

• NSExpires = {in ∈ INS |
holds(in,NormExpiration) is true}

Since NSTrue ∪ NSFalse ⊇ NSExpires, it is sufficient
to identify the instantiated norms in a normative state,
denoted inst norms(NS), by the union of those norms
whose normative condition evaluates to true, and those,
whose normative condition evaluates to false. That is to say:

inst norms(NS) = NSTrue ∪ NSFalse 2

Definition 7 (Normative Environment) A normative en-
vironment NE is a possibly infinite ordered sequence
NS1, NS2, . . . where for i = 1 . . ., we say that NSi is the
normative state previous to NSi+1. 2

Given a normative state, the subsequent normative state is
defined by removal of the expired instantiated norms, addi-
tion of new instantiated norms, and checking the norm state
of all instantiated norms. We therefore define a minimal set
of conditions that a normative environment should satisfy:

Definition 8 (Normative State Semantics) Let ANS be
an abstract norm store, NE the normative environment
NS1, NS2, . . ., and for i = 1 . . ., Γi a set of wffs denoting
the domain environment associated with NSi. For i = 1 . . .,
let us define the set of potential norms for NSi as those that:

1. are instantiated in the previous state NSi−1

(inst norms(NSi−1))
2. those in the abstract norm store that are instantiated w.r.t.

Γi (i.e., inst(ANS) as defined in Definition 3).

and not those that have expired in the previous state, i.e.,
NSExpiresi−1.
That is to say, the set of potential norms PNormsi is de-
fined as follows:

PNormsi = inst norms(NSi−1) ∪ inst(ANS) \
NSExpiresi−1

Then NSi = 〈NSTruei, NSFalsei, NSExpiresi〉 is de-
fined (as in Definition 6) with respect to the set PNormsi,
and theory Γi. 2

We define NS0 = 〈NSTrue0, NSFalse0, NSExpires0〉
where NSTrue0 = {}, NSFalse0 = {} and NSExpires0

= {}
We suggest the following basic set of predicates en-

tailed by ΓNEnv , and in this way characterize how
ΓNEnv may be partially specified by the normative en-
vironment.3 In the following definitions we assume a
normative environment {NS1, NS2, . . .} where NSi =
〈NSTruei, NSFalsei, NSExpiresi〉, and i > 0. We
make use of the Gödelisation operator d.e for naming nor-
mative states in the object level language. I.e. dNSie names
normative state NSi and allows us to use it within wffs.

Definition 9 (The instantiated() predicate) ΓNEnv `
instantiated(dNSie,in) iff in ∈ inst norms(NSi) and
(in /∈ inst norms(NSi−1) ∨ in /∈ NSExpiresi−1). We
define by default ΓNEnv 6` instantiated(dNS0e,in). 2

3In general, by stating requirement that some first order theory
Γ entail φ1, . . . , φn, we are effectively providing a partial specifi-
cation of Γ. In semantic terms, any model for Γ is also model for
φ1, . . . , φn



Intuitively, instantiated(NSi, in) holds if the
norm in becomes instantiated in NSi. That is,
instantiated(dNSie, in) evaluates to true if norm in
was instantiated in NSi, and either was not instantiated in
NSi−1 or expired in NSi−1 (and thus becomes instantiated
again in NSi).

Definition 10 (The expires() predicate) ΓNEnv `
expires(dNSie,in) iff in ∈ NSExpiresi. We also define
ΓNEnv 6` expires(dNS0e,in). 2

The expires() predicate holds if an instantiated norm in ex-
pired within a specific normative state.

Definition 11 (The active() predicate) ΓNEnv `
active(dNSie,in) if and only if instantiated(dNSie,in),
or else (in ∈ inst norms(NSi−1) ∧ in /∈
NSExpiresi−1). We also define ΓNEnv 6`
active(dNS0e,in). 2

active(dNSie, in) holds if a norm in is instantiated within
normative state NSi. This could be because it was instanti-
ated within that state, or because it was instantiated earlier
and has not yet expired.

Definition 12 (The becomesTrue() predicate) ΓNEnv `
becomesTrue(dNSie,in) iff in ∈ NSTruei and, either
in ∈ NSFalsei−1, or instantiated(dNSie,in). 2

Intuitively, a norm in becomes true in NSi if its norma-
tive condition evaluates to true, and either it was false in state
NSi−1, or if not, then in is instantiated in NSi.

Definition 13 (The becomesFalse() predicate)
ΓNEnv ` becomesFalse(dNSie,in) iff in ∈ NSFalsei

and, either in ∈ NSTruei−1 or instantiated(dNSie,in).
2

Here, becomesFalse(. . .) is similar to becomesTrue(. . .),
dealing with falsehood rather than truth. The next two pred-
icates check whether a norm is active and true, respectively
false, in some normative state.

Definition 14 (The isTrue() predicate)
ΓNEnv ` isTrue(dNSie,in) if and only if
becomesTrue(dNSie,in), or else, active(dNSie,in)
and in ∈ NSTruei−1. 2

Definition 15 (The isFalse() predicate)
ΓNEnv ` isFalse(dNSie,in) if and only if
becomesFalse(dNSie,in), or else, active(dNSie,in)
and in ∈ NSFalsei−1 2

Definition 16 (Properties of ΓNEnv) ΓNEnv ` ¬x iff
ΓNEnv 6` x. This implies that:

• ΓNEnv 0 ⊥.
• ¬ is given a negation as failure semantics.

2

Apart from these low level predicates, we may define addi-
tional useful predicates. Some of these determine the status
of a norm, while others allow access its operation.

Definition 17 (Norm access predicates) Given a
norm N with norm type Type, activation con-
dition NormActivation, expiration condition
NormExpiration, a norm target set NormTarget
a normative condition with a state component
SMaintenanceCondition and an action component
AMaintenanceCondition, the following predicates
(which may operate on both abstract and instantiated
norms) may be defined:
type(N,X) = true iff X = Type, and false otherwise.
normActivation(N ,X ) = true iff NormActivation uni-
fies to X , and false otherwise.
normSCondition(N ,X ) = true iff
SMaintenanceCondition unifies to X , and false oth-
erwise.
normACondition(N ,X ) = true iff
AMaintenanceCondition unifies to X , and false oth-
erwise.
normExpiration(N ,X ) = true iff NormExpiration uni-
fies to X , and false otherwise.
normTarget(N ,A) = true iff there is a unification be-
tween some element of NormTarget and A. 2

We may define the following predicates based on the nor-
mative environment. These predicates form a basis for our
normative environment theory ΓNEnv:

Definition 18 (the violated() predicate)
violated(dNSie, in) = normType(in, obligation) ∧
isFalse(dNSie, in) 2

The fulfilled predicate checks whether a norm has been
fulfilled at a specific point in time

Definition 19 (the fulfilled() predicate)
fulfilled((dNSie, in) = expires(dNSie, in) ∧
¬violated(dNSie, in)

unfulfilled((dNSie, in) = expires(dNSie, in) ∧
violated(dNSie, in) 2

We may also be interested in determining whether a norm
is a violation handler, that is, if it detects and handles the
violation of some other clause. We make the simplify-
ing assumption that a violation handler contains only the
violated() predicate in its activating condition.

Definition 20 (the violationHandler() predicate)
violationHandler(N) =
normActivation(N, dviolated(X, Y )e) for any X, Y . 2

Finally, we may want to determine which norm (N1) is
the violation handler for another norm (N2):

Definition 21 (the handlesViolation() predicate)
handlesV iolation(N1, N2) =
normActivation(N1, dviolated(X, N2)e) for any X

2



Figure 1: Domain Environment and Normative Environment lifecycle

As discussed later, we intend to make use of these seman-
tics when evaluating the status contracts. Before doing so,
we illustrate the use of our framework within an example.

Example
Building on the Car Insurance Brokerage example presented
above, we now show how the normative environment the-
ory evolves, together with its attendant normative states. We
assume a contract over the repair of a car has been signed
between a Repair Company (“Bob Repairs”) and the broker
(Damage Secure). This contract contains the two clauses4:

The first clause consists of norm nm1 =

〈obligation, atRepairShop(Car), atRepairShop(Car),
onT ime(T ) ∨ done(repairCar(Car)), BobRepairs〉

Where onT ime(T ) = before(T, contractStartT ime+
7days). Here, T represents the current time.
The second clause contains norm nm2 =

〈obligation, violated(nm1), done(payF ine()),
finePaid(), BobRepairs〉

The first clause expresses the obligation imposed on Bob
Repairs to repair a car within the first 7 days of the contract
start date, provided the car is at the repair shop. The sec-
ond expresses the obligation on the Repair Company to pay
a fine in case it violates the first obligation. At this stage,
it must be noted that the obligation on the Repair Company
to repair the car holds even if the seven day deadline has
passed. Alternatively, if we wanted to model the obliga-
tion in such a way that, if after the seven days pass and
the car is still not repaired, a fine should be paid and no
repair must be made, then we would have to modify the first
NormExpiration attribute to read carRepaired(Car) ∨
after(T, contractStartT ime + 7days).

4Due to space constraints, we do not describe the temporal
predicates used in the clauses, instead assuming that they are de-
rived from some standard temporal logic.

Figure 1 shows the values of several of predicates belong-
ing to ΓDom (atRepairShop, onT ime, done, finePaid)
and ΓNEnv (instantiated(), violated(), expires(), ...).
Some predicates for nm2, the value of which can easily be
inferred, are omitted from the figure, due to limited space.

By default, NS0 contains empty sets for all its elements.
In the next Normative State, NS1, nm1’s NormCondition
becomes true, as the car is at the shop. This event causes
nm1 to become instantiated. The norm’s NormCondition
element evaluates to true (and thus nm1 ∈ NSTrue1) until
7 days from the contract start date have passed. At that point
(NS3), the predicate before(T, contractStartT ime +
7days) no longer holds, and NormCondition becomes
false (and thus nm1 ∈ NSFalse1). By definition, this
means that the violated() predicate for nm1 evaluates to true.
This causes the instantiation of the second norm, as seen
by its NormActivation parameter. By paying the fine at
the next Normative State NS4, the Repair Company ful-
fills nm2’s NormExpiration condition, and this brings
nm2 to a fulfilled() state. Finally, we assume that the
car is repaired at NS5, meaning that violated() evaluates
to false for nm1. This means that nm1 is also fulfilled, as
its NormExpiration now evaluates to true.

Discussion and Conclusions
The normative framework we have described fulfills all of
the requirements described earlier. Not only are we able to
detect whether a violation took place (via the violation(. . .)
predicate), but we may also detect the occurrence of addi-
tional critical states at which some normative event related
state change took place. These critical states correspond to
the various predicates described above. Additional, domain
dependent critical states may be defined using the informa-
tion found within the normative environment. Verification
of a normative system may be performed by forward simu-
lation over the domain and normative environments.

We assume that any norm aware agent capable of being
affected by norms, is associated with its own normative en-



vironment (and resulting normative environment theory). In
fully observable environments, each agent’s theory would be
identical, but in other domains, these theories may diverge.
In the context of contracting, we assume that the contract
may state which agent’s theories should be used when deter-
mining whether penalties (or rewards) should be imposed.

Our model does not describe what should occur if an obli-
gation is violated. Instead, we assume that agents make use
of the normative model to undertake their own practical rea-
soning. An agent may determine which norms affect it at
any stage, and base its decisions on these.

One interesting aspect of our model (as illustrated by
norm nm1 in the example) is that norms may be violated
for a certain period of time, after which they may return to
an un-violated state. This is particularly useful when deal-
ing with contracts, as penalties may be assessed over the
duration of a violation, with the norm still having normative
force over an agent. This differs from the way most deontic
theories deal with norms (for example (van der Torre 2003)).

While a large variety of electronic contracting languages
exist, many only specify an informal (Milosevic and Dromey
2002), or programming language based (Kollingbaum 2005)
semantics. Formal languages, such as LCR (Dignum et al.
2002) have limited expressibility. Our approach of defining
a rich contracting language, and then constructing its seman-
tics, is intended to overcome these weaknesses.

The work presented here has been inspired by a number
of other researchers. For example, (Dignum 2004) described
the use of Landmarks as abstract states which “are defined
as a set of propositions that are true in a state represented by
the landmark”. These landmarks may thus be seen as sim-
ilar to critical states. The framework described by (Fornara
and Colombetti 2007) shares some similarities with our ap-
proach. Their focus on sanctions (which, in our model, are
implemented more via additional norms) means that they
only allow for very specific, predefined normative states, and
that violations in their framework may only occur once.

(Farrell et al. 2005) described a predicate based event cal-
culus approach to keeping track of normative state in con-
tracts. However, their work focused on specifying an XML
based representation of event calculus, and made use of
event calculus primitives to specify their contracts, resulting
in a very unwieldy and unrealistic contract representation,
and very few norm related predicates. Finally, (Daskalopulu
2000) showed how petri-nets could be used to perform con-
tract monitoring. However, her representation is best suited
for those contracts which can be expressed as workflows.

In this paper, we have presented the normative underpin-
nings of our contract model, showing how norms are repre-
sented, and how we can determine their state as the environ-
ment changes. We have successfully migrated this approach
to the contract level, allowing us to identify the state of a
contract (e.g. drafted, active, etc.) at any point in time. IST-
CONTRACT intends to create an entire contracting ecosys-
tem, and we are currently using the normative model to de-
fine the behavior of various contract-supporting components
of the system such as the contract store and contract man-
agers. In the near-term, we intend to see whether we can
migrate the semantics described here to additional levels of

the framework, for example to specify the form inter-agent
protocols. In the long-term, we are interested in examining
how norm-conflict mechanisms may best make use of the
framework, and are also looking at the effects of partial, and
conflicting information on the semantics.
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