
Determining the Trustworthiness of New Electronic
Contracts

Paul Groth1, Simon Miles2, Sanjay Modgil2, Nir Oren2, Michael Luck2, Yolanda Gil1

1 Information Sciences Institute, University of Southern California, USA
2 Department of Computer Science, King’s College London, UK

Abstract. Expressing contractual agreements electronically potentially allows
agents to automatically perform functions surrounding contract use: establish-
ment, fulfilment, renegotiation etc. For such automation to be used for real busi-
ness concerns, there needs to be a high level of trust in the agent-based system.
While there has been much research on simulating trust between agents, there
are areas where such trust is harder to establish. In particular, contract proposals
may come from parties that an agent has had no prior interaction with and, in
competitive business-to-business environments, little reputation information may
be available. In human practice, trust in a proposed contract is determined in part
from the content of the proposal itself, and the similarity of the content to that of
prior contracts, executed to varying degrees of success. In this paper, we argue
that such analysis is also appropriate in automated systems, and to provide it we
need systems to record salient details of prior contract use and algorithms for as-
sessing proposals on their content. We use provenance technology to provide the
former and detail algorithms for measuring contract success and similarity for the
latter, applying them to an aerospace case study.

1 Introduction

Contracts are a mechanism by which multiple parties codify agreements to undertake
tasks, deliver services, or provide products. Before signing a contract, it is generally true
that each party expects that the others will be able to fulfil their part of the agreement.
This trust in a party can be obtained from a variety of sources including prior dealings
with the party, recommendations from associates, and the perceived ability to effec-
tively enforce the compliance of the party. For example, when signing a mobile phone
contract, the phone provider performs a credit check on the potential customer, to verify
that the customer will be able to pay. Likewise, the customer may check independent
internet sites to determine whether the service provided is high quality and fairly priced.
Thus, the parties trust each other to perform the actions stated in the contract.

However, another trust judgment must be made in addition: one must also trust the
contract itself [8], to believe that, for example, it correctly specifies terms of service,
appropriately deals with exceptional cases, is sufficiently stringent that actions will be
taken if obligations are not fulfilled. For a phone contract, the customer might look
for a statement on when support will be available, whether there is an indemnification
portion of the contract, or even whether the contract is presented on paper with an
attractive letterhead (indicating professionalism by the provider).

As open electronic contracting becomes prevalent, we expect issues centred around
content-based trust (trust of artifacts based on the artifacts themselves) to arise more
frequently. Clients must determine whether to place trust in a contract provided by a
service even while, in many cases, such services may be unknown, or the service may
introduce a new contract specific to the client.

In these cases, reputation-based mechanisms alone do not provide suitable means of
measuring trust: if there are little or no grounds on which to make reputation decisions,
then assessments of trust based on reputation are of limited value. Mechanism design
techniques, attempting to guarantee that agents will behave in a certain way [11], are
ill-suited to open systems, where new agents, which may not be analysed by the system
designer and may not always act rationally, can enter the system at any time.

Contracts presented by one agent for a service may well have similarities to those
proposed by other agents providing similar services, but are unlikely to be of the same
form or template: each company (or organisation, or agent) drafts contracts in its own
way. However, even without exactly matching contracts, an agent may still draw on
prior experience, and judge a newly proposed contract on the basis of similarities. For
example, if similar contracts to the current one turned out to be valuable or successful in
the past, this may indicate future value or success. This approach requires two contract-
specific mechanisms to be in place, to determine each of the following.

– The success of prior contracts the agent has been party to. Success is meaning-
ful only if we have an unambiguous model of contractual behaviour, and if it is
based on the events that occur during a contract’s lifetime. For us to draw on salient
events, we need to capture data on those events in a queryable form.

– The similarity of a prior contract to a newly proposed one. As above, similarity
is meaningful only if we understand what a contract contains: syntactic similarity
alone would not provide a meaningful measure, e.g. the obligation to do something
and the obligation not to the same may be expressed using almost the same data are
not similar contractually.

In this paper, we begin to address the problem of how a client can make a trust judgment
about a contract based on the contract itself. We do so by building on several pieces of
existing, though largely unconnected work on contract modelling, content-based trust
and provenance. A theoretical framework for modelling contracts, and its use for repre-
sentation as concrete data, is presented. As with human assessments, we enable clients
to access their own prior experiences, as well as records available from others, in or-
der to help make a trust judgement. This prior experience is expressed in the form of a
provenance graph, which documents how contracts were constructed, where they were
used, and the processes that they were related to. While the overall work is prelimi-
nary, we have provided a proof of concept implementation and evaluated. The technical
contributions provided in this paper are:

– an approach to measuring the success of prior contract executions;
– an algorithm for establishing the similarity between contracts;
– a model for determining the trustworthiness of contract proposals based on the

above notions of success and similarity;

– an implementation of all of the above using an existing electronic contract repre-
sentation scheme and provenance model;

– a case study and evaluation of our approach in the aerospace domain.

1.1 Case Study

In this paper, we use an aerospace application as our running example and case study.
We are grateful to Lost Wax for the particulars, which are part of a simulation performed
by the Aerogility tool for their (aircraft engine manufacturer) customers [1].

Within the domain under consideration, aircraft operators require the manufacturers
of their aircraft engines to maintain the engines during their lifetimes. Engine manufac-
turers in turn rely on services at particular sites to conduct any repairs. A plane with an
engine requiring maintenance will be scheduled to land at a site with which the engine’s
manufacturer has a contract, so that repairs can take place. A service site makes use of
suppliers for given parts, and engine manufacturers often wish to restrict the suppliers
they use to those trusted.

As our running example, we consider proposals from new service sites to engine
manufacturers to provide, and be paid for, repair of engines. The question asked by
the engine manufacturer is: Should I trust this new proposal? Engine manufacturers
have more or less prior experience with other sites, and may or may not have access to
records about other manufacturers’ experience.

2 Trust

Trusting someone or something allows the uncertainty of the world to be handled: even
where aspects are unknown and may be unknowable, we do not allow this to preclude
us from action. Gambetta [7] defined trust as “a particular level of the subjective proba-
bility with which an agent will perform a particular action, both before she can monitor
such an action, and in a context in which it affects her own action”. We apply this def-
inition in contract-based systems as the likelihood that a contract proposal will lead to
other agents (primarily other contract parties) acting in an expected and desirable way.

To understand what we should capture in a measure of trust for a contract proposal,
we need to know why an agent may agree to one, including the following reasons.

– The agent believes the outcome of successful execution of the contract will be in
their interests.

– The agent believes the other parties will act in accordance with the contract.
– The agent believes another contract could not easily be obtained which better rep-

resented their interests.

Castelfranchi [5] gives a more exhaustive list of reasons why an agent may attempt to
meet a norm in the general case.

Content-based trust, the trust in artifacts from the artifacts themselves, is a relatively
neglected area compared with mechanisms to assess trust in other agents (reviewed re-
cently, for example, by Sabater and Sierra [19], Ruohomaa and Kutvonen [18]). Deter-
mining content-based trust was identified as an open issue by Gil and Artz in the context

of the Semantic Web [8]. Content-based trust is crucially important, given that the web
can be understood as a network of documents whose content people judge trustworthy
or otherwise based on various factors, including context, popularity, appearance, prove-
nance, apparent bias, etc. Content-based trust complements assessments on the trust of
those providing the content made, for example, through reputation metrics.

Such evaluations also apply where actors in a process are not human but software
agents, and it is therefore important to determine such assessments of trust automati-
cally. Aside from general web documents, content-based trust is important in assessing
contract proposals in an open system, where evaluations of those issuing proposals may
not be sufficient for providing a basis to decide whether to accept. Gil and Artz envis-
aged users providing feedback on content, which would inform the trust assessments of
later users. We take an equivalent approach here, where that feedback data is captured
by records of success or otherwise of past contracts.

3 Electronic Contracts

To compare similarity of contracts, so we can judge how much of an influence a past
contract’s success should have on assessing a new proposal, there needs to be a basis
for comparison. Unless contracts are expressed in a relatively uniform way, there is
no way to know whether one part of the document, e.g. a clause, is comparable to
another. While we cannot rely on contracts created by different agents being instantiated
from the same template, we assume that all contracts can be expressed using the same
conceptual structure, so can be mapped to the same data structure. We also assume that,
within an application domain, contract terms can be mapped to a common ontology,
allowing each part of a contract to become comparable.

For example, in our case study, we cannot assume all service sites provide contracts
following the same template, as they are independent, but assume that they all rely
on the same basic constructs (obligations, permissions etc.) and include some similar
content, e.g. obligations to service engines when they require maintenance.

3.1 Basic Concepts

A contract is a document containing clauses agreed to by a set of agents, called the con-
tract parties. Prior to agreement by the relevant parties, a contract document is simply a
contract proposal. For an electronic document, agreement may be indicated in the form
of digital signatures by the contract parties. Clauses specify regulative or constitutive
norms influencing agent behaviour.

Constitutive norms do not form a mandatory part of a contract, but help with con-
tract reusability and interpretation. According to Boella and van der Torre [4], the main
role of a constitutive norm is to specify a counts-as relation between facts in the do-
main and terms in the contract. For example, a contract for a broadband connection
may specify what counts-as fair use, in terms of observable facts such as the amount
of data downloaded over the course of a month. Another important contractual notion,
role, where an agent occupying the role takes on the regulative norms imposed on the

role, may also be subsumed by the counts-as relationship. The counts-as relationship
has been the subject of much analysis [12, 10].

Here, we focus on regulative norms. Regulative norms are associated with a target
agent, and specify either what the target should do, an obligation, what the target should
not do, a prohibition, or what the target may do, a permission. If the target of an obli-
gation or a prohibition does not conform to the behaviour expected by that clause, then
this is a violation of the clause. If a clause has not been and can no longer be violated
(for example, if the action required in an obligation has been performed), then we say
that it has been fulfilled.

Some obligations or permissions may specify behaviour required or allowed when
another clause is violated: contrary-to-duty clauses, e.g. one obligation may state “A
must deliver the package to B by Thursday” while a contrary-to-duty obligation says
“If A has not delivered the package to B by Thursday, it must refund B’s payment.”

3.2 Electronic Representation of Contracts

Many different computational representations of contracts are possible, but common
formats are required for interoperability and comparison. The CONTRACT project [2]
addresses this concern (among others), by encoding contracts as XML documents con-
sisting of normative clauses that are essentially declarative specifications of agent be-
haviours. The model is informed by a need to meet requirements for practical execu-
tion of contracts and monitoring for violation of contracts by the parties involved (some
features of this model are not unique to this approach, but also present in others’ mod-
els [6, 9]). Importantly, this execution-based motivation and XML-based representation
provide us with both the stance and tools needed to develop techniques for evaluating
contract similarity. We therefore adopt the CONTRACT model and representation in our
work. Although we cannot provide a complete account here, we briefly outline several
key qualities of the model, and leave details to other publications [16, 17].

1. A contract clause is often conditional, requiring or allowing an agent to undertake
an action only in specific circumstances. For example, an obligation on a service
site to repair an engine only matters whenever a request for maintenance has been
placed. For this reason, a practical agent should not expend resources aiming to
fulfil all clauses when most do not apply at any given time.

2. These ‘activating’ circumstances can exist in multiple instances, sometimes simul-
taneously. Continuing the example, multiple requests may be placed at one time,
and a single contract clause requires each request be processed.

3. No contract party can predict whether it will, in practice, be possible for them or
the other parties to fulfil obligations at the time the contract is agreed. Contracts are
based on expected future capabilities of agents not on certainty of achievement. For
a recent example, consider passengers left stranded due to the collapse of airline
and holiday companies: the obligation to return them home was agreed but the
capability did not exist at the relevant time.

4. All information relating to whether a contract clause is violated or not must orig-
inate from some source. For example, in a distributed system, information about
time comes from clock services, and there can be no guarantee in practice that the
time received from any two clocks will be the same.

5. That which is obliged or permitted can always be expressed as maintenance of
some condition (within each instantiating circumstance). Clearly the obligation to
“always drive on the left”, for example, is already expressed as the maintenance of
a condition. However, an obligation to achieve state S in the system before deadline
condition D can be expressed as maintaining the condition: either achieved S or
not yet passed D. For example, the obligation to “have repaired an engine within
7 days of the request” can be re-expressed as maintaining the state “have repaired
the engine or not yet passed 7 days from the request”. Generally, the obligation to
perform action A before a deadline D can be re-expressed as maintaining the state
of having performed A or D not yet having passed.

Taken together, these points inform the development of a model for contractual clauses
using the data structure in Table 1. It should be noted that any logic may be used to
specify the conditions in our contract clauses, and that it is possible to map the deontic
aspect of a clause to standard conditional logics [21]. Examples of the model’s use in
the domain of aerospace aftermarkets are provided in Section 6.

Type Whether this is an obligation or permission. A prohibition is modelled
as an obligation not to do something, i.e. with a negative normative
condition below.

Target The contract party obliged, prohibited or permitted by the clause.
Activating Condition The circumstances under which the clause has force, parametrised by

the variables specific to each instance.
Normative Condition The circumstances under which the obligation is not being violated or

the permission is being taken advantage of, parametrised by the vari-
ables specific to each instance. Therefore, for an obligation, the target
must maintain the normative condition so as not to be in violation of the
contract.

Expiration Condition The circumstances under which the clause no longer has force,
parametrised by the variables specific to each instance.

Table 1. The model for a contractual clause used in this paper.

The CONTRACT project XML-based electronic format for contracts [17] is used
in our implementation. Without providing excessive detail, the key components of a
contract in this format can be outlined as follows.

– References to ontologies defining the concepts used in the contract and the pre- and
post-conditions of actions obliged, prohibited or permitted.

– A set of contractual roles to which contract clauses apply.
– A set of agents assigned to those roles.
– A set of clauses as modelled above.

A contract, in itself, does not express success or failure in achieving the obligations
expressed within it. For that we need to know, through recorded documentation, the
outcomes of agents’ attempts to fulfil the contract, and the processes by which they did
so. This can be called the provenance of the contracts’ outcomes.

4 Provenance

Judgements of trust must be based on reliable data. Even when the assessed object pro-
vides the primary data, its content must be compared against something. In our case,
the proposal content is compared against prior contracts, to assess the proposal based
on the similarity with, and success of, those contracts. The task of acquiring this his-
torical data is outside the scope of many approaches and so not adequately addressed.
However, in a system with multiple authorities, where contracts need to be established
to guarantee one agent’s behaviour towards another, gathering such data is not trivial.

Much work [20] has been conducted on techniques for determining the provenance
of data: the source or history of that data [14]. There are two critical issues in providing
infrastructure for determining provenance. First, applications must be adapted to record
documentation of what occurs in a system in such a way that it can be connected to form
historical traces of data. This requires the independent agents in the system to document
their activities using a suitable common data model. Second, techniques are needed to
query potentially large amounts of such documentation, to elicit details relevant to the
history of a given item. Additional issues, such as the reliability of documentation for
provenance and its secure storage must also been considered [14].

In this paper, we exploit the documentation produced by a provenance infrastructure
to find connections between prior contracts and their outcomes. This allows us to mea-
sure the success or otherwise of prior contract executions, and the compliance with, or
violation of, clauses by the contract parties. The model of provenance used to evaluate
our approach is based on causal graphs, connecting occurrences in the system as effects
to their causes, whether the occurrences involved one agent or the interaction of many.
Here, we are not concerned with how the system was adapted to record documentation,
but refer readers interested in the software engineering issues elsewhere [13].

We use the Open Provenance Model (OPM) [15], developed by an international
collaboration of provenance researchers. OPM documents prior occurrences in terms of
processes that manipulate artifacts. A process can be seen as an individual action by an
agent, while an artifact corresponds to a message sent between agents or to an object
acted on while in a given state. An example is shown in Figure 1, where a part supply
process receives a request for a part and generates that part, passing it to a process that
takes a broken engine and produces a repaired engine. Arrows denote causal dependen-
cies, where a process used an artifact or an artifact was generated by a process.

Request for
part

Broken engine

PartPart supply Repair engine Repaired engine

Fig. 1. Sample OPM graph fragment: artifacts are ovals, processes are boxes

OPM has serialisations in formats such as XML and RDF (though they are still
being refined). We use the current XML serialisation in our experiments, a sample of
which is shown in Figure 2.

5 Contract Trust Algorithm

We can view the problem of determining the trust of a previously unseen contract in
different ways. As a classification problem, we aim to determine to which category of
trust the contract belongs, e.g. we could classify a contract into ‘trustworthy’, ‘some-
what trustworthy’ or ‘untrustworthy’. Or, as a regression problem, the goal is to compute
a trust value for the given contract.

For either case, we can apply an approach based on the simple k-nearest neighbour
algorithm [3]. Briefly, the algorithm can be described as follows. Given an instance, q
(in our case a contract proposal) find the k instances (prior contracts) in a historical
dataset that are closest to q. The instances then vote as to the category/value of q. In our
evaluation, we use the k-nearest neighbour algorithm to perform regression that deter-
mines a numerical trust value. It is then for an agent to decide whether the trust value
is adequate to accept the proposal, or to choose between multiple potential proposals.
To use the k-nearest neighbour algorithm, we need to define the features or attributes to
be used, a distance function, a voting function, and k. Below, we define each of these
elements for our purposes.

5.1 Features: Measuring Success of Contracts

The historical dataset used by our algorithm is the set of prior contracts the agent has
been party to. We are interested in one attribute of a contract: whether the contract was
successful, defined as one in which the outcome of the process the contract governed
is achieved without breaking any contractual clauses. For example, if a service site was
obliged to repair an engine by a certain time according to a contract and the service
does so, then the contract is successful. However, the success of a process’ outcome
is not a binary decision but lies in a range. For example, if the engine is fixed but the
repair was delayed, the outcome of the repair process is still successful but less so than
if the engine was repaired on time. Additionally, it is important to note that the outcome
of a process is not merely its output; the outcome may also include effects such as
repairs being late. To determine all these effects, our approach is to use documentation
of a process. We write Dc

p to identify the provenance data for a process p that was the
execution of a contract C.

Our algorithm relies on a success-outcome function, s(DC
p) = 0 . . . 1, that com-

putes, given the provenance data for a process, a numeric value for the success of the
process outcome. In practice, this is a series of tests performed on the provenance data
to see if particular effects were present in the documentation; for example, whether
penalties were paid when a clause was violated. Thus, the success-outcome function
provides the value for the success attribute of each contract in the historical dataset.
This is a domain-specific and often user-specific function.

The measure of success of a past contract is calculated by the agent assessing the
new proposal, and so the values given to that success are otherwise arbitrary reflections
of what that agent considers important. If two agents use similar calculations of suc-
cess from the events recorded in the documentation, they have similar outlook on trust.
Section 6.3 describes the function we use for the aerospace case study.

5.2 Distance: Measuring Similarity of Contracts

We now define a distance function to determine how close a proposal is to the prior
contracts. A contract C1’s distance from another contract C2 is a normalised similarity
value. We rely on a general function, Equation 1, to produce all permutations of pairings
of elements of any sets A and B:

map(A, B) :=
{

P ⊂ A×B
∣∣∣all elements in a pair occur only once in P

}
. (1)

map(A, B) is used by Equation 2 to compute the summation that maximizes the addi-
tive similarity score between two sets. Equation 2 assumes that there exists a similarity
function for the elements within the provided sets. This equation is necessary because
clauses and other constructs do not have a fixed comparison order.

max additive score(A, B) = max

({ ∑
(x,y)∈P

sim(x, y)
∣∣P ∈ map(A, B)

})
(2)

Based on Equations 1 and 2, we define the distance function, Equation 3, as the maxi-
mum similarity score between two contracts, C1 and C2. The function assumes that a
contract, C, is a set of clauses, hence, we can write cl ∈ C.

dist(C1, C2) = max additive score(C1, C2); (3)

The similarity between two clauses, Equation 4, is defined as the similarity between
the clauses conditions. We use a dot accessor notation to denote accessing each type of
condition from a clause. Thus, cl.act denotes accessing the activation condition from a
clause. Likewise, cl.mant denotes accessing the maintenance condition (the expiration
condition is excluded, as it merely aids agents in knowing when clauses no longer ap-
ply, rather than affecting the semantics of what is required/permitted). Similarily, each
condition contains a formula, F , that can be accessed in the same fashion. Additionally,
we use the function type() to allow for the retrieval of the type of a given object. In
the case of the deontic statement this is whether it is an obligation or permission. In the
case of other entities such as variables this is the class of that entity.

sim(cl1, cl2) :=
sim(cl1.act, cl2.act) + sim(cl1.mant, cl2.mant)

2
(4)

The similarity of two conditions is the similarity between the two conditions formulas
as seen in Equations 5, 6, 7.

sim(exp1, exp2) :=

{
0 if type(exp1)! = type(exp2)
sim(exp1.F, exp2.F) otherwise

(5)

sim(act1, act2) := sim(act1.F, act2.F) (6)
sim(mant1, mant2) := sim(mant1.F,mant2.F) (7)

For convenience, we assume all formulas are in disjunctive normal form, i.e. each for-
mula is a set of disjunctive clauses, DIS, and each of these is a set of conjunctive
clauses, CNJ , in turn a set of atoms. The equations for determining formula similarity
are given below. At each step, the combination that maximizes the similarity are chosen.

sim(F1, F2) := max additive score(F1, F2) (8)
sim(DIS1, DIS2) := max additive score(DIS1, DIS2) (9)

sim(CNJ1, CNJ2) := max additive score(CNJ1, CNJ2) (10)

Similarity between two atoms is defined by Equation 11. Each atom consists of a rela-
tion, a.r, a list of variables, a.vars, and a list of individuals, a.inds. The Equations 13,
14, and 15 define similarity for each component respectively.

Note d(x, y) denotes a domain specific function for comparison, returning a simi-
larity score from 0 and 1. In the case study below, we used a function for time periods
that states if two periods are within 5 calendar days then they are equivalent. Similarly,
for two non-equal payments, if the difference is less than 2000 euros, we state a 0.75
similarity score, or 0.5 if between 2000 and 6000 difference.

sim(a1, a2) :={
0 if |a1.vars|! = |a2.vars| ∨ |a1.inds|! = |a2.inds|
sim‘(a1, a2) otherwise.

(11)

sim′(a1, a2) :=
(
sim(a1.r, a2.r)

+
|a1.vars|∑

i=0

sim(a1.vars[i], a2.vars[i])

+
|a1.inds|∑

i=0

sim(a1.inds[i], a2.inds[i])
)

1 + |a1.vars|+ |a1.inds|

(12)

sim(r1, r2) :=

1 if r1 = r2,
d(r1, r2) if ∃d(r1, r2),
0 otherwise.

(13)

sim(v1, v2) :=

{
1 if type(v1) = type(v2),
0 otherwise.

(14)

sim(ind1, ind2) :=

1 if ind1 = ind2,
d(ind1, ind2) if ∃d(ind1, ind2),
0 otherwise.

(15)

5.3 Voting: Evaluating Trustworthiness of Proposals

Using this distance function, k-nearest neighbour can determine which contracts are
closest to the input contract. To assign a success value to the new contract, a voting
function is required. We adopt a simple normalised weighted average approach. Here,
the input or proposed contract, cp, is assigned a success value that is determined as
follows: first, the sum of the success values from the k-nearest contracts is calculated,
where each success value is weighted by its distance from the input contract. Then, this
sum is divided by k. Because we are using this weighted approach, we can use a very
high value for k because the weighting will discount any contracts that are far away
from the input contract. In our tests, k is set to be equal to the entire historical dataset.
Thus, Equation 16 describes the voting function, n is equal to the number of contracts
in the historical dataset.

v(cp) =
∑i=n

i=0 dist(cp, ci)s(Dci
p)

n
(16)

k-nearest neighbour has a number of properties that make it useful for this applica-
tion. In particular, it allows the agent to apply all its historical knowledge to determining
the trust value of a new contract. It also removes the need for a training phase in the
algorithm so that new information can be used immediately. Finally, the approach can
be easily adapted to support categories of trust instead of a trust value.

6 Case Study

In our preliminary case study, we simulate the aerospace scenario through messages be-
ing sent by the various entities, indicating what they have done and what has happened.
This allows compliance or violation to be determined. Now, in our particular example,
we assume that an engine manufacturer is offered a contract proposal by a service site
of which it has no prior experience. The manufacturer judges the contract proposal on
the basis of its prior contracts with other sites. Each contract consists of the following
relevant clauses.

1. An obligation on the service site to repair each engine within D days of it arriving
for maintenance.

2. An obligation on the service site to pay a penalty P to the manufacturer for each
repair not completed in D days (with the payment having its own deadline, not
varied in this case study).

3. A set of permissions and prohibitions, one for each of a set of part suppliers, allow-
ing or denying the service site to source parts from that supplier. We assume three
relevant part suppliers exist.

The formalisation of the first of the above is characterised in Table 2, following the data
structure shown in Table 1.

Type Obligation
Target Service Site
Activating Condition Engine E requires repairing at time T

Normative Condition Engine E has been repaired or time T + D has not been reached
Expiration Condition Engine E has been repaired or time T + D has been reached

Table 2. Model for obligation 1 in the case study contract

6.1 Simulation

Simulations of the execution of the above contract were run, varying the following
simulation factors.

– The time to repair, D, may be short or long.
– The penalty payment, P , may be high or low.
– For each part supplier, the site may be permitted or prohibited from sourcing parts

from that supplier.
– The service site may be honest or dishonest.

These factors combine to influence which of four scenarios is executed in the simula-
tion. The scenarios have the following outcomes.

1. The repairs are completed successfully using permitted part suppliers.
2. The repairs are not all completed successfully, but a penalty payment is received.
3. The repairs are not all completed successfully, and no penalty payment is received.
4. The repairs are completed but using a prohibited part supplier.

Long time to repair, high penalty payment and more permitted suppliers increase the
chance of repairs being completed. Long time to repair and more permitted suppliers
also increase the chance of correct part suppliers being used. Honesty increases the
chances of penalties being paid when repairs are not performed.

Specifically, the following calculation is used. First, we calculate the repair success
chance as a base probability increased if D is long, P is high, and for each permitted
supplier. Allowed supplier chance is increased by D being long and for each permitted
supplier. Pays penalty chance is 0.1 or 0.8 depending on whether the site is honest.
Repair success chance is the probability that repair is successful. If yes, allowed supplier
chance is the probability that scenario 1 occurs, else 3. If no, pays penalty chance is the
probability that scenario 4 occurs, else 2.

6.2 Provenance

Each of the four scenarios above produces a different provenance graph. Each OPM
graph documents the processes that occurred during the scenario, and the data produced
and exchanged in that scenario, with the documentation being recorded by some or all of
the agents involved. Included in that graph are the messages sent between agents, which
means that the engine manufacturer can identify the critical messages sent between
participants indicating success of and compliance with the contract.

– A message received by the engine manufacturer notifying of successful repair, and
containing a timestamp less than the deadline, indicates that repairs were completed
successfully. The absence of such a message, or a later timestamp than the deadline,
indicates lack of successful repair.

– Where there was not a successful repair, a message received by the engine manu-
facturer notifying of payment of penalty indicates that such a payment was made.
Absence of the message indicates that the payment was not made.

– A message received by the service site from a part supplier notifying of delivery of
a part indicates that that supplier was used by the service site.

A snippet of the XML serialisation in the OPM for a scenario is shown in Figure 2.

<opmGraph xmlns="http://openprovenance.org/model/v1.01.a">
...
<processes>

<process id = "SiteServiceScenario1Process">
<value xsi:type="xs:string" ...>ServiceSite</value>

</process>
...
<artifacts>

<artifact id = "SiteServiceScenario1OrderPart1">
<value xsi:type="xs:string" ...>orderPart(order1,type112)</value>

</artifact>
...
<causalDependencies>

<used>
<effect id = "SiteServiceScenario1Process"/>
<role value = "requestReceived"/>
<cause id = "EngineManufacturerScenario1Request1"/>

</used>
<wasGeneratedBy>
<effect id = "SiteServiceScenario1OrderPart1"/>
<role value = "requestSent"/>
<cause id = "SiteServiceScenario1Process"/>

</wasGeneratedBy>

Fig. 2. Snippets of documentation recorded from scenario 1 following the OPM XML schema

6.3 Success and Similarity

The success of the contract execution should depend on the outcome and reflect the
importance given to different factors by the agent making the trust assessment. For the
scenarios above, scenario 1 should be rated as 1.0 success; scenario 2 has 0.75 success;
scenario 3 has 0.25 success; and scenario 4 has 0.0 success. Scenario 4 has the worst
outcome because using a faulty part from a bad supplier is more likely to cause the
plane to fail than merely not receiving maintenance. A prior contract is, then, more
similar to the proposal if it has the same time to repair, same penalty payment, and
same permissions and prohibitions on part suppliers.

7 Evaluation

In this section, we describe our evaluation of the efficacy of our algorithm, using the
aerospace case study introduced above. In one test case, N prior contracts are generated
with a random set of factors. For each contract, a scenario is selected randomly but
influenced by the factors as described in Section 6.1, e.g. long time to repair increases
the chance that a scenario in which repairs are completed will be chosen. The scenarios
are enacted and the execution documented as provenance graphs.

A contract proposal is randomly generated just as was done for the prior contracts.
The engine manufacturer uses the documentation to judge the success of each prior
contract, and the similarity algorithm to judge the similarity of the content of the new
proposal to each prior contract. They combine these measures, as specified in the trust
algorithm above, to judge whether to trust the proposal.

We evaluate how more information on prior contracts has a beneficial effect on deci-
sions to trust proposals. For each randomly generated proposal, we first enact it multiple
times, getting an average score for its success: called the average actual success. We
compare this with trust rating generated by our algorithm.

In our experiment, we generated 10 contract proposals. For each proposal, we com-
puted the average actual success by enacting the proposal 100 times. We then compared
this to the trust rating computed using our algorithm as we increased the number of
prior contracts from 1 to 200. We measured the difference between these values after
adding increments of 10 prior contracts. Figure 3 shows the average difference when
combining the measures for all 10 proposals. As can be seen in the graph, the difference
between these two scores steadily decreases as the number of prior contracts increases.
This shows that the algorithm is effective: by calculating trustworthiness of a proposal
using our algorithm, based on prior contract success and similarity, we achieve a closer
and closer match to the actual success rate which would be achieved from enacting that
contract. Therefore, the trust measure accurately reflects the worth to be gained by the
agent by accepting the proposal.

8 Conclusions

Assessing a contract proposal can be difficult when there is little public information on
the proposer. In this paper, we show how a content-based assessment, comparing the
proposal with prior contracts based on its similarity of content to them, and the success
of those prior contracts, can inform a decision on whether to trust the proposal. As
shown in our results, as the number of prior contracts used in the assessment increases,
the difference between the trust value and the actual outcome decreases; that is, the
evaluation becomes more accurate.

Our approach relies on two pieces of technology: a contract model and its data rep-
resentation on the one hand, and a model for representing the history of processes within
the system (the provenance of contract enactments’ outcomes) on the other. Our work
effectively integrates these different aspects to provide an effective means of assessing
content-based trust in contracts.

As with any approach which is improved by drawing on ever more data, optimi-
sations need to be made to realistically scale. First, we use the k-nearest neighbour

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0 50 100 150 200 250

A
ve
ra
ge
 d
iff
er
en

ce
 b
et
w
ee
n
av
g
ac
tu
al

su
cc
es
s
an

d
tr
us
t
ra
3
ng

Number of Contracts

Fig. 3. The difference between trust evaluation and actual success of a proposal (Y-axis) as the
number of prior contracts increases (X-axis).

measure as an example similarity measure, but the same overall technique described
here applies with other algorithms. Second, optimisations are possible even when re-
taining the k-nearest neighbour approach, e.g. by pre-computing the similarity of past
contracts A and B, to approximate the similarity of proposal P to B based on its calcu-
lated similarity to A. In either case, this is an interesting avenue of work, for which we
would not reinvent optimisations but draw on existing machine learning research.

While the work presented here considers proposals from unfamiliar agents, we may
also expect to see unfamiliar contract proposals from familiar agents, i.e. those for
which the agent receiving the contract has some direct or indirect reputation metrics.
We cannot automatically assume that an agent providing a robust contract in one area
is doing so in another area, e.g. your mobile phone provider may be excellent, but you
may not wish to rely on them providing reliable medical insurance contracts. In such
cases, the trustworthiness of the contract content can be complemented by the metrics
regarding the agent, to ensure that we can expect the contract both to be reliably ful-
filled and its effect to be as we expect and desire. A simple way to combine contract and
agent trust metrics would be to perform a weighted sum. Exactly how best to weight
each aspect, and how beneficial this combination would be, is a topic for future work.

Acknowledgements The research described in this paper is partly supported by the Eu-
ropean Commission Framework 6 funded project CONTRACT (INFSO-IST-034418).
The opinions expressed herein are those of the named authors only and should not
be taken as necessarily representative of the opinion of the European Commission or
CONTRACT project partners. We also gratefully acknowledge support from the US Air
Force Office of Scientific Research (AFOSR) with grant number FA9550-06-1-0031.

References

1. Aerogility. http://www.aerogility.com/, 2009.

2. IST CONTRACT project. http://www.ist-contract.org, 2009.
3. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine

Learning, 6:37–66, 1991.
4. G. Boella and L. W. N. van der Torre. Regulative and constitutive norms in normative mul-

tiagent systems. In Principles of Knowledge Representation and Reasoning: Proceedings of
the Ninth International Conference (KR2004), pages 255–266, 2004.

5. C. Castelfranchi. Prescribed mental attitudes in goal-adoption and norm-adoption. Artificial
Intelligence and Law, 7(1):37–50, March 1999.

6. V. Dignum, J. J. Meyer, F. Dignum, and H. Weigand. Formal specification of interaction in
agent societies. In Proceedings of the Second Goddard Workshop on Formal Approaches to
Agent Based Systems, pages 37–52, 2002.

7. D. Gambetta. Trust: Making and Breaking Cooperative Relations, chapter Can we trust
trust?, pages 213–237. Basil Blackwell, 1988.

8. Y. Gil and D. Artz. Towards content trust of web resources. Journal of Web Semantics,
5(4):227–239, 2007.

9. G. Governatori. Representing business contracts in ruleml. International Journal of Coop-
erative Information Systems, 14(2–3):181–216, 2005.

10. D. Grossi. Designing Invisible Handcuffs. PhD thesis, Dutch Research School for Informa-
tion and Knowledge Systems, 2007.

11. F. Guerin and J. Pitt. Proving properties of open agent systems. In The First International
Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS-2002), pages 557–
558, 2002.

12. A. J. I. Jones and M. Sergot. A formal characterisation of institutionalised power. Journal of
the IGPL, 3:427–443, 1996.

13. S. Miles, P. Groth, S. Munroe, and L. Moreau. Prime: A methodology for developing
provenance-aware applications. ACM Transactions on Software Engineering and Methodol-
ogy, June 2009.

14. L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S. Jiang, S. Munroe, O. Rana,
A. Schreiber, V. Tan, and L. Varga. The provenance of electronic data. Communications
of the ACM, 51(4):52–58, April 2008.

15. L. Moreau, B. Plale, S. Miles, C. Goble, P. Missier, R. Barga, Y. Simmhan, J. Futrelle,
R. E. McGrath, J. Myers, P. Paulson, S. Bowers, B. Ludaescher, N. Kwasnikowska,
J. Van den Bussche, T. Ellkvist, J. Freire, and P. Groth. Open Provenance Model.
http://openprovenance.org/, 2009.

16. N. Oren, S. Panagiotidi, j. Vazquez-Salceda, S. Modgil, M. Luck, and S. Miles. Towards
a formalisation of electronic contracting environments. In Proceedings of the Workshop on
Coordination, Organization, Institutions and Norms in Agent Systems at AAAI 2008 (COIN
2008), 2008.

17. S. Panagiotidi, S. Alvarez, J. Vazquez, N. Oren, S. Ortega, R. Confalonieri, M. Jakob, J. Biba,
M. Solanki, and S. Willmott. Contracting language syntax and semantics specification.
Available from http://www.ist-contract.org, 2009.

18. S. Ruohomaa and L. Kutvonen. Trust management survey. In Proceedings of iTrust 2005,
2005.

19. J. Sabater and C. Sierra. Review on computational trust and reputation models. Artificial
Intelligence Review, 24(1):33–60, 2005.

20. Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science. SIGMOD
Record, 34(3):31–36, 2005.

21. L. van der Torre and Y. Tan. Contextual deontic logic. In Pierre Bonzon, Marcos Cavalcanti,
and Rolf Nossum, editors, Formal Aspects of Context, pages 143–160. Kluwer Academic
Publishers, Dordrecht, 1997.

