
Electronic Business Contracts between Services

Simon Miles, Nir Oren, Michael Luck, Sanjay Modgil and Felipe Meneguzzi

King’s College London, UK

Nora Faci

University of Lyon, France

Camden Holt and Gary Vickers

Lost Wax, UK

ABSTRACT

Electronic contracts mirror the paper versions exchanged between businesses today, and offer

the possibility of dynamic, automatic creation and enforcement of restrictions and

compulsions on service behaviour that are designed to ensure business objectives are met.

Where there are many contracts within a particular application, it can be difficult to

determine whether the system can reliably fulfil them all, yet computer-parsable electronic

contracts may allow such verification to be automated. In this chapter, we describe a

conceptual framework and architecture specification in which normative business contracts

can be electronically represented, verified, established, renewed, and so on. In particular, we

aim to allow systems containing multiple contracts to be checked for conflicts and violations

of business objectives. We illustrate the framework and architecture with an aerospace

aftermarket example.

INTRODUCTION

It has often been argued that independent entities, such as business services, interacting in a

common system, society or environment need to be suitably constrained in order to avoid and

solve conflicts, make agreements, reduce complexity, and in general to achieve a desirable

social order (Conte & Castelfranchi, 1993; Conte, Falcone & Sartor, 1999). For many, this

role is fulfilled by norms, which represent what ought to be done by a set of services (when

performing functions on behalf of their owning business). Views of norms differ, and include

fixed laws that must never be violated as well as more flexible social guides that merely seek

to bias behaviour in different ways. Yet the obligations, prohibitions and permissions that

may affect service behaviour in a normative system can also be documented and

communicated between services in the form of contracts. Electronic contracts, mirroring the

paper versions exchanged between businesses today, offer the possibility of dynamic,

automatic creation and enforcement of such restrictions and compulsions on service

behaviour. However, where there are many contracts within a particular application, it can be

difficult to determine whether the system can reliably fulfil them all; computer-parsable

electronic contracts may allow such verification to be automated.

In a peer-to-peer system, organisations, and the services performing functions on their

behalf, act as independent peers, with no overall authority, and contracts are necessary to add

predictability to behaviour between them. Where there is multiple, independently owned

alternatives for a resource or service, contract technology is of particular use. By providing

and monitoring contract compliance, applications can make better decisions on which

resources or services to take advantage of in the future, a particular problem on Grid systems

with a range of reliability issues.

There are two pre-requisites to realistically applying an electronic contracting

approach in real-world domains. First, to exploit electronic contracts, a well-defined

conceptual framework for contract-based systems, to which the application entities can be

mapped, is needed. Second, to support the management of contracts through all stages of the

contract life-cycle, we need to specify the functionality required of a contract management

architecture that would underlie any such system, leading to ready-made implementations for

particular deployments of that architecture. The CONTRACT project (CONTRACT, 2008)

aims to do just this. Funded by the European Commission as part of its 6th Framework

Program, the project seeks to develop frameworks, components and tools that “make it

possible to model, build, verify and monitor distributed electronic business systems on the

basis of dynamically generated, cross-organisational contracts which underpin formal

descriptions of the expected behaviours of individual services and the system as a whole.” In

this context, this chapter documents the CONTRACT project’s work on both of the pre-

requisites identified above. More specifically, the technical contributions described in this

chapter are:

• the specification of a model for describing contract-based systems;

• the specification of an architecture for managing such systems; and

• the mapping of an aerospace application to those models.

Our approach is distinct in several respects. First, its development is explicitly driven by a

range of use cases (Jakob et al., 2008) provided by a diverse set of small and large businesses.

One consequence of this diversity is that our approach must account for different practices

and possibilities in each stage of the lifecycle of a contract-based system. It is therefore

defined in terms of abstract process types, to be instantiated in different ways for different

circumstances. We provide a non-exhaustive set of options for instantiating these process

types, and technologies to support these processes. A more specific requirement addressed by

our approach is in managing not just fulfilment or violation of contractual obligations, but

also other states of the system with regard to those obligations, such as being in danger of

violation, being expected to easily fulfil an obligation, and application-specific states.

In the next section, we provide an overview of the overall structure, introducing the

conceptual framework and applying it to a running example. We then discuss how the

contractual obligations imply critical states of the system that we may wish to detect and

react to in order to effectively manage the system. After that, we describe the architecture: the

process types that are required to manage contract-based systems and components that can

support such processes. Finally, we discuss related work and conclude with future work.

CONTRACT FRAMEWORK AND ARCHITECTURE

The models and procedures comprising the CONTRACT framework and architecture are

shown in Figure 1. The primary component of this is the framework itself, depicted at the top

of the figure, which is the conceptual structure used to describe a contract-based system,

including the contracts and the services to which they apply.

From the framework specification of an application, other information is derived.

First, understanding the contractual obligations of services allows us to specify the critical

states that an application may reach. A critical state of a contract-based system with regard to

an obligation essentially indicates whether the obligation is fulfilled or fulfillable: achieved,

failed, in danger, and so on. This is discussed in the following section. A state-based

description, along with the deontic (concerning duties) and epistemic (concerning

knowledge) implications of the specified contracts, can then be used to verify a system either

off-line or at run-time (Lomuscio & Sergot, 2003) (we do not discuss this further here). The

framework specification is used to determine suitable processes for administration of the

electronic contracts through their lifetimes, including establishment, update, termination, and

renewal. Such processes also include observation of the system, so that contractual

obligations can be enforced or otherwise managed, and these processes depend on the critical

states identified above. Once suitable administration processes are identified, we can also

specify the roles that services play within them, the components that should be part of

services to allow them to manage their contracts, and the contract documents themselves.

Such process types and roles are described further below.

Figure 1. The overall structure of the CONTRACT architecture and framework

A Contract-Based System Framework

We first specify a conceptual framework by which contract-based systems can be described.

This framework provides a clear indication of how particular applications can exploit

contracts and how they must be supported in managing them. By being abstract and generic,

such a framework may be used to translate contract data from one concrete format to another.

Contracts document obligations, permissions and prohibitions (collectively clauses)

on services and are agreed by those services (strictly, it is the agent enacting the service’s

logic (W3C, 2008) to which impositions on behaviour apply). Put simply, obligations are

statements that services should do something and prohibitions are statement that they should

not. Permissions are defined as exceptions to prohibitions: if something was not prohibited, it

is not meaningful for a permission to be granted.

The services obliged, permitted and prohibited in a contract are parties to that

contract, which specifies roles played by services within it. Each clause in a contract applies

to roles, to which services are assigned, and each service can hold multiple contracts with the

same or different parties. The obligation, permission or prohibition defined in a clause is on

the service(s) assigned to the role to which the clause applies. A contract proposal is a

contract that has not yet been agreed by its parties. The concepts are summarised in Table 1.

Role A named part that can be played by a service in a system.

Obligation A statement that a service playing a given role should do something.

Prohibition A statement that a service playing a given role should not do something.

Permission An exception to a prohibition for a service playing a given role under given circumstances.

Clause An obligation, prohibition or permission.

Assignment A statement that a service should play a given role.

Proposal A document containing a set of clauses and assignments, where every role referred to which

each clause applies has been assigned to a service.

Contract A proposal to which all assigned services have agreed.

Table 1. The primary concepts in the CONTRACT framework

Aerospace Use Case

To test and illustrate the efficacy of our approach, we adopt an engineering application, based

on the aerospace aftercare market, targeted by Lost Wax’s agent-based Aerogility platform

(Lost Wax, 2008), and used as a running example through the chapter.

The application concerns the continued maintenance of aircraft engines over their

lifetime. In this domain, an engine manufacturer is contractually obliged to ensure operators’

aircraft have working engines. For an engine to be working, it should not be overdue for

regular servicing or left waiting to be fixed after a fault is discovered.

An aircraft’s engine can be replaced when it lands at some location if there is a

suitable spare engine present at that location. As well as replacing engines to ensure

continued operation of the aircraft, an engine manufacturer will service the engines it has

removed, so that the serviced engine can be added back into circulation (the “engine pool”)

and used to replace other engines. In addition to long-term contracts between engine

manufacturers and operators, we consider short-term contracts regarding particular instances

of servicing engines. These sit in the context of long-term contracts but, by being specified

explicitly, allow the parties to use and commit to resources more flexibly. In a long-term

contract between an aircraft operator and an engine manufacturer, the manufacturer agrees to

service the operator’s aircraft to some overall specified standard over the duration of the

contract. Such a contract is provided in Table 2, using the framework concepts. Here, the

operator specifies a preferred time within which the manufacturer must service an aircraft,

and the manufacturer is obliged to meet this in 90% of cases. If the manufacturer does not

meet short-term contract requirements (see below), penalties are deducted from the long-term

payment the operator is obliged to make. The operator is obliged to provide adequate engine

data so that the manufacturer can fulfil their servicing obligations. Finally, the operator may

have demands on the provenance of an engine: operator A may be happy to re-use engines

previously used by operators B or C but not those used by D.

Roles Manufacturer, Operator

Obligations O1 Manufacturer agrees to servicing contracts (defined in Table 3) requested by operator

during aftercare contract period.

 O2 Manufacturer services engines within the preferred time specified by the servicing

contracts in at least 90% of cases.

 O3 Operator pays for servicing of engines, minus any penalties.

 O4 Operator must supply engine health data to the manufacturer in an adequate time to

allow problems requiring unscheduled maintenance to be detected.

Prohibitions P1 Manufacturer is prohibited from supplying engines with parts previously used by other

operators not on an approved list (if one is given) or on a disapproved list (if one is

given).

Permissions R1 Manufacturer is allowed to supply engines with parts previously used by other

operators on an approved list (if one is given).

Table 2. Long-term aftercare contract

In this context, a short-term contract concerns the servicing of a particular aircraft at a

particular time (see Table 3). It is again between two parties: the aircraft operator and the

engine manufacturer. In this case, the manufacturer has more specific obligations: that they

must either service an aircraft in the preferred timescale or pay a penalty, and that they must

service it within a maximum period. The limitations on provenance apply in the particular

short-term servicing as they do in the long-term aftercare.

Roles Manufacturer, Operator

Obligations O5 Manufacturer services aircraft in preferred time, or pays penalty (taken out of aftercare

contract payment from operator).

 O6 Manufacturer services engine in maximum time.

Prohibitions P2 Manufacturer is prohibited from supplying engines with parts previously used by other

operators not on an approved list (if one is given) or on a disapproved list (if one is

given).

Permissions R2 Manufacturer is allowed to supply engines with parts previously used by other

operators on an approved list (if one is given).

 R3 Operator is allowed to take a penalty from the manufacturer if an aircraft is left on the

ground for longer than the preferred time agreed.

Table 3. Short-term servicing contract

Such formal documentation of agreements is important, especially when there are multiple

agreements and when these agreements can interact, because they can reveal points of

potential or actual conflict. If it is possible to examine such contracts, and determine where

these points lie, then one can monitor for violations, or even instigate measures to pre-empt

violation. In what follows, these aims inform the elaboration of our architecture. For

example, a short-term conflict between two servicing contracts in the aerospace domain

occurs when a manufacturer is obliged to service two operators’ aircraft at the same time, but

can only service one due to a lack of resources. Long-term conflicts are also present, as in a

conflict between a servicing contract and an aftercare contract arising when a manufacturer

must choose between servicing one operator’s aircraft within the maximum time limit and

servicing another operator’s aircraft within the preferred time, where the manufacturer is in

danger of not having serviced the latter operator’s aircraft within the preferred time limit for

90% of cases.

CRITICAL STATES OF CONTRACT-BASED SYSTEMS

As mentioned above, a critical state of a contract-based system with regard to an obligation

essentially indicates whether the obligation is fulfilled or fulfillable: achieved, failed, in

danger, and so on. By identifying the critical states of the system with respect to given

contractual obligations, it is then easier to determine which of these needs to be checked for

and acted upon to ensure that the system performs well. A state-based description can also be

used as a basis for verifying whether the system will always result in a desirable state.

Obligation States

Each obligation implies a set of states for the system with regard to that obligation. We

classify obligations into three types:

• An obligation to achieve some state G, for example to pay an amount

• An obligation to maintain some state H, for example to keep aircraft in working order.

• An obligation to behave in some way, where that behaviour is to fulfil obligation

O(X) whenever event E(X) occurs, for example when aircraft X requires servicing, to

service X in an acceptable time.

In part, the critical states of an obligation can be specified independently of the application in

which the obligation has force, as we do below for each of the three classes of obligation

named.

For an achievement obligation, there are three critical states: Pre-achievement,

Succeeded and Failed. Each has particular properties with regard to the goal state G, as

shown in Table 4 (top). In Pre-achievement, the goal state is achievable but not yet achieved;

in Succeeded, the system is in the goal state; and in Failed, the goal state is no longer

achievable.

State Properties

Pre-achievement Not G

G achievable

Service obliged to achieve G

Succeeded G

Failed G unachievable

Service obliged to achieve G

Cancelled No service obliged to achieve G

Sub-State Additional Properties

Initial

Danger G in danger of becoming unachievable

Likely Success Success G’ achieved, where G’ is a significant subset of G

Table 4. Basic states (top) and sample pre-achievement sub-states (bottom) of an

achievement obligation

Similarly, a maintenance obligation implies three significant states, as shown in Table 5 (top).

In the Maintained state, the system is in the goal state; in Succeeded, the system can no

longer leave the goal state; in Failed, the system has left the goal state.

State Properties

Maintained H

Not H achievable

Service obliged to maintain H

Succeeded Not H unachievable

Failed Not H

Service obliged to maintain H

Cancelled No service obliged to maintain H

Sub-State Additional Properties

Initial

Danger Not H in danger of becoming true

Table 5. Basic states (top) and sample maintained sub-states (bottom) of a maintenance

obligation

As described above, a behaviour obligation triggers the imposition of a further obligation,

which we will call the triggered obligation, on particular events occurring. The significant

states of a behaviour obligation depend on the triggered obligation, but the behaviour

obligation has some states of its own, as shown in the top of Table 6. In the Pre-trigger state,

the triggering event has not yet occurred; in the Reaction Active state, an event has occurred

but the obligation it has triggered into taking force has not yet reached a Succeeded or Failed

state; in Reaction Failed, that reaction obligation has reached a Failed state, and so the

behaviour obligation as a whole has failed; in Reaction Succeeded state, the particular

reaction obligation has succeeded; and in Succeeded, no more applicable events can ever

occur and so the behaviour obligation as a whole has succeeded. All obligations also imply a

state, Cancelled, when the obligation no longer holds.

State Properties

Pre-trigger No new E(X) has occurred

Service obliged to achieve G(X), maintain G(X) or behave in way B(X) on every E(X)

Reaction Active E(a) occurred

As Pre-achievement, Maintenance or Pre-trigger state for G(a)/B(a)

Service obliged to achieve G(X), maintain G(X) or behave in way B(X) on every E(X)

Reaction Failed E(a) occurred

As respective Failure state for reaction G(a) or B(a)

Service obliged to achieve G(X), maintain G(X) or behave in way B(X) on every E(X)

Reaction Succeeded E(a) occurred

As respective Succeeded state for reaction G(a) or B(a)

Service obliged to achieve G(X), maintain G(X) or behave in way B(X) on every E(X)

Succeeded E(X) can never occur again

Cancelled No service obliged to achieve G(X), maintain G(X) or behave in way B(X) on every

E(X)

Sub-State Additional Properties

Initial

Imminent E(X) is likely to occur imminently

Likely Complete E(X) is unlikely to occur again

Table 6. Basic states (top) and sample pre-trigger sub-states (bottom) of a behaviour

obligation

Significant Sub-States

In addition to the application-independent system states above, applications often refer to

significant sub-states part-way between an obligation coming into force and its success or

failure. Examples are shown in the bottom portions of Tables 4, 5 and 6. An application may

need to detect whether an obligation is in danger of violation and so allocate more resources

to ensure that it is fulfilled instead, implying a Danger critical state of the system with regard

to that obligation as shown in Table 4 (bottom). Or, if an obligation is being fulfilled

unexpectedly easily, an application may take advantage by transferring resources being used

in support of this obligation to other tasks, for example the Likely Complete critical state in

Table 6. Interpretation of concepts such as danger or likelihood are application-specific.

Example

As an example, in Table 7 we enumerate critical states for an achievement obligation, O2 in

the long-term aftercare contract. It is an achievement obligation as it describes an eventual

state of the system, i.e. 90% of servicing cases were performed in the preferred time period.

When the contract first comes into force, i.e. system time is within the contract period, the

state Pre-achievement: Initial holds. In this state, insufficient cases have been performed to

determine whether success is likely. After 5% of cases, the system will be in either Pre-

achievement: Satisfactory or Pre-achievement: Danger states, and may vary between them

over the contract period. Pre-achievement: Satisfactory holds where 5% of cases were

performed within the preferred time, while Pre-achievement: Danger holds where between

5% and 10% exceeded that time. The value of taking account of these two states is that

transfer of resources between fulfilment of different obligations can be triggered by changes

of state. Eventually, the system will reach either Succeeded state, where the contract period is

exceeded and over 90% of cases were performed on time, or Failure state, where over 10%

have exceeded the preferred time. The choice of the appropriate sub-states (Pre-achievement:

Satisfactory and Pre-achievement: Danger in this case) is entirely application dependent:

considering more states allows finer control as appropriate, but may also add overheads.

Pre-achievement: Initial Less than (estimated) 5% of servicing cases performed and within

contract period

Pre-achievement: Satisfactory Over 5% of cases performed, less than 5% exceeded preferred time and

within contract period

Pre-achievement: Danger Between 5% and 10% of cases exceeded preferred time and within

contract period

Succeeded Less than 10% of cases exceeded preferred time and beyond contract

period

Failed More than 10% of cases exceeded preferred time

Table 7. States of aftercare contract obligation O2

ARCHITECTURE OF CONTRACT-BASED SYSTEMS

Aside from modelling contract-based systems using the CONTRACT framework, we also

address the issue of administration: how to manage the processes involved in creating,

maintaining, acting on and otherwise processing contracts and contract proposals.

 The life-cycle of a contract is viewed as follows. First, a potential contract party

discovers services which may provide the functionality they require, and specifies a proposal

and negotiates over it with the potential service providers. As part of this process, the parties

will agree to how compliance to the obligations will be monitored (see Third-Part Monitoring

below). The contract will be agreed to and preserved in independent storage. The contract

parties can then perform actions to their obligations in accordance with prohibitions and

permissions. This behaviour will be observed and checked by the agreed independent parties.

The contract will eventually terminate, possibly leading to renewal if the service required is

ongoing.

We identify four key process types in the contract life-cycle. Establishment brings

about the existence of the contract. Maintenance and Update ensures a contract’s integrity

over time. Fulfilment brings about the fulfilment of obligations while observing its

prohibitions. Termination or Renewal end the normative force of the contract, or renew it to

apply for a longer period. Each of these process types can be instantiated in different ways,

depending on the application and its deployment. The choice dictates the roles services must

play to fulfil the administration duties implied. Below, we examine each process type in turn.

Establishment

There are many potential ways to establish a contract, varying in complexity. To give an

illustration, we present two below.

Full Proposal Establishment Process: Here, one party, the proposer, creates a full

proposal, excluding some assignments of roles to services, and signs it. It then uses a registry

to discover services that may fulfil the unassigned contract roles. For each unassigned role in

turn, it offers the proposal to a service, a potential party it is satisfied can assume that role. If

the party is willing, it signs the proposal and returns it. When the last role is filled, a contract

is established

Template Discovery Establishment Process: Alternatively, a process may be used

in which a service discovers a contract template that may be instantiated in a way that fulfils

its goals. This implies the use of a template repository, where templates can be stored. Such

templates may have some assigned roles; that is, they may describe services for which a

provider is willing to negotiate terms.

Maintenance and Update

The continued existence and integrity of a contract after establishment is important in reliable

systems. As with establishment, there are multiple ways in which this can be achieved, and

the functionality that needs to be provided depends on the particular contract and application.

Contract Store Maintenance Process: Here, contract parties use a contract store to

maintain and control access to contracts. The store is obliged only to allow services to change

the contract when all parties send a signed agreement of the change to be made.

All Party Signature Maintenance Process: In this process, integrity is preserved by

the contract being signed by all parties in a way that prevents editing without detection; for

example, digital signatures based on reliable certificates. The signed document includes the

contract itself, and an indication of whether it is a revision of a previous version. Each party

should check the signatures of the contract before accepting it as binding.

Fulfilment

For every contractual obligation and prohibition, there are certain processes that can be

performed to help ensure they are fulfilled. As with the processes above, these imply

particular administrative roles that must be played by services. The administrative roles carry

with them obligations, prohibitions and permissions, which may be documented in the same

contract as the one that is the target of administration, or another contract. The processes

below often refer to particular system states with regard to obligations: these are the states

specified in the previous section.

Observation of Fulfilment Process: An observer observes state changes to

determine whether contractual obligations are being fulfilled. It can notify other services

when an obligation is being violated or in danger of violation. An observer X is in an

obligation pattern of the following form: “X is obliged to observe for critical state S of

contract clause C, and notify registered listeners when it occurs.”

Management of Fulfilment Process: A manager is a service that acts when an

obligation is not being fulfilled, is in danger of not being fulfilled or a prohibition is

breached. It knows about the problem by (conceptually at least) registering to listen to the

notifications from an observer. Manager is a role, and one service may play the role of both

manager and observer. The nature of the action taken by a manager may vary considerably.

In highly automated and strict applications, an automatic penalty may be applied to a party.

In other cases, a management service may be a human who decides how to resolve the

problem. Alternatively, a manager may merely provide analysis of problems over the long

term, so that a report can be presented detailing which obligations were violated. A manager

X is in an obligation pattern of the following form: “X is obliged, whenever the system

reaches a critical state S of contract clause C, to perform action A.”

An example of an observer’s obligation in the aerospace application is shown in Table

8 (top), and of a manager’s obligation in Table 8 (bottom). The observer, Checker, is obliged

to check that a Danger state has not been reached for the number of suitable engines available

at a given location, and the manager, Enforcer, listens to observations on this state and

rectifies the situation when it occurs.

Termination and Renewal

Termination of a contract means that the obligations and other clauses contained within it no

longer have any force. A contract may be terminated in several ways: (i) it may terminate

naturally if the system reaches a state in which none of its clauses apply, for example when a

contract’s period of life expires or all obligations have been met; (ii) it may terminate by

design if the contract has an explicit statement that the contract is terminated when an event

occurs (for example, if one party fails to meet an obligation, the contract is terminated and all

others are released from their obligations); or (iii) it may terminate by agreement, if parties

agree that the contract should no longer hold, and update it accordingly (in line with the

process chosen for the Maintenance and Update type above). Renewal of a contract means

that a contract that would have imminently terminated naturally is updated so that termination

is no longer imminent (again depending on the Maintenance and Update process type above).

Roles Checker, Manufacturer, Operator

Obligations Checker monitors the number of engines available to the manufacturer at a given location that

are suitable for a given operator, and notifies registered services if it falls below a minimum

quantity.

Roles Enforcer, Checker

Obligations Enforcer, on hearing from checker that the number of suitable engines at a location has fallen

below a minimum level, transports a suitable engine from another location.

Table 8. Engine supply checking contract (top) and Engine supply enforcement contract

(bottom)

Administrative Roles and Components

The processes above all require the fulfilment of particular administrative roles, for example

a contract store, registry, observer, or manager. For some of these components, we can

provide generic implementations. For example, a contract store, based solely on contract

documents and having nothing to do with the application itself, is easy to implement

generically. Others, such as managers, need to have application-specific instantiations, as

dealing with a contractual obligation not being fulfilled varies greatly between applications.

Further details on the specification of these components are available from the CONTRACT

website (Contract, 2008).

THIRD-PARTY MONITORING

Detecting and handling obligation violations is essential, in particular as contracts often

specify how to react in such circumstances, e.g. the operator taking a penalty for late

servicing in clause R3 in Table 3. However, this requires independent contract parties to hold

a consistent view of whether a violation has occurred – which is not always trivial to achieve

in any distributed system.

 As part of our architecture, we attempt to meet this need by two complementary

measures. Full details would exceed the scope of this chapter, but we summarise the ideas

below and point interested readers to existing publications (Modgil et al. 2009; Meneguzzi et

al. 2009).

First, we allow contract parties to name and agree in the contract which observers are

jointly trusted by all signing parties. The reason for this joint trustworthiness in an observer

cannot be application-independent. For example, in a financial situation, a bank may be a

trusted third-party observer, whereas in a remote procedure call we may have to rely on the

combined reports of the caller and the callee to obtain a trustworthy observation. We,

therefore, simply provide the mechanism to declare trusted observers and leave establishing

trust to other mechanisms.

 Second, we provide a generic, independent monitoring component. This takes as

input, a translation of the contract into augmented transition networks (ATNs). Each ATN

corresponds to one clause, and consists of a series of nodes connected arcs labelled with

observable messages. As messages pass between contract parties, trusted observers report this

to the independent monitor, which follows the arcs in the ATNs. This tracking ultimately

allows the monitor to declare (to manager services), that a clause is fulfilled or violated. The

trace of messages observed also acts as a means to explain violations, so providing some

supporting evidence for redress.

RELATED WORK

There has been much previous work on various aspects of contract-based system modelling,

enactment and administration, and our approach is intended to build on and be compatible

with other ideas presented elsewhere. For example, there are many approaches to negotiation

which may be used in the establishment of contracts (Lopes Cardoso & Oliveria, 2000), and

the administration of contracts can integrate with other useful behaviour, such as observation

of fulfilment and violation of obligations potentially feeding into a longer-term assessment of

systems (Duran, Torres da Silva, & de Lucena, 2007). Work on multi-party contracts (Xu,

2004) adopt modelling techniques specifically designed to enable detection of parties

responsible for contract violation, but do not use normative concepts to regulate behaviour, or

model other contract administration processes.

In addition, the wider domains of normative systems and agreement in service-

oriented architectures informs our work. Concepts such as norms specifying patterns of

behaviour, contract clauses as concrete representations of dynamic norms, management or

enforcement of norms itself being a norm, are all already established in the literature

(Dellarocas, 2000; Duran, Torres da Silva, & de Lucena, 2007; García-Camino, 2007; Lopez

y Lopez, Luck, & d’Inverno, 2005).

However, the approach in this chapter is distinct in that it is concerned with the

development of practical system deployments for business scenarios. In particular, business

systems operate in the context of wider organisational and inter-organisational processes, so

that commitments, providing assurance over the actions of others assumes great importance.

While potentially less flexible over the short term, explicit contracts provide just such

commitments and are therefore more appropriate for business systems than more flexible,

less predictable ad hoc approaches (Ghijsen, Jansweijer, & Wielinga, 2007; Muntaner-Perich,

de la Rosa, & Esteva, 2007).

We also believe our system to be more widely applicable than some other approaches.

By classifying processes into types with different instantiations, the architecture can be

incorporated into a wider range of application domains and deployments than fixed protocols

would allow. In addition, we describe how administrative functions, such as storing or

updating a contract, can be achieved. This contrasts with specifications such as WS-

Agreement and Web Services Service Level Agreement, where the specifications cover only

part of the necessary administration (Andrieux & Czajkowski, 2004; Ludwig, Keller, Dan,

King, & Franck, 2003). Abstract architectures for electronic contracting, and associated case

studies, have been described elsewhere; most notably in the work of Grefen and Angelov

(2002; Angelov & Grefen, 2006). However, accommodation of deontic specifications in

order to regulate service behaviour is not modelled in this work. Our approach aims for broad

observation and management of obligations and prohibitions, so as to verify whether they are

being achieved, prevent failure when in danger of violation and take advantage of success

when obligations are being easily met. Some existing work does consider system states with

regard to contract clauses (Lopes Cardoso & Oliveira, 2000), but none, to our knowledge,

classifies obligations and the critical states they imply as we have done in this chapter, a

necessary pre-requisite to observing and managing obligation fulfilment in accordance with a

particular application.

Others have raised the issue that observers and managers have, themselves, to be

observed and managed (Jones & Sergot, 1993). Here, by modelling observers and managers

as services, we allow for the same contract framework to apply to them. However, this clearly

has its limits and at some point trust between businesses must be explicitly modelled in the

system, a topic to be addressed in future work.

CONCLUSIONS AND FUTURE WORK

In this chapter, we have presented the CONTRACT conceptual framework and architecture,

and shown how they apply to aircraft aftercare. By creating a technology-dependent

implementation along these lines, an application can take advantage of the reliable

coordination provided by electronic contracts. The CONTRACT project aims to allow

service-oriented systems to be verified on the basis of their contracts, building on work by

Lomuscio et al. on deontic interpreted systems (Lomuscio & Sergot, 2003). While this

verification is beyond the scope of this chapter, it places a requirement on our framework that

the properties of the target system are identified and isolatable, and a requirement on the

architecture that such information can be captured in order to pass to a verification

mechanism. Perhaps equally importantly, we also aim for an open source implementation

built on Web Services technologies, requiring the architecture to be compatible with such an

objective. Finally, taking a very practical standpoint, we have begun to construct a

methodology to guide development of applications that use electronic contracts through the

process from conceptual framework to deployment. To ensure wide applicability, this will be

applied to CONTRACT’s other test applications in insurance settlement, software

provisioning and certification testing.

Acknowledgement: The CONTRACT project is co-funded by the European Commission

under the 6th Framework Programme for RTD with project number FP6-034418.

Notwithstanding this fact, this chapter and its content reflects only the authors’ views. The

European Commission is not responsible for its contents, nor liable for the possible effects of

any use of the information contained therein.

REFERENCES

Andrieux, A., Czajkowski K., Dan A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J.,

Tuecke, S., & Xu, M. (2004). Web services agreement specification (WS-Agreement) (Tech.

Rep). Global Grid Forum.

Angelov, S., & Grefen, P. (2006). A case study on electronic contracting in on-line

advertising - status and prospects. In L. M. Camarinha-Matos, H. Afsarmanesh, and M. OIlus

(Ed.), Network-Centric Collaboration and Supporting Frameworks - Proceedings 7th IFIP

Working Conference on Virtual Enterprises, (pp. 419–428). Springer.

Conte, R., & Castelfranchi, C.. (1993). Norms as mental objects. From normative beliefs to

normative goals. In C. Castelfranchi and J.-P. Mueller (Ed.), 5th European Workshop on

Modelling Autonomous Agents in a Multi-Agent World, MAAMAW '93 (pp. 186–196).

Springer.

Conte, R., & Falcone, R., & Sartor, G. (1999). Agents and norms: How to fill the gap?

Artificial Intelligence and Law 7, 1–15.

CONTRACT. Project website. Retrieved November 12, 2008, from http://www.ist-

contract.org/

Dellarocas, C. (2000). Contractual agent societies: Negotiated shared context and social

control in open multi-agent systems. In R. Conte and C. Dellarocas (Ed.), Social Order in

Multiagent Systems (pp. 113-133). Kluwer Academic Publishers.

Duran, F., Torres da Silva, V., & de Lucena, C. J. P. (2007). Using testimonies to enforce the

behaviour of agents. In J. Sichman and Sascha Ossowski (Ed.), Coordination, Organizations,

Institutions, and Norms in Agent Systems III (pp. 25–36). Springer.

García-Camino, A. Ignoring, forcing and expecting concurrent events in electronic

institutions. (2007). In J. Sichman and Sascha Ossowski (Ed.), Coordination, Organizations,

Institutions, and Norms in Agent Systems III (pp. 15-26). Springer.

Ghijsen, M., Jansweijer, W., & Wielinga, R. (2007). Towards a framework for agent

coordination and reorganization, AgentCore. In J. Sichman and Sascha Ossowski (Ed.),

Coordination, Organizations, Institutions, and Norms in Agent Systems III (pp. 13–24).

Springer.

Grefen, P., & Angelov, S. (2002). ‘On τ, µ, π and ε-contracting. In C. Bussler, R. Hull, S.

McIlraith, M. E. Orlowska, B. Pernici, and J. Yang (Ed.), Proceedings of the CAiSE

Workshop on Web Services, e-Business, and the Semantic Web (pp. 68–77). Springer.

Jakob, M., Pechoucek, M., Chábera, J., Miles, S., Luck, M., Oren, N., Kollingbaum, M., Holt,

C., Vázquez, J., Storms, P. & Dehn, M. (2008). Case studies for contract-based systems. In

M. Berger, B. Burg, and S. Nishiyama (Eds.), Proceedings of the 7th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008)- Industrial and

Applications Track (pp. 55-62). INESC.

Jones, A. J, I., & Sergot, M. J. (1993). On the Characterisation of Law and Computer

Systems: The Normative Systems Perspective. In J.-J.Ch. Meyer and R.J. Wieringa (Ed.),

Deontic Logic in Computer Science: Normative System Specification (pp. 275–307). John

Wiley & Sons.

Lomuscio, A., & Sergot, M. (2003). Deontic interpreted systems. Studia Logica, 75(1), 63-

92.

Lopes Cardoso, H., & Oliveira, E. (2000). Using and evaluating adaptive agents for

electronic commerce negotiation. In M. C. Monard and J. Simão Sichman (Ed.), Proceedings

of the International Joint Conference, 7th Ibero-American Conference on AI: Advances in

Artificial Intelligence (pp. 96–105). Springer.

Lopes Cardoso, H. & Oliveira, E. A contract model for electronic institutions. In J. Sichman

and Sascha Ossowski (Ed.), Coordination, Organizations, Institutions, and Norms in Agent

Systems III (pp. 73–84). Springer.

Lopez y Lopez, F., Luck, M., & d’Inverno, M. (2005). A normative framework for agent-

based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.

Lost Wax. Aerogility. Retrieved November 6, 2008, from http://www.aerogility.com/

Ludwig, H., Keller, A., Dan, A., King, R. P., & Franck, R. (2003). Web service level

agreement (WSLA), language specification (Tech. Rep.). IBM Corporation.

Meneguzzi, F., Modgil, S., Oren, N., Miles, S., Luck, M., Faci, N., Holt, C. & Smith, M.

(2009). Monitoring and Explanation of Contract Execution: A Case Study in the Aerospace

Domain. Proceedings of the 8th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2009) – Industrial and Applications Track, to appear.

Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S., & Luck, M. (2009). A Framework

for Monitoring Agent-Based Normative Systems. Proceedings of the 8th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), to appear.

Muntaner-Perich, E., de la Rosa, J. L., & Esteva, R. (2007). Towards a formalisation of

dynamic electronic institutions. In J. Sichman and Sascha Ossowski (Ed.), Coordination,

Organizations, Institutions, and Norms in Agent Systems III (pp. 61–72). Springer.

W3C. Web Services Architecture. Retrieved November 11, 2008, from

http://www.w3.org/TR/ws-arch/

Xu, L. (2004). A multi-party contract model. ACM SIGecom Exchanges, 5(1), 13–23.

KEY TERMS AND DEFINITIONS

Role A named part that can be played by a service’s agent in a system.

Obligation A statement that an agent playing a given role should do something.

Prohibition A statement that an agent playing a given role should not do something.

Permission An exception to a prohibition for an agent playing a given role under given

circumstances.

Clause An obligation, prohibition or permission.

Assignment A statement that an agent should play a given role.

Proposal A document containing a set of clauses and assignments, where every role

referred to which each clause applies has been assigned to an agent.

Contract A proposal to which all assigned agents have agreed.

