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Abstract

Dialectical Classical Argumentation (Dialectical Cl-Arg) has been shown to satisfy
rationality postulates under resource bounds. In particular, the consistency and non-
contamination postulates are satisfied despite dropping the assumption of logical omni-
science and the consistency and subset minimality checks on arguments’ premises that
are deployed by standard approaches to Cl-Arg. This paper studies Dialectical Cl-Arg’s
formalisation of Preferred Subtheories (PS) non-monotonic reasoning under resource
bounds. The contribution of this paper is twofold. First, we establish soundness and
completeness for Dialectical Cl-Arg’s credulous consequence relation under the pre-
ferred semantics and credulous PS consequences. This result paves the way for the use
of argument game proof theories and dialogues that establish membership of arguments
in admissible (and so preferred) extensions, and hence the credulous PS consequences
of a belief base. Second, we refine the non-standard characteristic function for Dialec-
tical Cl-Arg, and use this refined function to show soundness for Dialectical Cl-Arg
consequences under the grounded semantics and resource-bounded sceptical PS con-
sequence. We provide a counterexample that shows that completeness does not hold.
However, we also show that the grounded consequences defined by Dialectical Cl-Arg
strictly subsume the grounded consequences defined by standard Cl-Arg formalisations
of PS, so that we recover sceptical PS consequences that one would intuitively expect
to hold.

1. Introduction

Background
Dung’s argumentation theory [15] has proven to be a unifying framework for charac-
terizing a large class of non-monotonic (nm) logics, in terms of evaluation of inter-
acting arguments. A Dung framework (DF ) consists of defeats amongst arguments
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constructed from a belief base B, where arguments consist of a conclusion derivable
from premises in B. Sets of jointly justifiable arguments (extensions) are then iden-
tified under various argumentation semantics [6, 15]. The conclusions of credulously
or sceptically justified arguments under a semantics (s), yield argumentation defined
credulous, respectively sceptical, nm consequences ϕ. These can be shown (e.g., see
[4, 30]) to equate with the credulous, respectively sceptical, consequences of various
non-monotonic logics L, defined directly over B:

ϕ is an argumentation defined credulous (sceptical) consequence of B un-
der a given semantics s if (completeness) and only if (soundness) ϕ is a
credulous (sceptical) L consequence of B. (1)

For example, [2, 29, 32] show that given a totally ordered belief base B of classical
logical formulae, the conclusions of classical logic arguments in stable extensions of
the DF constructed from B (i.e., the argumentation defined credulous consequences
under the stable semantics) equate with the credulous consequences defined over B by
the well known non-monotonic Preferred Subtheories formalism [8].

To accommodate the dynamics of distributed nm reasoning, various dialogical gen-
eralisations of argumentation have been developed (e.g., [18, 27, 31]). One can then
aim at regulating exchange of agent locutions that conform to protocols, such that:

the status of a communicated claim ϕ is ‘winning’ in the resultant dialogue
graph of locutions if and only if ϕ is an argumentation defined credulous
(sceptical) consequence of B (2)

where B are the beliefs incrementally defined by the declarative contents of exchanged
locutions (rather than by a given static belief base B as in single agent reasoning).

Given argumentative characterizations of nm logics (1), establishing these dialogi-
cal results (2) thereby yields dialogical accounts of distributed nm reasoning, via proto-
cols providing normative guidance for rational joint deliberation and decision making
amongst human agents and human and AI agents. Indeed, enabling human-AI dialogue
may be of particular importance if AI reasoning and decision making is to be aligned
with human values (see [19, 21, 26]).

Enabling practical accounts of single agent and distributed nm reasoning implies desider-
ata for argumentative formalisations. In particular that they: D1) yield rational out-
comes under resource bounds; D2) accommodate uses of argument typical of dialec-
tical practice; D3) enable generalisation of argument game proof theories for single
agent nm reasoning (e.g., [28]) to obtain dialogical accounts of joint reasoning.

Regarding D1), in order to satisfy consistency, closure and non-contamination ra-
tionality postulates [9, 10], standard approaches to Classical Argumentation (Cl-Arg,
for short) [1, 20, 29] tacitly assume ‘logical omniscience’ in the sense that all argu-
ments defined by a belief base B (of first-order formulae) are assumed to instantiate a
DF . That is to say, it is assumed that ( ⊢CL denotes the entailment relation of classical
logic):
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C1) if ∆ ⊆ B,∆ ⊢CL α, then resources suffice to construct the argument (∆, ϕ).2

This assumption is clearly not practically feasible for agents with limited resources,
given the undecidability of first order classical logic, and that even in the propositional
case, deciding whether ∆ ⊢CL α is in general NP-hard, and therefore most likely
intractable. Moreover, the intractability of deductive closure is further exacerbated by
Cl-Arg, enforcing that arguments’ premises are checked for consistency and subset-
minimality. Namely, for each argument (∆, ϕ):

C2) ∆ ⊬CL ⊥ and C3) there is no ∆′ ⊂ ∆, ∆′ ⊢CL α.

In fact, checking for subset minimlaity is a problem in the second level of the polyno-
mial hierarchy [17]. However, C1, C2 and C3, and so called ‘reasonable’ preference
relations [29], are required to show that Cl-Arg satisfies the consistency, closure and
non-contamination postulates.

Regarding D2), enforcing C2 and C3 additionally does not reflect real-world di-
alectical practice. Firstly, the inconsistency of arguments’ premises is typically demon-
strated dialectically – “you’ve contradicted yourself!” – as illustrated in the classic So-
cratic move [33]. Also, checking every argument for subset minimality, which enforces
relevance of an argument’s premises with respect to the conclusion (thus avoiding vio-
lation of non-contamination), is not what one expects of agents in practice.

Regarding D3), argument game proof theories for the preferred, as opposed to the
stable semantics, more naturally lend themselves to dialogical generalisation. This is
because membership of a stable extension requires a global accounting of all arguments
in a DF . However, as stated above, Cl-Arg’s formalisation of credulous Preferred
Subtheories (PS) consequence is shown under the stable semantics. Moreover, Cl-
Arg’s formalisation of sceptical PS consequence can only be approximated under the
grounded semantics. Completeness fails, in part because of limitations imposed on
attacks in Cl-Arg. This then means that argument games and dialogues for the grounded
semantics may fail to identify intuitively desirable sceptical PS consequences.
Dialectical Classical Logic Argumentation (Dialectical Cl-Arg) [12] has been devel-
oped in order to satisfy desiderata D1 and D2. Arguments adopt a distinction ubiq-
uitous in dialectical practice: the epistemic distinction between premises that an agent
commits to, and premises that can be supposed in virtue of their commitment by a (pos-
sibly imaginary in the case of single agent reasoning) interlocutor, thus anticipating
dialogical formalisations of nm reasoning3. Dialectical Cl-Arg drops the omniscience
assumption C1; only minimal assumptions are made as to the resources available for
constructing arguments. Also, C2 and C3 are not enforced, and if arguments commit
to inconsistent premises, they can be defeated by an argument that dialectically (‘So-
cratically’) demonstrates the inconsistency: “supposing only the premises you’ve com-
mitted to, you’ve contradicted yourself!” However, full rationality is preserved. The
consistency and closure postulates are satisfied, and non-contamination is satisfied if

2Recall that Cl-Arg arguments consist of tuples referencing an argument’s premises ∆ and conclusion ϕ.
3Satisfaction of D1 and D2 by ASPIC+ [29] has also prompted adoption of this dialectical distinction for

ASPIC+ arguments [14].
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one either deploys proof theories that exclude use of irrelevant premises (e.g., the natu-
ral deduction proof systems formalised in [24, 25]), or else one enforces that arguments
are not strengthened by inclusion of syntactically disjoint premises. The upshot of this
novel approach is that an argumentative account of maxiconsistent nm consequence4,
and in particular Preferred Subtheories consequence [8], can be obtained that is fully
rational under resource bounds and accommodates the dialectical use of suppositions,
and is thus more suitable for real world use [12].
Contributions. This paper is concerned with desideratum D3. Our focus is on Di-
alectical Cl-Arg’s formalisation of Preferred Subtheories (PS) [8], which is amongst
the most influential approaches to non-monotonic reasoning, as well as belief revision,
and has also been used for reasoning about time, reasoning by analogy, reasoning with
compactly represented preferences, judgement aggregation, and voting [23]. Section
2 recapitulates Dialectical Cl-Arg and its formalisation of resource bounded Preferred
Subtheories reasoning.

In Section 3, we present this paper’s first contribution. We show soundness and
completeness – i.e., (1) above – for Dialectical Cl-Arg’s credulous consequence relation
under the preferred semantics and credulous PS consequences 5. This result paves the
way for deploying argument game proof theories and their generalisation to multi-agent
dialogues for establishing credulous PS consequences.

In Section 4, we present our second tranche of contributions. Specifically, Dialec-
tical Cl-Arg employs a non-standard characteristic function, in the sense that it does
not suffice that the function returns all arguments E′ acceptable with respect to a given
set E of dialectical arguments as in Cl-Arg. Rather, [12] shows that one must incor-
porate an additional step when defining the characteristic function, in order to preserve
monotonicity of the function, and so obtain an iterative procedure for constructing the
grounded extension. In this paper, we define an alternative characteristic function that
simplifies the one defined in [12], and that, moreover, only requires evaluation of the
acceptability of arguments with single premises. We deploy this newly defined charac-
teristic function to show soundness for sceptical PS consequence: if ϕ is a Dialectical
Cl-Arg consequence under the grounded semantics, then it is a sceptical PS conse-
quence. We also provide a counterexample that shows that completeness does not hold:
some sceptical PS consequences are not grounded consequences. Still, we demonstrate
that the grounded consequences defined by Dialectical Cl-Arg strictly subsume the con-
sequence relation defined by standard Cl-Arg’s formalisation of PS, hence recovering
sceptical PS consequences that one would intuitively expect to hold. We show that
this is because Dialectical Cl-Arg can simulate attacks on sets of premises; attacks that
ordinarily (in Cl-Arg) result in violation of consistency [20]. We conclude with a con-
jecture as to how one might obtain completeness for Dialectical Cl-Arg’s formalisation
of sceptical PS consequences. Finally, we discuss related work and conclude in Section

4That is to say, nm consequence relations defined over possibly inconsistent sets of classical formulae
that arbitrate amongst conflicting classical consequences by appeal to a priority ordering over the formulae.

5This result was first presented in [13], in which the equivalence of preferred and stable extensions for
both standard Cl-Arg and Dialectical Cl-Arg formalisations of PS is shown. The current paper extends [13]
with the results in Section 4 for the grounded semantics and resource-bounded PS sceptical consequence.
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5.

2. Dialectical Classical Logic Argumentation and Preferred Subtheories

Dialectical Cl-Arg assumes instantiation of a Dung framework (DF ) by some subset
of the classical logic arguments defined by a finite set of classical (propositional or first
order) formulae (Definition 1 below). Attacks are defined in the usual way, but note
that arguments are not checked for premise consistency and subset minimality. Then,
the epistemic distinction between committed and supposed premises is only adopted
when evaluating the acceptability of arguments (Definition 2 below).

Notation 1. In what follows, ⊢CL denotes the classical consequence relation over a
propositional or first order language L. We let a belief base B ⊆ L denote a finite set
of classical wff. We use upper and lower case Greek letters as metavariables ranging
over individual, respectively sets of formulas in L, and write ∆∥Γ to indicate that
∆ ⊆ L is syntactically disjoint from Γ ⊆ L (see [12, p.20] for an exact definition).
Furthermore, if ϕ is of the form ¬α, then −ϕ = α, else −ϕ = ¬ϕ.

Given a (classical) argumentX = (∆, α), we write Conc(X) = α, Prem(X) = ∆,
to denoteX ′s conclusion, respectively premises. Uppercase Roman letters . . . , X, Y, Z
are reserved to denote such arguments and we write . . . ,X,Y,Z to denote their respec-
tive ‘epistemic variants’ (specified in Definition 2).

Definition 1. Let B be a finite belief base such that ⊥ /∈ B. Let DFB = (AB, CB) be
a B-based Dung Framework, where AB ⊆ {(∆, α) | ∆ ⊆ B,∆ ⊢CL α} is a set of
B-based arguments, and CB = {(X,Y )|X,Y ∈ AB, Conc(X) = ϕ,−ϕ ∈ Prem(Y )}
is an attack relation over AB.6

Definition 2. Let X = (∆, α) ∈ AB. Then, X = (Σ,Γ, α) is an epistemic variant of
X iff Prem(X) = ∆ = Σ∪Γ and Σ∩Γ = ∅. In general, we refer to X as a dialectical
argument.

• Conc(X) = Conc(X) and Com(X) denotes the committed premises (commit-
ments) Σ of X, Sup(X) the supposed premises (suppositions) Γ of X.

• ||X|| denotes the set of all epistemic variants of X , ||E|| denotes
⋃

X∈E ||X||.
Let E be a set of dialectical arguments. Then Com(E), Sup(E) and Conc(E)
respectively denote

⋃
X∈E Com(X),

⋃
X∈E Sup(X) and

⋃
X∈E Conc(X).

We assume a strict preference relation ≺ over AB (which may or may not be defined
by an ordering over B). Then, when establishing whether X = (Σ,Π, α) is defended by
(acceptable w.r.t.) a set E of dialectical arguments, it is only the committed premises Σ
that can be targeted. Furthermore, an attack by Y = (∆,Γ, α) on β ∈ Σ is contingent
on the suppositions Γ of Y being commitments in X and E , i.e., Γ ⊆ Com(E ∪ {X}).
Intuitively:

6Other notions of attack for Cl-Arg can be defined, but alternatives result in violation of rationality pos-
tulates [20] and/or practical guidelines for argumentation [16].
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“Given that I commit to ∆ and supposing for the sake of argument your7

commitments Γ in E and X, I can construct an argument Y that challenges
your premise β ∈ Σ.”

Such an attack succeeds as a defeat only if ({β}, β) is not strictly preferred to Y (recall
that ≺ is defined over AB). An argument of the form Y = (∆,Γ,⊥) can challenge X
by arguing that the premises Γ committed in E∪{X}, together with ∆, are inconsistent.
X should only then be targeted if at least one of its committed premises β is in Γ and so
is ‘culpable’ in contributing to the inconsistency. Again, Y defeats X if Y ⊀ ({β}, β).
However, if ∆ = ∅ then Y dialectically demonstrates a commitment to inconsistent
premises Γ in E ∪ {X}. To prefer that one commits to inconsistent premises is clearly
incoherent. Therefore such an attack succeeds as a defeat independently of preferences.
Finally, if Y challenges the acceptability of X w.r.t. E , it is not required that Y itself
be acceptable w.r.t. some set of dialectical arguments. Hence, Z ∈ E can defend X
by defeating Y, while supposing only Y’s commitments, i.e., Sup(Z) ⊆ Com(Y). The
following definition makes the above formally precise.

Definition 3. Let DFB = (AB, CB), and ≺ a strict partial ordering over AB. Let
E ⊆ ||AB||, Y = (∆,Γ, ϕ) ∈ ||Y ||, X = (Π,Σ, ψ) ∈ ||X||, X,Y ∈ AB.

1. if ϕ ̸= ⊥, then Y defeats X w.r.t. E , denoted Y ⇒E X, iff:

(a) (Y,X) ∈ CB on X ′ = ({−ϕ},−ϕ), −ϕ ∈ Com(X) and Y ⊀ X ′;
(b) Γ ⊆ Com(E ∪ {X}).

We say that Y defeats X on X′ = ({−ϕ}, ∅ − ϕ) or Y defeats X on −ϕ.

2. if ϕ = ⊥, then Y defeats X w.r.t. E , denoted Y ⇒E X, iff:

(a) Γ ∩ Com(X) ̸= ∅ and Γ ⊆ Com(E ∪ {X});
(b) either ∆ = ∅ or ∀β ∈ Γ ∩ Com(X), Y ⊀ ({β}, β).

We say Y defeats X on X′ = ({β}, ∅, β) or Y defeats X on β, where β ∈ Γ ∩Π.

One may then adopt the usual definition of argumentation semantics, where accept-
ability is evaluated in terms of dialectical defeats [12].

Definition 4. Let E ⊆ ||AB|| and X ∈ AB.

• X ∈ ||X|| is acceptable w.r.t. E iff ∀Y ∈ ||AB|| s.t. Y ⇒E X, ∃Z ∈ E s.t.
Z ⇒∅ Y8.

• E ⊆ ||AB|| is dialectical-conflict free iff ¬∃X,Y ∈ E s.t. Y ⇒E X.

• Let E ⊆ ||AB|| be conflict free. Then E is: a dialectical-admissible extension iff
∀X ∈ E , X is acceptable w.r.t. E; a dialectical-complete extension iff E is admis-
sible and ∀X ∈ ||AB||, X is acceptable w.r.t. E implies X ∈ E; the dialectical-
grounded extension iff E is the minimal under set inclusion dialectical-complete

7Recall that in the case of single agent reasoning, the ‘your’ can be thought of as referring to an imaginary
interlocutor.

8By Definition 3, Z ⇒∅ Y is equivalent to Z ⇒{Y} Y (since both require that Sup(Z) ⊆ Com(Y)).
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extension; a dialectical-preferred extension iff E is a maximal under set inclusion
dialectical-complete extension; a dialectical-stable extension iff ∀Y ∈ ||AB|| \ E ,
∃X ∈ E s.t. X ⇒∅ Y.

Remark 1. Notice that no dialectical argument of the form X = (∅,Γ, ϕ) can be
defeated, given the empty commitments, and so X is clearly acceptable w.r.t. any set of
arguments, and hence is said to be ‘unassailable’.

Example 1. Let B = {a, b, c, (a ∧ b) → ¬c, g, g → ¬a ∨ ¬b} where a, b, c are atoms
respectively denoting ‘attend conference A,B,C’ and g denotes ‘the conference budget
= £2000.’ In other words, B illustrates a scenario in which a university’s limited con-
ference budget precludes joint attendance at conferences A and B, but leaves open the
possibility to attend conferences C and A, or C and B. Suppose the total ordering ≤
over B (with < and ≈ defined in the usual way):

c < a ≈ b ≈ (a ∧ b) → ¬c < g ≈ g → ¬a ∨ ¬b
Let AB be the arguments:

A = ({a}, a) G1 = ({g}, g)
B = ({b}, b) G2 = ({g → ¬a ∨ ¬b}, g → ¬a ∨ ¬b)
C = ({c}, c) G3 = ({g, g → ¬a ∨ ¬b},¬a ∨ ¬b)
D1 = ({(a ∧ b) → ¬c}, (a ∧ b) → ¬c) G4 = ({g, a, g → ¬a ∨ ¬b},¬b)
D2 = ({a, b, (a ∧ b) → ¬c},¬c) G5 = ({g, b, g → ¬a ∨ ¬b},¬a)
H = ({a, b, g → ¬a ∨ ¬b},¬g) F1 = ({a, b, g → ¬a ∨ ¬b, g},⊥)

F2 = ({a, b, (a ∧ b) → ¬c, c},⊥)

We have attacks (G4, B), (G5, A), (D2, C) and (H,G1) and G4 ⊀ B,G5 ⊀ A,D2 ⊀
C,H ≺ G1, F1 ≺ G1 given the Elitist preference relation [29] defined by an ordering
over B:

(Γ, ϕ) ≺ (∆, θ) iff ∃α ∈ Γ such that ∀β ∈ ∆, α < β (Eli)

As shown in Fig. 1, D2 ⇒E C givenD2 ⊀ C, and D2 ∈ ||D2||, C ∈ ||C||, and (trivially)
Sup(D2) = ∅ ⊆ Com(E ∪ C). Note the epistemic variants G′

4 ∈ ||G4|| and G′
5 ∈ ||G5||:

G′
4 = ({g, g → ¬a ∨ ¬b}, {a},¬b),G′

5 = ({g, g → ¬a ∨ ¬b}, {b},¬a)

are both in E given that G′
4 and G′

5 are undefeated (since H ≺ G1 and F1 ≺ G1).
Both G′

4 and G′
5 defeat D2, given that Sup(G′

4) = {a} ⊆ Com(D2) and Sup(G′
5) =

{b} ⊆ Com(D2).
Notice also that F′

1 = ({a, b, g → ¬a ∨ ¬b}, {g},⊥) but F′
1 ⇏E G1 since F1 ≺ G1,

and F′′
1 = ({a, b, g}, {g → ¬a ∨ ¬b},⊥) but F′′

1 ⇏E G2 since F1 ≺ G2.

To recap, we assume a DF instantiated by a subset of the classical logic arguments
defined by B. The arguments’ premises need not be checked for subset minimality or
consistency. Furthermore, only when determining acceptability do epistemic variants
of these arguments deploy the commitment/supposition distinction characteristic of
dialectical practice. Once the dialectical extensions are defined, only the conclusions
of unconditional arguments – those committing to all their premises – identify the
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ℙ = 𝑝 , ∅, 𝑝

𝔽 = ∅, 𝑝, 𝑝 → 𝑞, ¬𝑞 , ⊥

ℂ = c , ∅, c

𝔾4
′ ({𝑔, 𝑔 → ¬𝑎 ∨ ¬𝑏 }, 𝑎 , ¬𝑏)

𝔾2 = ({𝑔 → ¬𝑎 ∨ ¬𝑏 }, ∅, 𝑔 → (¬𝑎 ∨ ¬𝑏))

𝔾3 = ({𝑔, 𝑔 → ¬𝑎 ∨ ¬𝑏 }, ∅, (¬𝑎 ∨ ¬𝑏))

𝔾1 = ({𝑔}, ∅, 𝑔)

=

𝔻2 = ({𝑎, 𝑏, 𝑎 ∧ 𝑏 → ¬𝑐}, ∅, ¬𝑐)

𝔾5
′ = ({𝑔, 𝑔 → ¬𝑎 ∨ ¬𝑏 }, 𝑏 , ¬𝑎)

ℰ
𝔻1 = ( 𝑎 ∧ 𝑏 → ¬𝑐 , ∅, 𝑎 ∧ 𝑏 → ¬𝑐)

ℚ = 𝑝, 𝑝 → 𝑞 , ∅, 𝑞

𝕏 = 𝑝 → 𝑞 , ∅, 𝑝 → 𝑞 𝕐 = ¬𝑞 , ∅,¬𝑞 =ℰ

i)

ii)

Figure 1: Figure i) shows a subset of the dialectical-grounded extension E for the conference attendance
Example 1. Figure ii) illustrates the role of unassailable defeaters. E cannot be dialectical admissible, since
P, X, and Y jointly commit to inconsistent premises, as demonstrated by the unassailable F.

conclusions supported by the extensions. Hence, we identify a DF ’s s extensions (s ∈
{admissible, complete, grounded, preferred, stable}) by reference to the unconditional
arguments in the DF ’s dialectical s extensions. Defintion 5 stipulates the resulting
argumentation defined nm consequence relations.

Definition 5. Let E be a dialectical-s extension of (AB, CB). Then E = {(∆, α)|
(∆, ∅, α) ∈ E} is an s extension of (AB, CB). For s ∈ {grounded, preferred, stable}:

• B |∼cr
s ϕ iff ∃ s extension E of (AB, CB), X ∈ E, and Conc(X) = ϕ.

• B |∼sc
s ϕ iff ∃X s.t. ∀ s extensions E of (AB, CB), X ∈ E and Conc(X) = ϕ.

In Example 1, E is the dialectical-grounded extension shown in Fig. 1i, and so the
grounded extension is {G1, G2, G3, D1, C}. Intuitively, since the budget g precludes
attendance at both conferences a and b (and neither A nor B are in the grounded ex-
tension since the ordering over B does not decide between the two), then attendance at
c is justified since only if one attends both a and b is attendance at c precluded.

Consider Fig. 1-ii. As shown in [29] for standard Cl-Arg, ensuring no complete ex-
tension E contains P = ({p}, p), X = ({p→ q}, p→ q), Y = ({¬q},¬q), resources
must suffice to construct R = ({p,¬q},¬(p → q)) and Z = ({¬q, p → q},¬p) (i.e.,
arguments are ‘closed under contraposition’), and one must assume a preference rela-
tion such that either Z ⊀ P , R ⊀ X or Q ⊀ Y . Given such a preference relation,
then one of the attacks from Z to P or R to X or Q to Y must succeed as a defeat.
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But then defending against any one of these defeats requires an argument in E that
defeats Z or R or Q. But then such an argument would defeat P or X or Y and thus
E would not be conflict free, contradicting E is complete. However, suppose Q ≺ Y
and resources are insufficient to construct R or Z. Then one cannot exclude E being a
complete extension.

On the other hand, Dialectical Cl-Arg only requires that if resources suffice to
recognise the joint inconsistency of a set of premises, by stint of constructing two
arguments from these premises with conflicting conclusions, and resources suffice to
combine the premises of these two arguments to obtain an argument concluding ⊥,
then no admissible extension can contain arguments committing to mutually inconsis-
tent premises (or indeed arguments with conflicting conclusions). Thus, given that con-
struction ofQ and Y signals the inconsistency of {p, p→ ¬q, q}, it suffices to combine
their premises to construct F = ({p, p → ¬q, q},⊥). Then, E in Fig. 1ii cannot be
dialectical-admissible (hence {P,X, Y } cannot be admissible), since the unassailable
epistemic variant F of F demonstrates that P,X,Y commit to inconsistency.

The non-contamination postulates [10] state that adding syntactically disjoint premises
to B should not invalidate any of B’s argumentation defined consequences. We illus-
trate what is meant by ‘contamination’. Firstly, suppose B = {s}. Hence B |∼sc

gd s
(‘gd’ is short for ‘grounded’). If upon adding {p,¬p} to B one were to license (in
standard Cl-Arg) construction of X = ({p,¬p},¬s) which then defeats ({s}, s), then
B ∪ {p,¬p} |̸∼ sc

gd s. Secondly, suppose B = {s,¬s} and ({¬s},¬s) ≺ ({s}, s), so
that B |∼sc

gd s. If upon adding {r} to B, one licences construction of Y = ({r,¬s},¬s),
and ({r,¬s},¬s) ⊀ ({s}, s), then B ∪ {r} |̸∼ sc

gd s. Now of course, the consistency
and subset minimality checks on standard Cl-Arg arguments precludes construction of
X and Y , and so non-contamination is satisfied.

However, for the aforementioned reasons, Dialectical Cl-Arg does not enforce these
premise checks. Rather if the ‘explosively contaminating’ X = ({p,¬p}, ∅,¬s) de-
feats ({s}, ∅, s), the latter is then defended by F = (∅, {p,¬p},⊥) defeating X, and
since F is unassailable, F is in the grounded extension. Moreover, [12] shows that non-
contamination is satisfied if one deploys proof theories for classical logic that do not
generate arguments – such as the ‘redundantly contaminated’ Y = ({r,¬s},¬s) – that
incorporate syntactically disjoint redundant premises (e.g., the natural deduction proof
theories in [24, 25]). On the other hand, if a proof theory is used that does generate
such arguments, then non-contamination is satisfied if given an argument concluding
α with syntactically disjoint subsets of premises ∆ and Γ (denoted ∆∥Γ), resources
suffice to construct an argument concluding ⊥ from ∆, or an argument concluding
α from Γ9, and adding syntactically disjoint redundant premises (e.g., r) to an argu-
ment (e.g., ({s}s)) does not strengthen arguments (i.e., ({¬s},¬s) ≺ ({s}, s) implies
({r,¬s},¬s) ≺ ({s}, s)):

∀X,Y, Y ′ s.t Y = (Γ, α), Y ′ = (∆∪Γ, α),∆∥Γ∪{α} : if Y ≺ X then Y ′ ≺ X
(RPref)

Finally, observe that [12] assumes that preference relations are dialectically coher-

9[12, Proposition 30, p. 34] shows that if ∆ ∪ Γ ⊢CL α, and ∆∥Γ ∪ {α}, then ∆ ⊢CL ⊥ or Γ ⊢CL α
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ent. The idea is that (∆,−ϕ) ≺ ({ϕ}, ϕ) can be interpreted as:
Given that it is rationally incoherent to commit to the inconsistent ∆∪{ϕ}, one would
retain a commitment to ϕ in preference to retaining a commitment to all premises in ∆.

Thus, ≺ is assumed to satisfy:

∀(∆,⊥) : ∃α ∈ ∆ s.t. (∆,⊥) ⊀ ({α}, α) (DCPref 1)

If ≺ does not satisfy DCPref 1 (and assuming ∆ ⊆ Com(E)) then

∀α ∈ ∆ : (∆ \ {α}, {α},⊥) ⇏E ({α}, ∅, α)

which constitutes an irrational preference for committing to an inconsistent set of
premises ∆10. Moreover, our notion of dialectical coherence implies that one would
expect that ≺ also satisfy:

∀X = ({α}, α),∀Y = (∆,−α),∀Y ′ = (∆ ∪ {α},−ϕ) (ϕ = ⊥ or ϕ = −α):
Y ≺ X implies Y ′ ≺ X (DCPref 2)

since Y ≺ X implies a preferential commitment toα from amongst the inconsistent
∆ ∪ {α}, which would then be contradicted by Y ′ ⊀ X .

In summary, if ≺ satisfies RPref, DCPref 1 and DCPref 2, then full rationality
is satisfied by a DF (AB, CB) where AB is any subset of arguments defined by B
that satisfy the conditionals P1, P2 and P3 below, each of which express that if the
antecedent holds, then it is assumed that resources suffice to construct the arguments
in the consequent.

Definition 6. Let B be a set of classical wff, and (AB, CB) be a DF such that:

P1 α ∈ B implies ({α}, α) ∈ AB.
P2 (∆, α) and (Γ,−α) ∈ AB implies (∆ ∪ Γ,⊥) ∈ AB.
P3 (∆ ∪ Γ, α) ∈ AB and ∆∥Γ ∪ {α}, implies (∆,⊥) ∈ AB or (Γ, α) ∈ AB.11

Remark 2. For the remainder of this article, we assume (unless stated otherwise) that
given a belief base B, the DF defined by B consists of arguments A ⊆ AB that satisfy
P1-P3, in which case we say that the DF yields rational outcomes12.

Given an arbitrary set A0 of classical logic arguments one can also define the
closure of A0 under P1-P3 through the following stepwise procedure:

• A1 = A0 ∪ {({α}, α) | α ∈ Prem(A0)};

• A2 = A1 ∪ {(Γ,⊥) | (Π, ϕ) ∈ A1,Π = ∆ ∪ Γ, Γ||∆ ∪ {ϕ} and Γ ⊢CL ⊥} ∪
{(∆, ϕ) | (Π, ϕ) ∈ A1,Π = ∆ ∪ Γ, Γ||∆ ∪ {ϕ} and ∆ ⊢CL ϕ};

10As is also signified by the un-defendable defeats (∅,∆,⊥) ⇒E X (for any X s.t. ∆ ∩ Com(X) ̸= ∅)
which precludes E committing to ∆.

11Note that it is straightforward to formulate an algorithm that checks that a set of premises consists of
syntactically disjoint subsets; one that runs in quadratic time c.f. checking for subset minimality.

12In [12, p. 27-28], Thms. 11 & 12 show mutual consistency of the conclusions and premises of arguments
in admissible extensions, and Thms. 10 & 13 show sub-argument closure and closure under strict rules for
complete extensions. Thms. 44 & 46 show satisfaction of the non-contamination postulates [12, p. 39&40].
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• A3 = A2 ∪ {(∆ ∪ Γ,⊥) | (∆, ϕ) ∈ A1, (Γ,−ϕ) ∈ A1};

• A4 = A3 ∪ {(Γ,⊥) | (Π, ϕ) ∈ A3,Π = ∆ ∪ Γ, Γ||∆ ∪ {ϕ} and Γ ⊢CL ⊥} ∪
{(∆, ϕ) | (Π, ϕ) ∈ A3,Π = ∆ ∪ Γ, Γ||∆ ∪ {ϕ} and ∆ ⊢CL ϕ}.

The resulting set is defined A =
⋃

0≤i≤4 Ai. It can be straightforwardly checked that
this procedures is exhaustive. Furthermore, it is easy to see that:

Fact 1. Closing a finite set of arguments A under P1-P3 generates a finite set A′.

We conclude this section by reviewing Dialectical Cl-Arg’s formalisation of Pre-
ferred Subtheories (PS) [8], which is amongst the most widely studied maxiconsistent
approaches to nm reasoning. PS defines both sceptical and credulous nm consequences
over a set B of classical formulae, stratified into equivalence classes B1, . . . ,Bn in-
duced by a total ordering ≤ over B. A preferred subtheory (ps) is obtained by taking a
maximal under set inclusion consistent subset (mcs) of B1, extending this to a mcs of
B1∪B2, and so on. One can then define PS-based nm consequence by reference to any
resource-bounded approximation ⊢r ⊆ ⊢CL of classical consequence.

Definition 7. Let ≤ be a total ordering over B, and (B1, . . . ,Bn) the stratification of
B such that ∀α ∈ Bi,∀β ∈ Bj : i < j iff β < α. Hence α, β ∈ Bi iff α ≈ β.

• Let ⊢r ⊆ ⊢CL be any resource-bounded approximation of classical consequence
s.t.: ∀B : 1) if β ∈ B then B ⊢r β; 2) if B ⊢r β and B ⊢r ¬β then B ⊢r ⊥. We
may also say that ⊢r is ‘well-behaved’. B is said to be r-inconsistent iff B ⊢r ⊥;
else r-consistent.

• For any well-behaved ⊢r ⊆ ⊢CL, a r-preferred subtheory (rps) defined by (B,≤)
is a set Σ = Σ1 ∪ · · · ∪Σn such that for i = 1, . . . , n, Σ1 ∪ · · · ∪Σi is a maximal
(under set inclusion) r-consistent subset of B1 ∪ · · · ∪ Bi.

• Let ∆1, . . . ,∆m be the r-preferred subtheories of (B,≤). Then ϕ is a credulous
(sceptical) rps-consequence from (B,≤), denoted (B,≤) |∼cr

rps ϕ ((B,≤) |∼sc
rps

ϕ) iff ∃∆i, ∆i ⊢r ϕ (for 1 ≤ i ≤ m: ∆i ⊢r ϕ).

Remark 3. It can then be shown that [12, Theorem 54] given a DF consisting of
classical logic arguments A and attacks C as defined in Definition 1, with ⊢r substi-
tuting for ⊢CL, assuming the elitist principle lifting ≤ to ≺ (as defined in Example 1),
and the stable extensions of the DF as defined in Definition 5 (i.e., by reference to the
unconditional arguments in the dialectical-stable extensions):

if Σ is an r-preferred subtheory, E = {(∆, α)|∆ ⊆ Σ} is a stable extension, (1)

if E is a stable extension,
⋃

X∈E

Prem(X) is an r-preferred subtheory, (2)

and so:
B |∼cr

stable ϕ iff (B,≤) |∼cr
rps ϕ (3)

11



Example 2. (Example 1 continued) Suppose ⊢r such that for the base B in Example
1, B ⊢r α, α ∈ B ∪ {¬a ∨ ¬b,¬b,¬a,¬c,¬g,⊥}, and {g, g → ¬a ∨ ¬b, a, b} and
{a, b, (a ∧ b) → ¬c, c} are r-inconsistent. Given the ordering ≤ over B in Example 1:

B1 g g → ¬a ∨ ¬b
B2 (a ∧ b) → ¬c a b
B3 c

one obtains the rps ∆1 = {g, g → ¬a ∨ ¬b, (a ∧ b) → ¬c, a, c} and ∆2 = {g, g →
¬a ∨ ¬b, (a ∧ b) → ¬c, b, c}. Hence:

(B,≤) |∼cr
rps a , (B,≤) |∼cr

rps b, and

(B,≤) |∼sc
rps c , (B,≤) |̸∼ sc

rps a , (B,≤) |̸∼ sc
rps b.

These consequences correspond to the conclusions of arguments in the stable exten-
sions and grounded extension of the DF instantiated by the arguments in Example 1.
Notice that the arguments in this DF satisfy P1, P2 and P3 in Definition 6. There are
two stable extensions {G1, G2, G3, G4, D1, A,C} and {G1, G2, G3, G5, D1, B,C}
and the grounded extension {G1, G2, G3, D1, C}.

3. Soundness and Completeness for Resource Bounded Preferred Subtheories
Consequence and the Preferred Semantics

Section 2 recapitulated work on dialectical characterisations of maxiconsistent nm rea-
soning that yield rational outcomes under resource bounds. In particular, we recalled
the correspondence between the conclusions of arguments in stable extensions of a
DF and the credulous consequences of Preferred Subtheories defined by reference to
resource bounded approximations ⊢r of classical logic. Indeed, for ⊢r = ⊢CL, this result
is also shown [1, 29, 32] for standard approaches to Cl-Arg that assume omniscience
and enforce subset minimality and consistency checks on arguments’ premises.

However, one would ideally identify credulous PS consequences with the conclu-
sions of arguments in preferred extensions. This is because: 1) any admissible ex-
tension is a subset of a preferred extension13, whereas the stable semantics requires a
global accounting of all attacks/defeats in a DF . Hence, an admissible extension may
not be a subset of a stable extension. For example, suppose a DF consisting of X and
Y1, Y2, Y3 where Y1, Y2 and Y3 comprise an odd cycle of defeats. Then {X} is admis-
sible (and preferred), but the DF has no stable extension; 2) numerous works establish
argument game proof theories and algorithms for deciding membership of admissible
extensions (e.g., [28]); 3) argumentation based dialogues typically show membership
of an argument in an admissible extension of theDF incrementally defined by the con-
tents of locutions, (e.g., [31]), where variations on the dialogue protocol rules establish
that the admissible extension is a subset of the grounded/a preferred extension.

Hence, it would be useful to show that credulous PS consequences correspond to
the claims of arguments in preferred extensions so that one can then utilise the above

13This result is shown for Dung AF s in [15], and for dialectical DF s in [12, Proposition 22].
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argument game proof theories and dialogues for individual and distributed (dialogical)
credulous PS reasoning. We now establish such a correspondence.

We show soundness and completeness for the argumentation defined credulous
preferred consequences (|∼cr

preferred) and credulous resource bounded PS consequences
(|∼cr

rps, where given a totally ordered B, the former is defined as in Remark 3, and the
latter is defined as in Definition 7.

Note that in the following proofs we may write ‘d-conflict free’ and ‘d-s extension’
instead of ‘dialectical-conflict free’ and ‘dialectical-s extension’ for s ∈ {admissible,
complete, grounded, preferred, stable}.

We start by proving some useful lemmas.

Lemma 1. For any dialectical complete extension E:

Com(E) =
⋃

(∆,∅,ϕ)∈E

∆ (4)

Proof. It is easy to see that the committed premises in a dialectical-complete extension
E are exactly those committed premises in the unconditional arguments. The result
follows immediately from satisfaction of the sub-argument closure postulate ([12, The-
orem 10]), which states that for any (Π,Σ, α) ∈ E , if β ∈ Π then ({β}, ∅, β) ∈ E .

Corollary 1. If E is a dialectical-complete extension as defined in Definition 3 and E
is the complete extension defined by the unconditional arguments (Definition 5), then
Prem(E) = Com(E).

Remark 4. Observe that:

1. If X ⇒∅ Y, then the suppositions Sup(X) are a subset of the commitments
Com(Y) of Y. Hence, for all sets of dialectical arguments E , Sup(X) ⊆ Com(E ∪
Y), and so (by Definition 3-1.b and 3-2.a)), X ⇒E Y.

2. By [12, Lemma 9], for any d-complete E: ∀Y s.t. Com(Y) ⊆ Com(E), Y ∈ E .

Lemma 2. Let (A, C) be a DF and E ⊆ A be a complete extension: ∀X ∈ A such
that Prem(X) ⊆ Prem(E), X ∈ E.

Proof. By Definition 3, E = {(∆, α)|(∆, ∅, α) ∈ E} and E is d-complete. Let X =
(Γ, β) ∈ A, Γ ⊆ Prem(E). By Corollary 1, Prem(E) = Com(E). Hence Γ ⊆ Com(E).
By Remark 4-2, X = (Γ, ∅, β) ∈ E . Hence X ∈ E.

Lemma 3. IfE is a stable extension of (A, C) thenE is a preferred extension of (A, C).

Proof. E = {(∆, ϕ)|(∆, ∅, ϕ) ∈ E} where E is d-stable. Hence ∀Y /∈ E , ∃X ∈ E s.t.
X ⇒∅ Y. Suppose for contradiction that E is not d-preferred. Hence, ∃E ′ ⊃ E s.t. E ′

is d-admissible (hence d-conflict free). Hence, ∃Y /∈ E , Y ∈ E ′. But then since E is
d-stable, ∃X ∈ E and so X ∈ E ′ s.t. X ⇒∅ Y and so (by Remark 4-1), X ⇒E′ Y,
contradicting E ′ is d-conflict free.

The above lemmas are used in proving our central claim: the credulous preferred
semantics are sound and complete w.r.t. credulous PS consequences. This result paves
the way for using argument games and dialogues (for the admissible semantics) in order
to establish credulous PS consequences (recall desideratum D3 from Section 1).
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Theorem 2. Let B be a belief base of classical wff, ≤ a total ordering over B. Let ⊢r

⊆ ⊢CL be well-behaved. Then:

B |∼cr
preferred ϕ iff (B,≤) |∼cr

rps ϕ (5)

Proof. Given Eq.3 (B |∼cr
stable ϕ iff (B,≤) |∼cr

rps ϕ) it suffices to show that

E is a stable extension iff E is a preferred extension.

Left-to-Right. By Lemma 3.
Right-to-Left. Let (B1, . . . ,Bn) be the stratification of B (see Definition 7). Let E
be a preferred extension of the DF (AB, CB). Let Σ = Prem(E). By Lemma 2,
E = {(∆, α)|∆ ⊆ Σ}. Hence, by Eq. 2 in Remark 3 (i.e., Σ is a r-preferred subtheory
(rps) implies E = {(∆, α)|∆ ⊆ Σ} is a stable extension), it suffices to show that Σ is
a rps. That is to say, given

E = {(∆, ϕ)|(∆, ∅, ϕ) ∈ E} where E is d-preferred (6)

and given (Corollary 1) Σ = Prem(E) = Com(E), then it suffices to show that

Σ = Com(E) is a r-preferred subtheory. (7)

We show Σ is r-consistent. Suppose otherwise. Then Σ ⊢r ⊥ and ∃Σ′ ⊆ Σ such that
(by [12, Lemma 9]) (Σ′, ∅,⊥) ∈ E , contradicting direct consistency ([12, Theorem
11]). We show that Σ is maximally r-consistent. Let Σ = Σ1, . . . ,Σn where for
i = 1, . . . , n, Σi = Com(E) ∩ Bi. Suppose Σ is not maximally r-consistent. We
show that this contradicts E is d-preferred. Without loss of generality assume that for
j = 1 . . . i− 1:

Σ1 ∪ · · · ∪ Σi−1 is a maximal r-consistent subset of B1 ∪ · · · ∪ Bi−1 (8)

( i−1⋃
j=1

Σj

)
∪ Σi is r-consistent but not maximally r-consistent (9)

Hence let {δ1, . . . , δm} be any non-empty maximal subset of Bi not in Σi but that is
r-consistent with Σ1 ∪ · · · ∪ Σi. That is, let

{δ1, . . . , δm} be any maximal subset of Bi \ Σi (10)
such that:

i⋃
j=1

Σj ∪ {δ1, . . . , δm} ⊬r ⊥. (11)

We can then show that expanding E with arguments whose committed premises include
formulae in {δ1, . . . , δm}, we obtain a E ′ ⊃ E that is d-admissible, contradicting E is
d-preferred (i.e., maximally admissible). Let:

E ′ = {(∆,Φ, ϕ)|∆ ⊆ Com(E) ∪ {δ1, . . . , δm},∆ ∪ Φ ⊢r ϕ} (12)

We show that E ′ is d-admissible:
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1. E ′ is d-conflict free. Suppose for contradiction that X,Y ∈ E ′, X ⇒E′ Y on
B = ({β}, ∅, β) and so X ⊀ B and Com(X) ∪ Sup(X) ∪ {β} ⊆ Com(E ′).

1.1 Suppose β ∈
⋃i

j=1 Σj ∪ {δ1, . . . , δm} Then, given X ⊀ B, it must be that
Com(X) ∪ Sup(X) ⊆

⋃i
j=1 Σj ∪ {δ1, . . . , δm}14. If Conc(X) = ⊥ then this con-

tradicts Eq. 11. If Conc(X) = −β, then β,−β and so ⊥ are all ⊢r entailed from⋃i
j=1 Σj ∪ {δ1, . . . , δm}, contradicting Eq. 11.

1.2 Suppose β ∈
⋃n

j=i+1 Σi and so β ∈ Com(E). Let X = (Π,Ω, ϕ).

1.2.1 Suppose (Π ∪ Ω) ∩ {δ1, . . . , δm} = ∅.
By Eq. 12 and X ⇒E′ Y: Π ∪ Ω ⊆ Com(E). Let X′ = (Π ∪ Ω, ∅, ϕ). By [12,
Lemma 9], X′ ∈ E and B ∈ E . But then X′ ⇒E B, contradicting E is d-conflict
free. Hence:

1.2.2 Suppose (Π ∪ Ω) ∩ {δ1, . . . , δm}) = {δi, . . . , δk}.
We have X′ = ({δi, . . . , δk}, ((Π ∪ Ω) \ {δi, . . . , δk}), ϕ) ∈ ||X||.
Since (Π∪Ω)\{δi, . . . , δk} ⊆ Com(E) and β ∈ Com(E), we have that X′ ⇒E Y′

on β, for some Y′ ∈ E .
Since E is d-admissible, ∃Z ∈ E s.t. Z ⇒∅ X′ on some δ ∈ {δi, . . . , δk}. Hence
Z ⊀ ({δ}, δ) and so Com(Z) ∪ Sup(Z) ⊆

⋃i
j=1 Σj ∪ {δ1, . . . , δm} (again, by

the definition of ≺; recall Footnote 14).
If Conc(Z) = ⊥ this contradicts Eq. 11. If Conc(Z) = −δ, then −δ, δ and so ⊥
are ⊢r entailed by

⋃i
j=1 Σj ∪ {δ1, . . . , δm}, contradicting Eq. 11.

2. If Y ∈ E ′ then Y is acceptable w.r.t. E ′. Suppose X = (∆,Ψ, ϕ) defeats Y. There
are two cases: X ⇒E′ Y on (1) γ ∈ Com(E) or (2) γ /∈ Com(E).
2.1) X ⇒E′ Y on γ ∈ Com(E). By [12, Lemma 9]: Y′ = ({γ}, ∅, γ) ∈ E . Consider
two cases:
2.1.1) X ⇒E Y′. By admissibility of E , ∃Z ∈ E (hence Z ∈ E ′) such that Z ⇒∅ X,
and so Y is acceptable w.r.t. E ′.
2.1.2) X ⇏E Y′. Since {δ1, . . . , δm} = Com(E ′ \ E) (recall Eq. 10 and Eq. 12) and by
assumption X ⇒E′ Y, there must be some δi ∈ (Sup(X) = Ψ). Let:

{δi, . . . , δk} = Ψ ∩ {δ1, . . . , δm} (13)

and:
X′ = (∆ ∪ {δi, . . . , δk},Ψ \ {δi, . . . , δk}, ϕ) where X′ ⇒E Y′ (14)

By admissibility of E :

∃Z = (Π,Φ, γ) ∈ E ,Z ⇒∅ X′ and so (Sup(Z) = Φ) ⊆ (∆ ∪ {δi, . . . , δk}) (15)

There are two possibilities, Z ⇒∅ X′ on δ ∈ {δi, . . . , δk} or Z ⇒∅ X′ on α ∈ ∆:

14Recall the definition of the Elitist ≺ in Example 1. Given β ∈
⋃i

j=1 Σj ∪ {δ1, . . . , δm}, then ∃γ ∈
Com(X) ∪ sup(X) /∈

⋃i
j=1 Σj ∪ {δ1, . . . , δm} implies X ≺ B.
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2.1.2.1) Suppose Z ⇒∅ X′ on δ ∈ {δi, . . . , δk}. Hence Z ⊀ ({δ}, δ), and so
given δ ∈ Bi it must be that Π ∪ Φ ⊆

⋃i
j=1 Σj . If Conc(Z) = γ = ⊥, then⋃i

j=1 Σi ∪ {δ1, . . . , δm} ⊢r ⊥, contradicting Eq. 11. If γ = −δ, then −δ, δ and
so ⊥ are ⊢r entailed by

⋃i
j=1 Σi ∪ {δ1, . . . , δm}, contradicting Eq. 11. Hence:

∃β ∈ (Sup(Z) = Φ) s.t. β ∈
i⋃

j=1

(Bj \ (Σj ∪ {δ1, . . . , δm})) (16)

(since if β ∈ Bj>i this would mean Z ≺ ({δ}, δ), invalidating Z ⇒∅ X′).
Moreover, since β /∈ {δ1, . . . , δm}, then β /∈ {δi, . . . , δk}, and so recalling
Eq. 15:

∃β ∈ (Sup(Z) = Φ) s.t. β ∈ ∆ (17)

If (i) β /∈ Bi, then (recalling Eq. 16) by Eq. 8,
⋃i−1

j=1 Σj ∪ {β} ⊢r ⊥, else;
If (ii) β ∈ Bi, then by Eqs. 16, 10 & 11:

⋃i
j=1 Σj ∪ {δ1, . . . , δm} ∪ {β} ⊢r ⊥.

In either case:

∃Ω ⊆
i⋃

j=1

Σj ∪ {δ1, . . . , δm} ⊆ Com(E ′) s.t. Ω ∪ {β} ⊢r ⊥ (18)

Recall from Eq. 12 that Com(E ′) = Com(E)∪{δ1, . . . , δm}). Hence, by construc-
tion of E ′, (Ω, {β},⊥) ∈ E ′. Moreover, (Ω, {β},⊥) ⇒∅ X′ on β ∈ ∆ (recall
that β ∈ ∆ by Eq. 17, and given Eq. 16, (Ω, {β},⊥) ⊀ ({β}, ∅, β)). Hence
(Ω, {β},⊥) ⇒∅ X on β ∈ (Com(X) = ∆). Hence Y is acceptable w.r.t. E ′.

2.1.2.2) Suppose Z ⇒∅ X′ on α ∈ ∆. By construction of E ′, Z′ = (Π ∪
{δi, . . . , δk},Φ\{δi, . . . , δk}, γ) ∈ E ′. Since (Φ\{δi, . . . , δk}) ⊆ ∆ (by Eq. 15),
Z′ ⇒∅ X on α. Hence Y is acceptable w.r.t. E ′.

2.2) Suppose X = (∆,Ψ, ϕ) ⇒E′ Y ∈ E ′, on γ /∈ Com(E). Hence γ is some δ ∈
{δ1, . . . , δm}, and so it must be that ∆ ∪Ψ ⊆

⋃i
j=1 Bj (else X ≺ ({δ}, δ)).

Then either ∆∪Ψ∪{δ} ⊢r ⊥ (if ϕ = ⊥) or ∆∪Ψ∪{δ} ⊢r −δ, δ and so ⊥ (if ϕ = −δ).
Then, as in (i) and (ii) above, ∃(Ω, {β},⊥) ∈ E ′ such that (Ω, {β},⊥) ⇒∅ X on
β ∈ Com(X) = ∆, and Y is acceptable w.r.t. E ′.

We have shown that E ′ is d-admissible. This contradicts the assumption that E is d-
preferred. Hence, Σ is maximally r-consistent. Therefore Σ is a r-preferred subtheory.
We have shown Equation 7 and the theorem is shown.

4. Results for the Grounded Semantics and Sceptical Preferred Subtheories Con-
sequence

This section presents three contributions to the study of grounded semantics for Dialec-
tical Classical Argumentation. The first defines a novel characteristic function based
on the notion of defensible premises that is then used in constructing the dialectical
grounded extension. We then establish soundness for the grounded semantics. That
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is to say, if ϕ is an argumentation defined grounded consequence over B, then ϕ is
a sceptical consequence of PS over B. We then discuss why the right to left direc-
tion (completeness) does not obtain for both standard Cl-Arg and Dialectical Cl-Arg
formalisations of PS consequence. Nevertheless, we show that Dialectical Cl-Arg’s
use of suppositions means that one can simulate attacks targeting sets of premises; the
upshot being that the Dialectical Cl-Arg grounded consequence recovers sceptical PS
consequences that are not obtained using standard Cl-Arg grounded consequence.

4.1. Defining a Characteristic Function and Construction of the Grounded Extension
The notion of ‘epistemic maximality’ plays a key role in showing results for Dialecti-
cal Cl-Arg [12]. Epistemic maximality recognises that given the epistemic distinction
between committed and supposed premises, then if A = (∆,Γ, α) ∈ E and E also
includes some B that commits to a subset Γ′ ⊆ (Sup(A) = Γ) then an agent hav-
ing committed to Γ′ in E , would be expected to include in E the epistemic variant
A′ = (∆∪ Γ′,Γ \ Γ′, α). For example, if {({p}, {p→ q}, ({p→ q}, ∅, p→ q)} ⊆ E ,
then epistemic maximality requires that E also include ({p, p → q}, ∅, q) (assuming
resources suffice to construct ).

Definition 8. Let (A, C) be aDF . Let the epistemically maximal closure be a function
Clem: P(||A||) 7→ P(||A||):

Clem(E ⊆ ||A||)={X′∈||X|| | X ∈ A,X∈||X||,X ∈ E , Com(X) ⊆ Com(X′) ⊆ Com(E)}

Let E = Clem(E). Then E is epistemically maximal.

Dung’s Fundamental Lemma [15, Lemma 10] – if X,X ′ are acceptable w.r.t. an
admissibleE thenE∪{X} is admissible andX ′ is acceptable w.r.t. E′ – is then shown
to hold only for epistemically maximal d-admissible extensions in15.

Epistemic maximality also plays an important role in defining aDF ’s characteristic
function. Recall that in [15], a DF ’s characteristic function – FDF – returns the set of
arguments acceptable w.r.t. a set E of arguments, and so the fixed points of FDF are
the DF ’s complete extensions. FDF is monotonic, and so the grounded extension of a
finitary DF (A, C) (in which each X ∈ A is attacked by a finite number of arguments)
can be constructively defined using FDF . Starting with the empty set, the iteration of
FDF yields the least fixed point (lfp) of FDF which is the grounded extensionG(DF ).

Analogously, the least fixed points of the characteristic function FDF (henceforth,
we will omit the subscript DF ) defined over sets of dialectical arguments

F(E ⊆ ||A||) = {X ∈ ||A|| | X is acceptable w.r.t. E} (19)

identify the DF ’s d-complete extensions. However, F is not monotonic for ar-
bitrary sets of dialectical arguments, but only for epistemically maximal d-admissible
sets. Hence, the composed function

Fp = Clem ◦ F

15Hence, the results implied by the Fundamental Lemma are also shown to hold for Dialectical Cl-Arg;
in particular that the epistemically maximal d-admissible extensions form a complete partial order w.r.t. set
inclusion, and so any (d-)admissible extension is a subset of a (d-)preferred extension.
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applies F and then closes under epistemic maximality. The fixed points (including of
course the lfp / d-grounded extension) of Fp and F coincide ([12, Eq.4, Proposition
25]):

E is a fixed point of Fp iff E is a fixed point of F (20)

Moreover, (unlike F) iterative application of Fp, starting with ∅, does yield a mono-
tonically increasing sequence of epistemically maximal d-admissible extensions [12,
Corollary 24], resulting in construction of the d-grounded extension. For all intents
and purposes one can therefore adopt Fp as a DF ’s dialectical characteristic function.

In this section we propose an alternative dialectical characteristic function F+,
which returns only the set of acceptable arguments that commit to a single premise,
i.e., elementary dialectical arguments16, and then additionally includes any dialectical
arguments whose committed premises are committed by the returned set of elementary
arguments. One can then show that the fixed points of F+ are the fixed points of F , and
that F+ is monotonic when applied to d-admissible sets, and so yields the d-grounded
extension when iterating from ∅.

Definition 9. An elementary dialectical argument X is of the form ({α}, ∅, α). If
any such X is acceptable w.r.t. a set E of dialectical arguments, we say that X is
E-defensible, and define:

Def(E) = {({α}, ∅, α) | ({α}, ∅, α) is E-defensible}

Henceforth, we may write αp as an abbreviation for ({α}, ∅, α) and may refer to E-
defensible elementary arguments as E-defensible ‘premises’.

Remark 5. Let (A, C), E ⊆ ||A||, and ϕp ∈ Def(E). It is obviously the case that
∀X ∈ ||A|| s.t. Com(X) = {ϕ}, X is acceptable w.r.t. E .

Definition 10. Let (A, C) be a DF and E ⊆ ||A||. The characteristic function F+ :
P(||A||) 7→ P(||A||) is defined as follows:

F+(E) = {X ∈ ||A|| | ∀ϕ ∈ Com(X), ({ϕ}, ∅, ϕ) ∈ Def(E) }

F+ closes a set under all dialectical arguments built entirely from premises whose
corresponding elementary arguments are defended by that set. We show that the fixed
points of F+ and Fp (and hence F ; recall Equations 19 and 20) coincide, and that F+

can be used to construct the d-grounded extension.

Proposition 1. Let (A, C) be a DF and E ⊆ ||A|| be d-admissible. Then F+(E) =
Fp(E).

Proof. Left-to-Right. Let A ∈ F+(E). Hence, ∀ϕ ∈ Com(A): ϕp ∈ Def(E) and so
ϕ ∈ Com(F(E)). Trivially, the unassailable A′ = (∅, Com(A) ∪ Sup(A), Conc(A)) ∈
||A||, A′ ∈ F(E). Since Com(A) ⊆ Com(F(E)) and A′ ∈ F(E), then by Definition 8,
A ∈ Clem(F(E)) (recall that Fp = Clem ◦ F).

16Recall (Definition 6) that we assume DF s that satisfy P1: for any ϕ in a belief base, resources suffice
to construct the elementary argument ({ϕ}, ϕ).
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Right-to-Left. Let A ∈ Clem(F(E)). By Definition 8, ∀ϕ ∈ Com(A), ϕ ∈ Com(F(E))
and, clearly, Com(F(E)) = Com(Clem(F(E))). Suppose towards a contradiction that
A ̸∈ F+(E). Then, ∃ϕ ∈ Com(A) s.t. ∃B ∈ ||A|| with B ⇒E ϕp on ϕ (Sup(B) ⊆
Com(E ∪ {ϕ})) and ¬∃C ∈ E s.t. C ⇒∅ B. Since ϕ ∈ Com(F(E)), ∃Q ∈ F(E)
s.t. ϕ ∈ Com(Q). Hence, B ⇒E Q on ϕ. Since Q ∈ F(E), ∃C ∈ E s.t. C ⇒∅ B.
Contradiction.

Proposition 2. Let (A, C) be a DF , and E ⊆ E ′ ⊆ ||A|| be d-admissible. Then:

1. E is a d-complete extension iff E = F+(E) iff E = F(E).
2. E is the d-grounded extension iff E is the least fixed point of F+.
3. F+(E) is admissible.
4. F+(E) ⊆ F+(E ′).

Proof. 1 and 2 follow from Proposition 1, the fact ([12, Eq.4, Proposition 25]) that the
fixed points of F and Fp coincide, and the fact ([12, Propositions 25 and 26]) that the
lfp of F is the d-grounded extension. 3 follows from Proposition 1 and the fact ([12,
Lemma 21]) that Fp(E) is d-admissible. 4 follows from Proposition 1 and the fact ([12,
Corollary 24]) that Fp(E)) is monotonic.

We therefore adopt F+ as an alternative characteristic function and show that it-
erating F+ from ∅ yields the d-grounded extension. Henceforth, we assume DF s are
finitary.17

Theorem 3. Let (A, C) be a finitary DF . The fixed point of F+ constructed from ∅ is
the d-grounded extension EG.

Proof. Same reasoning as in [12, Proposition 26]: Let E0 = ∅ and let Ei+1 = F+(Ei).
Since E0 is d-admissible, by Proposition 2-3 and Proposition 2-4, E0, E1, . . . is a mono-
tonically increasing sequence of d-admissible extensions. By Proposition 2-2, there is
a E∗ ⊆ ||A|| which is the lfp of F+ and, hence, the infinite set E∞ =

⋃∞
i=0(F+(Ei)) is a

monotonic expansion of E∗, i.e., E∗ ⊆ E∞. Let X ∈ F+(E∞). Since (A, C) is finitary,
there are finitely many defeats on X, hence there is an Em occurring in the expanding
sequence s.t. X ∈ F+(Em). Hence, E∞ = F+(E∞) = E∗ and, since ∅ is the smallest
d-admissible extension contained in any d-admissible E ⊆ ||A||, E∗ is the d-grounded
extension.

So, starting from the empty-set, one establishes the defensibility of elementary
arguments subsequently adding those arguments whose committed premises are in the
thus established defensible set. Iterating this procedure yields the d-grounded extension
EG, and therefore also the grounded extension G(DF ) = {(∆, α) | (∆, ∅, α) ∈ EG}.

17Given a finite belief base B, certain formalisations of Cl-Arg generate infinitely many classical logic
arguments each of which attack the same argument (e.g., in ASPIC+, the premise p yields an infinite number
of arguments repeatedly chaining the strict inference rule p → p so as to claim p, and each of which attack
an argument on premise ¬p). Since in dialectical Cl-Arg, the defined arguments need only satisfy P1-P3 we
can assume a finite number of arguments (Fact 1) and hence a finite number of attacks. Furthermore, since
the premises of Cl-Arg arguments are finite, we have only finitely many epistemic variants of a defeating
argument. Thus, the finitary assumption is harmless.
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Example 3. (Example 1 continued)

1. G1 = ({g}, ∅, g), G2 = ({g → ¬a ∨ ¬b}, ∅, g → ¬a ∨ ¬b) and D1 = ({(a ∧
b) → ¬c}, ∅, (a ∧ b) → ¬c), are ∅-defensible. Hence G1,G2,G3 = ({g, g →
¬a∨¬b}, ∅,¬a∨¬b),G′

4,G′
5 ∈ (E1 = F+(∅)) and {(∅,∆, ϕ)|(∆, ϕ) ∈ AB} ⊆

(E1 = F+(∅));
2. C = ({c}, ∅, c) is E1-defensible, and so is included in E2 = F+(E1);
3. E2 = F+(E2) is the d-grounded extension. Hence {G1, G2, G3, D1, C} is the

grounded extension.

Remark 6. We suggest that the characteristic function F+ defines a more intuitive
notion of epistemic closure than that defined by Fp in [12]. Indeed, F+ can be similarly
adopted as a characteristic function for DF s instantiated by standard approaches to
classical logic argumentation, capturing a notion of epistemic closure that applies to
these approaches. This is because it should be obvious to see that:

Let (A, C) be a DF and E ⊆ A. Then F (E) = F+(E) = {(∆, ϕ)|∀α ∈
∆, ({α}, α) ∈ F (E)}

where F is the standardly defined characteristic function for DF s, and F+ is the ana-
logue of F+, defined over sets of classical logic arguments. Moreover, adopting the
characteristic functions F+ for dialectical Cl-Arg and F+ for standard Cl-Arg, ob-
serve that the number of arguments whose acceptability one needs to determine w.r.t.
any set of (dialectical) arguments E (E) is bounded by the number of formulas in a base
B, rather than the number of (dialectical) arguments defined by B.

We also suggest that preserving admissibility of a d-admissible extension E , when
closing under arguments that commit only to E-defensible premises (as shown in Propo-
sition 2-3), captures an intuitive property that we refer to as cautious super-argument
closure (complementing the sub-argument closure property). Again, it should be obvi-
ous to see that the same property holds for standard Cl-Arg.

Finally, note that we make use of F+ in the result shown in the following section.

4.2. Soundness for Grounded Dialectical Consequence and Sceptical Preferred Sub-
theories Consequence

Theorem 4 states that if ϕ is a sceptical consequence under the grounded semantics,
then ϕ is a sceptical PS consequence. The result assumes resource bounded PS conse-
quence over a base B and ordering ≤ (Definition 7), the instantiation of a DF (A, C)
by B (Remark 3), and the argumentation defined sceptical consequence relation (Defi-
nition 5).

Theorem 4. Let B be a belief base of classical wff, ≤ a total ordering over B. Let ⊢r

⊆ ⊢CL be well-behaved. Then:

if B |∼sc
grounded ϕ then (B,≤) |∼sc

rps ϕ (21)

Proof. Let E1, . . . , Em be the r-preferred subtheories (rps) defined by (B,≤) and

E =

m⋂
i=1

Ei.
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Let B1, . . . ,Bn be the stratification of B induced by ≤, and

for i = 1 . . . n : Ei = (E ∩ B1) ∪ · · · ∪ (E ∩ Bi). (hence E = En) (22)

The iteration of F+, as described in the proof of Theorem 3, starts with F+ applied
to ∅, yielding a monotonically increasing sequence that in the limit yields the lfp of F+.
Now, F+(∅) returns only undefeated arguments ({X ∈ ||AB|| | ¬∃Y ∈ ||AB||,Y ⇒∅
X}), which trivially includes the unassailable epistemic variants {(∅,∆, ϕ)|(∆, ϕ) ∈
A}. Hence, without loss of generality, we can assume (for convenience) that the itera-
tion of F+ starts, not with ∅, but with

F 0 = {(∅,∆, ϕ) | (∆, ϕ) ∈ AB}.

Let F 0, F 1, . . . , F∞ be the sequence defined by F l+1 = F+(F
l). We prove by

induction that for each elementary argument ({α}, ∅, α) ∈ F l, α is in the intersection
E of the rps E1, . . . , Ek:

if ({α}, ∅, α) ∈ (F l = F+(F
l−1)) then α ∈ E (23)

Trivially, no ({α}, ∅, α) such that α ⊢r ⊥ can be included in F+(F
l−1), since any

such argument would be defeated by the unassailable (∅, {α},⊥) ∈ F 0. We prove
Equation 23 by induction on F l. In what follows, we may write αp, βp to respectively
denote the single-premise arguments ({α}, ∅, α), ({β}, ∅, β) (Definition 9).
Base case i=1. Suppose αp ∈ F 1 = F+(F

0) and for some i = 1 . . . n: α ∈ Bi.

Assume for contradiction that α /∈ Ei (recall from Eq. 22 thatEi = (
⋃i

k=1 Bi)∩E),
and so by definition of r-preferred subtheories (Def. 7) there is a rps Eh s.t.

Π ⊆ Eh (24)

and Π ∪ {α} ⊢r ⊥, and

Π ⊆
i⋃

k=1

Bk (25)

Given the Elitist definition of ≺ (see Eg. 1), Y = (Π, {α},⊥)) ⊀ αp. Hence Y ⇒F l−1 αp.
By assumption, αp ∈ F 1 = F+(F

0). Hence ∃X = (∅,Γ, ϕ) ∈ F 0 s.t. X ⇒∅ Y on
βp = ({β}, ∅, β). Hence X ⊀ βp, and so given β ∈ Π and Eq.25:

Γ ⊆
i⋃

k=1

Bk (26)

Since X ⇒∅ Y, (sup(X) = Γ) ⊆ Π. Hence if Conc(X) = ⊥, Π ⊢r ⊥. If Conc(X) =
−β, then since β ∈ Π, Π ⊢r β,−β and so Π ⊢r ⊥. However, Π ⊆ Eh (Eq.24),
contradicting Eh ⊬r ⊥. Hence α ∈ Ei.

Inductive step for j < l: ({α}, ∅, α) ∈ (F j = F+(F
j−1)) implies α ∈ E.

General case. Suppose αp ∈ F+(F
l−1) and for some i = 1 . . . n: α ∈ Bi.
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Proof is similar to the base case. That is, assume for contradiction that α /∈ Ei, and
so by Def. 7 there is a rps Eh s.t.

Π ⊆ Eh and Π ∪ {α} ⊢r ⊥ and Π ⊆
i⋃

k=1

Bk (27)

Hence Y = (Π, {α},⊥) ⊀ αp, and so Y ⇒F l−1 αp.
By assumption, αp ∈ F+(F

l−1). Hence ∃X = (∆,Γ, ϕ) ∈ F l−1 s.t. X ⇒∅ Y on
βp = ({β}, ∅, β). Hence X ⊀ βp, and so given β ∈ Π:

∆ ∪ Γ ⊆
i⋃

k=1

Bk (28)

By inductive hypothesis, definition of F+, and Eq.28 (Com(X) = ∆) ⊆ Ei. Since
X ⇒∅ Y, (sup(X) = Γ) ⊆ Π. Hence if Conc(X) = ⊥, Ei ∪ Π ⊢r ⊥. If Conc(X) =
−β, then since β ∈ Π, Ei ∪ Π ⊢r β,−β and so Ei ∪ Π ⊢r ⊥. However, Ei ⊆ Eh,
Π ⊆ Eh (Eq.27), contradicting Eh ⊬r ⊥. Hence α ∈ Ei.

We have shown that Equation 23 holds. The lfp of F+ is the d-grounded exten-
sion EG, which by definition of F+ includes all (∆,Γ, ϕ) s.t. α ∈ ∆, ({α}, ∅, α) ∈
EG. By Definition 5, the grounded extension G(DF ) of DFB = (AB, CB) is the set
{(∆, ϕ)|(∆, ∅, ϕ) ∈ EG}. Hence

⋃
∆

(∆,ϕ)∈G(DF)

⊆ E. That is to say:

B |∼sc
grounded ϕ implies E ⊢r ϕ (29)

Recall that E =
⋂m

i=1Ei, where E1...m are the rps. Hence, by Equation 29:

B |∼sc
grounded ϕ implies (B,≤) |∼sc

rps ϕ

4.3. Recovering Sceptical Preferred Subtheories Consequences

In Example 1, E is the dialectical grounded extension shown in Fig. 1i, and so the
grounded extension is {G1, G2, G3, D1, C}. Intuitively, since the budget g precludes
attendance at both conferences a and b (and neither A nor B are in the grounded exten-
sion since the ordering over B does not decide between the two), then attendance at c is
justified since only if one attends both a and b is attendance at c precluded. However,
in standard approaches to Cl-Arg (e.g., the ASPIC+ formalisation of Cl-Arg [29]) C
is not in the grounded extension. This is because G4 or G5 are required to defend C
againstD2. However, since neitherA norB are in the grounded extension, then neither
are G4 or G5. Moreover, although G3 is in the grounded extension, G3 does not defeat
D2 because targeting non-singleton sets of premises (i.e., {a, b}) is prohibited; attacks
can only target single premises. This is because allowing (what [20] call) ‘undercut at-
tacks’ — X attacks Y if X’s conclusion is classically equivalent to the negation of any
subset of Y ’s premises — not only violates consistency postulates (see [20]), but also
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violates the practical desideratum that whether one argument attacks another should be
‘directly inspectable’ (i.e., identifiable in linear time) [16].

However, in Dialectical Cl-Arg one can effectively simulate undercuts through use
of suppositions, while preserving consistency and the requirement that attacks be di-
rectly inspectable. Suppose:

X = (∆, ∅, ϕ) and Y = (Π,Σ, γ) where ϕ ⊣⊢CL ¬
∧

Θ for some Θ =
{α1, . . . , αm} ⊆ Π

then for i = 1, . . . ,m (and assuming sufficient resources): ∃Xi = (∆,Θ \ {αi},¬αi)
that targets αi ∈ Θ, where none of the premises Θ \ {αi} need be committed.

Hence, in Example 1, the defeat D2 ⇒E C is defended by the defeats G′
4 ⇒{D2} D2

and G′
5 ⇒{D2} D2, each of which simulate defeats on the set of committed premises

{a, b} ⊆ Com(D2). Both G′
4 and G′

5 only commit to g and g → ¬a ∨ ¬b, while G′
4,

respectively G′
5, need not commit to attendance at a, respectively b. Intuitively, G′

4

(G′
5) argues that given the budget precludes attendance at a and b, and supposing D2’s

commitment to attending b (resp. a), one cannot attend a (resp. b).

Remark 7. Notice that we have illustrated Dialectical Cl-Arg’s recovery of the scep-
tical PS consequence c in Example 1, assuming resources suffice to construct argu-
ments G4 and G5 (equating with B ⊢r ¬a and B ⊢r ¬b in Example 2). How-
ever, one need not assume construction of these arguments. We have argument F1 =
({a, b, g → ¬a ∨ ¬b, g},⊥) in Example 1. This equates with {a, b, g → ¬a ∨ ¬b, g}
being r-inconsistent in Example 2 (hence excluding membership of a and b in any
preferred subtheory, and thus inclusion of c in every preferred subtheory). We there-
fore also have the undefeated F1 = ({g → ¬a ∨ ¬b, g}, {a, b},⊥) in the dialectical
grounded extension E shown in Figure 118. F1 also defends C against the defeat by
D2 = ({a, b, (a ∧ b) → ¬c}, ∅,¬c), given that F1 ⇒∅ D2.

We have shown by example, that the grounded consequences (namely, c) obtained
by Dialectical Cl-Arg’s formalisation of Preferred Subtheories – denoted below by
|∼DCl

grounded – recovers PS sceptical consequences that are not obtained by the grounded
consequence relation – denoted below by |∼Cl

grounded – of Cl-Arg’s formalisation of Pre-
ferred Subtheories. However, it remains to show that the former subsumes the latter,
which is to say that:

|∼Cl
grounded ⊂ |∼DCl

grounded

We show this result in Theorem 5 below. Note that (recall C1, C2 and C3 as defined
in Section 1) since |∼Cl

grounded assumes omniscience (C1), a meaningful comparison re-
quires that we also assume all arguments defined by a base B when defining |∼DCl

grounded

(in which case P1, P2, and P3 in Definition 6 are trivially satisfied). However, |∼Cl
grounded

also assumes a framework in which arguments with inconsistent premises and premises

18This follows from [12, Lemma 9] which states that for any dialectical-complete extension, if Com(X) ⊆
Com(E), then X ∈ E . Note that in [12], the notation Prem(X) and Prem(E) are used in place of Com(X)
and Com(E), respectively.
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that are not subset minimal are removed (i.e., C2 and C3 respectively). Hence, to show
the above claim, we need to first more precisely stipulate the respective definitions of
|∼Cl

grounded and |∼DCl
grounded assumed in the proof of Theorem 5 below.

Definition 11. Let DFB = (AB, CB) be defined as in Definition 1, where AB consists
of all B-based arguments (i.e., AB = {(∆, α)|∆ ⊆ B,∆ ⊢CL α}), and where B is a
set of propositional or first order classical formulae, ≤ is a total ordering over B, and
≺ is the ≤-based Elitist preference ordering over AB, as defined in Example 1. Let:

• B |∼DCl
grounded ϕ iff B |∼sc

grounded ϕ, where B |∼sc
grounded ϕ is the dialectical

grounded consequence relation as defined in Definitions 3, 4 and 5.

• DF ′
B = (A′

B, C′
B) where

– A′
B are the arguments in AB that have subset minimal consistent premises,

and C′
B = {(X,Y )|X,Y ∈ A′

B, (X,Y ) ∈ CB} is the attack relation re-
stricted to arguments in A′

B;

• Let D′
B denote the standard defeat relation defined over A′

B:

D′
B = {(X,Y ) ∈ C′

B|Conc(X) = ϕ,−ϕ ∈ Prem(Y ), X ⊀ ({−ϕ},−ϕ)}

• Let E be the grounded extension of DF ′
B (as defined in the usual way in [15]).

We write B |∼Cl
grounded ϕ iff ∃X ∈ E, Conc(X) = ϕ.

We leave it to the reader to see that (as in Example 1 in which AB are a strict subset
of all arguments defined by B) for the totally ordered base B in Example 1, c is not a
|∼Cl

grounded consequence but is a |∼DCl
grounded consequence.

The following lemma, which assumes a DFB and DF ′
B as defined above, is used

to prove that |∼Cl
grounded ⊂ |∼DCl

grounded. The lemma states under which conditions for each
defeating argument there exists a defeat preserving subset minimal argument.

Lemma 4. Let DFB and DF ′
B be defined as in Definition 11. If Y,X ∈ ||AB||, Y =

(Π,Γ, ϕ), X = (∆,Θ, χ) and:

• X = (∆ ∪Θ, χ) ∈ A′
B

• Y ⇒E X (where E ⊆ ||AB||)

• Π ∪ Γ ⊬CL ⊥

• ∃Π′ ⊂ Π ∪ Γ s.t. Π′ ⊢CL ϕ and ¬∃Π′′ ⊂ Π′ s.t. Π′′ ⊢CL ϕ

then there is a subset minimal Y ′ = (Π′, ϕ) ∈ A′
B such that Y ′ defeats X (i.e.,

(Y ′, X) ∈ D′
B).

Proof. We have Y ⇒E X on some β ∈ ∆, and so by definition of the Elitist preference
ordering ≺ (see Example 1), ∀α ∈ Π ∪ Γ, α ≮ β. By definition of A′

B, Y ′ = (Π′, ϕ)
is a subset minimal consistent argument in A′

B. Since Π′ ⊂ Π ∪ Γ, ∀α ∈ Π′, α ≮ β,
and so Y ⊀ ({β}, β). Hence Y ′ defeats X on β.
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Theorem 5. Let B be a totally ordered belief base of classical wff, and let |∼DCl
grounded

and |∼Cl
grounded be defined as in Definition 11. Then, |∼Cl

grounded ⊂ |∼DCl
grounded.

Proof. We have shown by example, that |∼DCl
grounded ̸⊆ |∼Cl

grounded. Let DFB be as defined
in Remark 11. It suffices to show that |∼Cl

grounded ⊆ |∼DCl
grounded. That is, the lfp of the

standard characteristic function F for DF ′
B over (classical logic) arguments in A′

B is
a subset of the lfp of the dialectical characteristic function F+ (recall Definition 10)
over ||AB|| of DFB. Before proceeding, notice that unassailable dialectical arguments
of the form (∅,Γ, ψ) are trivially included in any admissible extension, and so in the
following, we can, without loss of generality, assume that iteration of F+ starts not
with ∅, but with the set of unassailable arguments.

Let

ECl =

∞⋃
i=0

ECl
i with ECl

0 = ∅ and ECl
i+1 = F (ECl

i )

and

EDCl =

∞⋃
i=0

EDCl
i with EDCl

0 = {(∅,Γ, ψ)|(Γ, ψ) ∈ AB} and EDCl
i+1 = F+(EDCl

i ).

We show the following claim by induction on i:

{(∆, ∅, ϕ) | (∆, ϕ) ∈ ECl} ⊆ EDCl (30)

Base case i=1 Let X = (∆, χ) ∈ ECl
1 , and so X is undefeated. We show that X ∈

EDCl
1 , where X = (∆, ∅, χ) ∈ ||AB||, by demonstrating the premise defensibility

(Definition 9) of each ϕ ∈ ∆. Suppose some arbitrary ϕ ∈ ∆ and Y ⇒EDCl
0

ϕp,
hence Y ⊀ ({ϕ}, ϕ). Since Com(EDCl

0 ) = ∅, then either:

1. Y = (Π, ∅,−ϕ).
• Suppose Π ⊢CL ⊥. We have Y′ = (∅,Π,⊥) ∈ EDCl

0 , and Y′ ⇒∅ Y.
• Suppose Y = (Π,−ϕ) is subset minimal and Π ⊬CL ⊥. Then Y =
(Π,−ϕ) ∈ A′

B, Y ⊀ ({ϕ}, ϕ) and Y defeats X on ϕ, contradicting X is
undefeated
• Suppose Y = (Π,−ϕ) is not subset minimal and Π ⊬CL ⊥. By Lemma
4, ∃Y ′ ∈ A′

B s.t. Y ′ defeats X , contradicting X is undefeated.

2. Y = (Π, {ϕ}, ψ) where ψ = −ϕ or ψ = ⊥.
(a) Suppose ψ = −ϕ, and so (Π ∪ {ϕ},−ϕ) ⊀ ({ϕ}, ϕ). By DCPref 219:

(Π,−ϕ) ⊀ ({ϕ}, ϕ) (31)

Also, Π∪{ϕ} ⊢CL −ϕ implies (by classical reasoning20) Π ⊢CL −ϕ.

19Recall (Section 2, p.10) that we assume dialectically coherent preference relations that satisfy DCPref 1
and DCPref 2.

20If Π ⊬CL −ϕ, then Π ⊬CL ⊥, and so Π ∪ {ϕ} ⊬CL ⊥, contradicting Π ∪ {ϕ} ⊢CL −ϕ.
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Suppose Π ⊢CL ⊥. Then Z = (∅,Π,⊥) ∈ EDCl
0 , and Z ⇒∅ Y.

Suppose Π ⊬CL ⊥.
• Suppose no proper subset of Π entails −ϕ. Then Y ′ = (Π,−ϕ) is
a subset minimal consistent argument in A′

B. Given Eq.31 Y ′ defeats
X on ϕ, contradicting X is undefeated.
• Else, let Π′ ⊂ Π be a minimal strict subset of Π s.t. Π′ ⊢CL −ϕ.
Then ∃Y ′′ = (Π′,−ϕ) ∈ A′

B s.t. by Lemma 4 Y ′′ defeats X , contra-
dicting X is undefeated.

(b) Suppose ψ = ⊥, and so (Π ∪ {ϕ},⊥) ⊀ ({ϕ}, ϕ). Π ∪ {ϕ} ⊢CL ⊥
implies (by classical reasoning21) Π ⊢CL −ϕ. Then proceed as in (a).

We have shown that if X = (∆, χ) ∈ ECl
1 , then for any ϕ ∈ ∆, if ϕp is defeated

by some Y, this either leads to a contradiction or ϕp is defensible. Hence X =
(∆, ∅, χ) ∈ EDCl

1 .

Inductive step for j < i: {(∆, ∅, ϕ) | (∆, ϕ) ∈ ECl
j } ⊆ EDCl

j .

Assume X = (∆, χ) ∈ ECL
i . We show that X = (∆, ∅, χ) ∈ EDCl

i by demon-
strating the premise defensibility of each ϕ ∈ ∆. Suppose Y = (Γ,Θ, ψ) ∈
||AB|| such that Y ⇒EDCl

i−1
ϕp for some ϕ ∈ ∆, and so Θ ⊆ Com(EDCl

i−1 ) ∪ {ϕ}
and Y ⊀ ({ϕ}, ϕ). There are two cases to consider. ψ = −ϕ and ψ = ⊥:

1. ψ = −ϕ.
(a) Suppose (Sup(Y) = Θ) ⊆ Com(EDCl

i−1 ).
Suppose Γ ∪Θ ⊢CL ⊥. We have:

V = (Θ,Γ,⊥) ∈ EDCl
i−1 and V′ = (Γ,Θ,⊥) ∈ ||AB||.

It follows from the properties of dialectically coherent preference re-
lations (in particular DCPref 1, p.10), that either:
– V ⇒∅ V′ in which case (since Com(Y) = Com(V′)) V ⇒∅ Y, or:
– V′ ⇒∅ V. That is, (Γ,Θ,⊥) ⇒∅ (Θ,Γ,⊥) on some σ ∈ Θ, and
so (given Θ ⊆ Com(EDCl

i−1 )), V′ ⇒EDCl
i−1

({σ}, ∅, σ). Since EDCl
i−1 is

admissible (recall Proposition 2-3), ∃Z ∈ EDCl
i−1 such that Z ⇒∅ V′

and so (since Com(Y) = Com(V′)) Z ⇒∅ Y.

Suppose Γ ∪Θ ⊬CL ⊥.
(a-i) Suppose no proper subset of Γ ∪ Θ entails −ϕ. Then we have
the subset minimal consistent Y = (Γ ∪ Θ,−ϕ) ∈ A′

B and (given
Y ⊀ ({ϕ}, ϕ)) Y defeatsX on ϕ. By assumption ofX ∈ ECL

i , there is
a Z = (Σ, β) ∈ ECL

i−1 such that Z defeats Y on some δ ∈ (Γ∪Θ) (and
so Z ⊀ ({δ}, δ)). By inductive hypothesis, Z = (Σ, ∅, β) ∈ EDCl

i−1 .
(a-i-1) Suppose Z defeats Y on some δ ∈ Γ. Since Com(Y) = Γ,

21If Π ⊬CL −ϕ, then Π ⊬CL ⊥, and so Π ∪ {ϕ} ⊬CL −ϕ. Contradiction.
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Z ⇒∅ Y.
(a-i-2) Suppose Z defeats Y on δ ∈ Θ. Since Θ ⊆ Com(EDCl

i−1 ) and
Z ∈ EDCl

i−1 , this implies that Z defeats some D ∈ EDCl
i−1 on δ, contra-

dicting EDCl
i−1 is admissible and hence conflict free.

(a-ii) Suppose (Γ′ ∪ Θ′) ⊂ (Γ ∪ Θ) is a minimal strict subset that
entails −ϕ. By Lemma 4, Y ′ = (Γ′ ∪ Θ′,−ϕ) ∈ A′

B, and Y ′ defeats
X on ϕ. We can then proceed as in (a-i).

(b) Suppose (sup(Y) = Θ) ⊆ Com(EDCl
i−1 )∪ {ϕ} where ϕ ∈ Θ. That is to

say, we have Y = (Γ,Θ,−ϕ) ⇒EDCl
i−1

ϕp, where ϕ ∈ Θ.

By classical reasoning22 Γ ∪ (Θ \ {ϕ}) ⊢ −ϕ. Let Θ′ = Θ \ {ϕ}.
We thus have Y ′ = (Γ ∪ Θ′,−ϕ) ∈ AB and (by DCPref 2, p.10),
Y ′ ⊀ ({ϕ}, ϕ). Hence Y′ = (Γ,Θ′,−ϕ) ∈ ||AB||, and Y′ ⇒EDCl

i−1
ϕp.

Suppose Γ ∪ Θ′ ⊢ ⊥. We can then repeat the reasoning in the case
that Γ ∪Θ ⊢ ⊥ in a), to show that there is a Z ∈ EDCl

i−1 that defeats Y′

on some δ ∈ Γ, and so Y on some δ ∈ Γ.

Suppose Γ ∪ Θ′ ⊬ ⊥. We can then repeat the reasoning in the case
that Γ∪Θ ⊬ ⊥ in a), substituting Θ′ for Θ and Y ′ for Y . In particular,
we thus show that:
– in the case (a-i) that Γ ∪ Θ′ is a subset minimal set entailing −ϕ,
there is a Z ∈ EDCl

i−1 that defeats Y′ on some δ ∈ Γ, and so Y on some
δ ∈ Γ (case (a-i-1)), or Z ∈ EDCl

i−1 defeats Y′ on some δ ∈ Θ′, which
leads to contradicting the admissibility of EDCl

i−1 (case (a-i-1)).
– in the case that Γ ∪ Θ′ is not subset minimal, proceed in the same
way as case (a-ii).

2. ψ = ⊥.
Hence Y = (Γ,Θ,⊥) ⇒EDCl

i−1
ϕp and ϕ ∈ Θ and Y = (Γ ∪ Θ,⊥) ⊀

({ϕ}, ϕ). By classical reasoning, Γ ∪ (Θ \ {ϕ}) ⊢CL −ϕ. We can then
proceed as in case 1(b).

We have shown that if X = (∆, χ) ∈ ECL
i , then for any ϕ ∈ ∆, if ϕp is defeated

by some Y, this either leads to a contradiction, or there is some Z ∈ ECL
i−1 such

that Z ⇒∅ Y and so ϕp is defensible. Hence X = (∆, ∅, χ) ∈ ECL
i .

Example 1 also illustrates how Dialectical Cl-Arg solves the so called ‘foreign com-
mitment problem’ [11], that arises when in order to challenge an agent Ag1’s argument
(e.g., D2 = ({a, b, (a ∧ b) → ¬c},¬c)) an interlocutor Ag2 is forced to commit (and
thus be held to account when challenged on their commitments) to either a or b in the

22Suppose Γ ∪ (Θ \ {ϕ}) ⊬CL −ϕ. Hence Γ ∪ Θ ⊬CL ⊥. But Γ ∪ Θ ⊢CL ϕ and Γ ∪ Θ ⊢CL −ϕ,
and so Γ ∪Θ ⊢CL ⊥. Contradiction. Hence Γ ∪ (Θ \ {ϕ}) ⊢CL −ϕ
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arguments G4 and G5 respectively, rather than, as one would expect in practice, only
suppose them for the sake of argument.

As an aside, notice also that attacks on the conclusions of Cl-Arg arguments (so
called ‘unrestricted rebuts’) are also prohibited, in large part because the consistency
postulates are again violated [9, 20], but also because it is arguably incoherent to
challenge the conclusion of a deductive inference. However, it would be pragmati-
cally useful to argue that given one’s own commitments ∆ in an argument X con-
cluding ϕ, the commitments Π of the attacked argument Y concluding −ϕ cannot, in
toto, be collectively and coherently committed. Again, referring to Example 1, D2

concludes ¬c and so defeats C = ({c}, ∅, c). C cannot directly unrestrictedly rebut
D2 = ({a, b, (a ∧ b) → ¬c}, ∅,¬c). However, F2 = ({c}, {a, b, (a ∧ b) → ¬c},⊥) is
a member of the grounded extension E (given that C ∈ E). Suppose then that F2 ⊀ X ,
for some X ∈ {A = ({a}, a), B = ({b}, b), D1 = ({(a ∧ b) → ¬c}, (a ∧ b) → ¬c)}
(although according to the Elitist preference ordering, it is in fact the case that F2 ≺ X
for each X ∈ {A,B,D1}). Then F2 ⇒{D2} D2 on a, b and (a ∧ b) → ¬c, effectively
simulating a rebut by arguing that the commitments of D2, together with the premise c
of C, entail ⊥, but without having to target one of the premises a, b or (a ∧ b) → ¬c.

While Dialectical Cl-Arg recovers sceptical PS consequences that are not obtained
under the grounded semantics for standard Cl-Arg, completeness still fails to hold for
Dialectical Cl-Arg. That is:

B |∼sc
rps ϕ↛ B |∼sc

grounded ϕ

Example 4. Suppose B = B1 ∪ B2, where:

B1 = {(¬a ∨ ¬b) ∧ d, (¬a ∨ ¬b) ∧ ¬d}
B2 = {a, b, (a ∧ b) → ¬c, c}

and suppose a well-behaved ⊢r ⊆ ⊢CL (recall Definition 7) such that:

1. B ⊢r α, α ∈ B
2. B1 ⊢r ⊥
3. {(¬a ∨ ¬b) ∧ d, a, b} ⊢r ⊥ and {(¬a ∨ ¬b) ∧ ¬d, a, b} ⊢r ⊥
4. {a, b, (a ∧ b) → ¬c} ⊢r ¬c and B2 ⊢r ⊥
5. {(¬a ∨ ¬b) ∧ d, a} ⊢r ¬b and {(¬a ∨ ¬b) ∧ d, b} ⊢r ¬a

There are four r-preferred subtheories:

Σ1 = {(¬a ∨ ¬b) ∧ d, a, (a ∧ b) → ¬c, c}
Σ2 = {(¬a ∨ ¬b) ∧ d, b, (a ∧ b) → ¬c, c}
Σ3 = {(¬a ∨ ¬b) ∧ ¬d, a, (a ∧ b) → ¬c, c}
Σ4 = {(¬a ∨ ¬b) ∧ ¬d, b, (a ∧ b) → ¬c, c}

Now notice that (B,≤) |∼sc
rps c, but (B,≤) |̸∼ sc

grounded c, since C = ({c}, ∅, c) is
not in the d-grounded extension EG. This is because (letting D2 = ({a, b, (a ∧ b) →
¬c}, ∅,¬c) – see Figure 1):

D2 ⇒∅ C and so D2 ⇒EG
C

28



ℂ = c , ∅, c

𝔻2 = ({𝑎, 𝑏, 𝑎 ∧ 𝑏 → ¬𝑐}, ∅, ¬𝑐)

ℍ1 = ({ ¬𝑎 ∨ ¬𝑏 ∧ 𝑑}, { ¬𝑎 ∨ ¬𝑏 ∧ ¬𝑑}, ⊥) 𝕀1 = ({ ¬𝑎 ∨ ¬𝑏 ∧ ¬𝑑}, { ¬𝑎 ∨ ¬𝑏 ∧ 𝑑}, ⊥)

ℍ′ = ({ ¬𝑎 ∨ ¬𝑏 ∧ 𝑑}, {𝑎}, ¬𝑏)𝕀′ = ({ ¬𝑎 ∨ ¬𝑏 ∧ 𝑑}, {𝑏}, ¬𝑎)

Figure 2: All defeats ⇒E in the figure occur with respect to E = ∅.

and since ⊢r is a ‘well-behaved’ approximation of classical consequence (satisfying 1
and 2 above), we have H = ({(¬a ∨ ¬b) ∧ d}, ∅, (¬a ∨ ¬b) ∧ d) and I = ({(¬a ∨
¬b) ∧ ¬d}, ∅, (¬a ∨ ¬b) ∧ ¬d), and

H1 = ({(¬a ∨ ¬b) ∧ d}, {(¬a ∨ ¬b) ∧ ¬d},⊥)

and
I1 = ({(¬a ∨ ¬b) ∧ ¬d}, {(¬a ∨ ¬b) ∧ d},⊥)

and so:
H1 ⇒∅ I and I1 ⇒∅ H and H1 ⇒∅ I1 and I1 ⇒∅ H1

The symmetric defeat between H1 and I1 (shown in Figure 2) means that neither
H1 nor I1 is in EG. Hence neither H′ = ({(¬a ∨ ¬b) ∧ ¬d}, {a},¬b) nor I′ =
({(¬a ∨ ¬b) ∧ ¬d}, {b},¬a) are included in EG, as they are defeated (respectively by
I1 and H1) and neither of these defeats can be defended by arguments in EG. Hence
no arguments are available in EG to defeat D2 and so defend C 23.

The above is an instance of the well known syntax sensitivity problem that afflicts
syntactic approaches to non-monotonic reasoning. The somewhat unnatural coupling
of the ‘fate’ of ¬a∨¬b with d (¬d) through use of the conjunction connective, disrupts
the correspondence between sceptical ps inference and sceptical inference under the
grounded semantics24.

Notice that this problem is related to the issue of redundantly contaminated argu-
ments (recall Section 2), in the sense that d (¬d) and ¬a ∨ ¬b are syntactically dis-
joint, and so one would not want that d (¬d) ‘contaminates’ the grounded consequence

23We also have that (Γ,≤) |̸∼ sc
grounded c in the case that ⊢r = ⊢CL

24Observe that PS is of course also a syntactic approach to non-monotonic reasoning, and yet obtains c as
a sceptical consequence. However, the incremental generation of preferred subtheories, whereby one starts
with the maximal consistent subsets {(¬a∨¬b)∧¬d} and {(¬a∨¬b)∧¬d} of B1, which in turn means
that maximally extending these with subsets of B2 excludes inclusion of a and b, and hence the inference ¬c.
However, in classical logic argumentation, the arguments defined by B include ({a, b, (a∧ b) → ¬c},¬c),
which then defeats c.
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¬a∨¬b. Suppose then that the beliefs in a base B are translated to conjunctive normal
form (cnf ). That is to say, if B = {ϕ1, . . . , ϕn}, CNF(B) = {cnf(ϕ1), . . . , cnf(ϕn)},
where each cnf(ϕi) is the conjunction α1

i∧· · ·∧αm
i , and where each αj

i is a disjunction
of atomic formulae. Separating out the conjuncts yields

B∗ = {α1
1, . . . , α

m
1 , . . . , α

1
n, . . . , α

k
n}

We conjecture then, that if a belief base B is transformed to B∗, then completeness
can be shown for the dialectical grounded consequence relation:

B∗ |∼sc
rps ϕ→ B∗ |∼sc

grounded ϕ

Intuitively, each atomic disjunct β in a disjunction αj
i = β1 ∨ · · · ∨ βl is relevant

with respect to the entailment of every other β′ in αj
i . This is of course because for

each βk (k = 1 . . . l), β1 ∨ · · · ∨ βl is logically equivalent to −β1 ∧ · · · ∧ −βk−1 ∧
−βk+1 · · · ∧ −βl → βk.

In our running example, the transformation would yield

B∗ = {¬a ∨ ¬b, d,¬d, a, b,¬a ∨ ¬b ∨ ¬c, c}

in which case it easy to see that one would recover the grounded consequence c.

5. Related Work and Conclusions

Formalisations of credulous Preferred Subtheories consequence been been established
for classical logic instantiations of Dung frameworks, under the stable semantics [2, 29,
32]. In this paper, we have established soundness and completeness under the preferred
semantics for Dialectical Cl-Arg25. Hence, agents with bounded inferential capabili-
ties can deploy argument game proof theories and engage in dialogues establishing
membership of an argument in dialectical admissible extensions, thereby establish-
ing credulous consequences yielded by resource bounded approximations of Preferred
Subtheories.

However, it should be noted that argument game proof theories for Dung AF s can-
not straightforwardly be applied to Dialectical Cl-Arg. In particular, argument games
involve a proponent submitting arguments that define an admissible extension S (con-
taining the argument whose membership in an admissible extension is being decided),
so as to defend against arguments moved by an opponent that defeat proponent’s sub-
mitted arguments (e.g., [28]). Future work is therefore required to adapt such proof
theories so that defeats moved by the opponent are parameterised so as to reference
(the premises of dialectical arguments in) the set E that the proponent has thus far
committed to.

We observe that many argumentative formalisations of well-known non-monotonic
logics are defined in terms of the stable semantics. (See [15] for the earliest of such re-
sults, and [4] for a recent overview.) An immediate question is whether results similar

25Recall (footnote 4) that we first presented the “stable = preferred” result for both Dialectical and standard
Cl-Arg in [13].
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to that presented in this paper, may be obtained for other such logics (see [34] for one
of the first known equivalence results for normal logic programs). Indeed, it would be
fruitful to investigate more general conditions (at the level of abstract, rather than in-
stantiated, Dung frameworks) under which the stable and preferred semantics coincide
(in this paper we have established equivalence by reference to classical logic instanti-
ations and Elitist argument preferences lifted from a total ordering over beliefs). For
example, equivalence may depend on the type of negation employed in the instantiat-
ing base logic (characterization results have been investigated for large classes of base
logics, not limited to classical and intuitionistic logic, e.g., see [3, 5, 22, 29]) or on the
properties of the argument preference ordering ‘lifted’ from the ordering over the belief
base [29]. Investigations in this spirit are likely to point to the presence of problematic
odd-loops that disrupt the equivalence between stable and preferred extensions.

This paper has also shown that under the grounded semantics, the dialectical ap-
proach is sound with respect to resource bounded sceptical Preferred Subtheories con-
sequence, and more closely approximates the sceptical Preferred Subtheories conse-
quence relations, as compared with standard Cl-Arg. We also conjecture that a full
correspondence fails only in ‘pathological’ cases in which syntactically unrelated for-
mulae are conjoined. Future work will more precisely articulate and verify this con-
jecture. Finally, we note that [32] provide argumentative characterisations of Preferred
Subtheories inference using assumption based argumentation [7], and do so for the
more general case in which the preferred subtheories are defined by all total orderings
that complete a given partial ordering over a belief base B of classical wff. It remains
to study characterisations of this more general case using standard and dialectical ap-
proaches to Cl-Arg.
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