Unp = ccl_learnv_pred_ncl ( model, X ) Predict null space components using learnt model Input: model Learnt model parameters X Input state variable Output: Unp Null space component prediction
0001 function Unp = ccl_learnv_pred_ncl ( model, X ) 0002 % Unp = ccl_learnv_pred_ncl ( model, X ) 0003 % 0004 % Predict null space components using learnt model 0005 % 0006 % Input: 0007 % 0008 % model Learnt model parameters 0009 % X Input state variable 0010 % 0011 % Output: 0012 % 0013 % Unp Null space component prediction 0014 0015 0016 0017 0018 % CCL: A MATLAB library for Constraint Consistent Learning 0019 % Copyright (C) 2007 Matthew Howard 0020 % Contact: matthew.j.howard@kcl.ac.uk 0021 % 0022 % This library is free software; you can redistribute it and/or 0023 % modify it under the terms of the GNU Lesser General Public 0024 % License as published by the Free Software Foundation; either 0025 % version 2.1 of the License, or (at your option) any later version. 0026 % 0027 % This library is distributed in the hope that it will be useful, 0028 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0029 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 0030 % Lesser General Public License for more details. 0031 % 0032 % You should have received a copy of the GNU Library General Public 0033 % License along with this library; if not, write to the Free 0034 % Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 0035 0036 dim_N = size( X, 2 ); 0037 dim_U = size( model.w, 1 ); 0038 Unp = zeros(dim_U, dim_N ); 0039 for i = 1 : dim_N 0040 Unp(:,i) = model.w * model.phi( X(:,i) ); 0041 end 0042 end