Home > prediction > ccl_learna_pred_proj_alpha.m

ccl_learna_pred_proj_alpha

PURPOSE ^

N = ccl_learna_pred_proj_alpha (model, q, Iu)

SYNOPSIS ^

function N = ccl_learna_pred_proj_alpha (model, q, Iu)

DESCRIPTION ^

 N = ccl_learna_pred_proj_alpha (model, q, Iu)
 Prediction of the projection matrix
 Our model predicts the constraint parameters. this function is used to
 reconstuct the projection matrix from constraint paramters.

 Input:
   model                                   Parametric model parameters
   q                                       Joint state data
   Iu                                      Identity matrix

 Output:
   N                                       Null space projection

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function N = ccl_learna_pred_proj_alpha (model, q, Iu)
0002 % N = ccl_learna_pred_proj_alpha (model, q, Iu)
0003 % Prediction of the projection matrix
0004 % Our model predicts the constraint parameters. this function is used to
0005 % reconstuct the projection matrix from constraint paramters.
0006 %
0007 % Input:
0008 %   model                                   Parametric model parameters
0009 %   q                                       Joint state data
0010 %   Iu                                      Identity matrix
0011 %
0012 % Output:
0013 %   N                                       Null space projection
0014 
0015 Rn = Iu ;                               % initial rotation
0016 A  = zeros(model.dim_k, model.dim_u) ;  % Initial constraint matrix
0017 bx = model.phi(q) ;                     % gaussian kernel of q
0018 for k = 1:model.dim_k
0019     theta   = [ pi/2 * ones(1,k-1), (model.w{k} * bx )' ] ; % the kth constraint parameter
0020     A(k,:)  = ccl_math_uvec(theta) *  Rn ;    % the kth constraint vector
0021     Rn      = ccl_math_rotmat (theta, Rn, model, k) ;   % update rotation matrix for (k+1)
0022 end
0023 N = Iu - A'*A ;
0024 end

Generated on Mon 01-Jan-2018 15:49:39 by m2html © 2005