model = ccl_learnp_pi(X,Y,model) Learn null space policy using regularised Least square method (parametric model) Input: X Input data Y Target data model Parametric model parameters Output: model learnt model parameters
0001 function model = ccl_learnp_pi(X,Y,model) 0002 % model = ccl_learnp_pi(X,Y,model) 0003 % 0004 % Learn null space policy using regularised Least square method (parametric model) 0005 % 0006 % Input: 0007 % 0008 % X Input data 0009 % Y Target data 0010 % model Parametric model parameters 0011 % 0012 % Output: 0013 % 0014 % model learnt model parameters 0015 0016 0017 0018 0019 % CCL: A MATLAB library for Constraint Consistent Learning 0020 % Copyright (C) 2007 Matthew Howard 0021 % Contact: matthew.j.howard@kcl.ac.uk 0022 % 0023 % This library is free software; you can redistribute it and/or 0024 % modify it under the terms of the GNU Lesser General Public 0025 % License as published by the Free Software Foundation; either 0026 % version 2.1 of the License, or (at your option) any later version. 0027 % 0028 % This library is distributed in the hope that it will be useful, 0029 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0030 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 0031 % Lesser General Public License for more details. 0032 % 0033 % You should have received a copy of the GNU Library General Public 0034 % License along with this library; if not, write to the Free 0035 % Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 0036 0037 [dimY N] = size(Y); 0038 0039 % find normalised Y 0040 r = sum(Y.^2,1).^0.5; 0041 YN = Y./repmat(r,dimY,1); 0042 0043 Phi = model.phi(X); 0044 dimPhi = size(Phi(:,1),1); 0045 0046 % construct Jacobian 0047 YPhit = Y*Phi'; 0048 g = YPhit(:); 0049 0050 % construct Hessian 0051 H = zeros(dimY*dimPhi); 0052 for n=1:N 0053 YNPhit = YN(:,n)*Phi(:,n)'; 0054 v(:,n) = YNPhit(:); 0055 H = H + v(:,n)*v(:,n)'; 0056 end 0057 0058 % do eigendecomposition for inversion 0059 %[V,D] = eig(H+1e-6*eye(size(H))); 0060 [V,D] = eig(H); 0061 ev = diag(D); 0062 ind = find(ev>1e-6); 0063 V1=V(:,ind); 0064 pinvH1 = V1*diag(ev(ind).^-1)*V1'; 0065 model.w=reshape(pinvH1*g,dimY,dimPhi)'; 0066