
A Beginner’s Guide to String Theory

Part II: Exploring the Quantum String

We are now at a halfway point in our investigation into the foundations of string theory. So, before
we move on, let’s stop for a moment and just get our bearings.

II.0 A brief recap

When we think of physics, we’re used to talking about particles. Given some particle, we know everything
about it so long as we know where it is, and how it’s moving - its position and velocity. So, the first job
of any good string theorist is to play the same game not for a particle, but for a string. What information
do we need to write down to completely describe the motion of a string?

σ

So, we first chose a coordinate σ to tell us how far along our string we were. Then, we learnt that if we
want to describe a string moving in d spatial dimensions, then we need to write down d − 1 functions
Xi(σ) for i = 1, 2, . . . d − 1 that well us where the string is in the directions transverse to the string
itself. Then, if we want our string to move, we need to introduce a further time coordinate τ , so that our
functions are now functions of two variables, Xi(σ, τ).

We then stated a fundamental result: that the functions Xi(σ, τ) must satisfy the wave equation,

∂2X

∂τ2
− ∂2X

∂σ2
= 0 , (1)

where we have here and for the remainder of this project set c = 1. So, the whole problem was reduced
to solving this one equation. To do so, we introduced new coordinates σ± = σ ± τ , called light-cone
coordinates, to find that the general solution to (1) was given by

Xi(σ, τ) = Xi
L(σ+) +Xi

R(σ−) (2)

for any functions Xi
L and Xi

R. For simplicity, we turned off the left-moving solution, and wrote

Xi(σ, τ) = Xi(σ−)

The final ingredient we needed to put in was that the string is closed, and so if we shift σ → σ + l where
l is defined as the length of the string, then our coordinates Xi must be unchanged. This lead to the
condition

Xi(σ− + l) = Xi(σ−) (3)
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which is to say that Xi(σ−) is periodic, with period l. And so finally we made use of Fourier series to
write our general solution as

Xi(σ−) = bi0 +
∞∑
n=1

(
bin cos

(
2πn

l
σ−

)
+ cin sin

(
2πn

l
σ−

))
(4)

for some numbers {bin, cin}. So, we’ve made it! Just as a particle’s motion is completely determined by its
position and velocity, a string’s motion is completely determined by these numbers. But what do they
mean? Well, let’s turn off bin and cin for n = 1, 2, . . . . Then, we just have Xi = bi0 = constant, and so the
string doesn’t move. Then, turning the bin and cin back on creates wobbles, or oscillations, in the string.

Exercise II.0.1 By plotting cos
(
2πn
l σ−

)
for various values of n, convince yourself that

the higher n goes, the higher frequency the waves on the string are.

So, we’ve got a string and all its wobbles. You may worry - say we want to describe a string that’s not
wobbling, but it is moving with constant speed in some direction? It turns out that we eliminated any
such motion when we threw away the left-moving bit of our solution. So, we should really think of (4) as
describing a string at rest.

The focus of the rest of this project is to explore how these numbers {bin, cin} are reinterpreted to
describe the mass of the string when we zoom out and see it as a particle. It is through this mechanism
that we hope that string theory can be used to describe the ‘particles’ our world is made up of!

II.1 Complex numbers are your friend

Before moving onto some quantum physics, its helpful (and fun!) to use some of the basics of complex
numbers to write our solution (4) in an even nicer form.

So, why do we care about complex numbers? Consider the equation x2 − 1 = 0, which has solutions
x = ±1. Now consider the similar equation x2 + 1 = 0. As we know that any real number x squared
gives a positive real number, we know there are no solutions! More accurately, we say that there are no
solutions ‘over the real numbers R’. So, we just invent a new ‘number’, say i, which satisfies i2 = −1.
Now we have a solution - it’s just x = i. In fact, we have another solution too, x = −i. So once again we
have two solutions. Again, more formally we say that the equation has two solutions ‘over the complex
numbers C’. Note, as you will have seen, given some complex number z ∈ C, we can always write it as
z = x+ iy for real numbers x, y ∈ R.

Exercise II.1.1 In Exercise I.1.2, we defined the exponential function by what’s called
a power series. To the first few orders in x, we had

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . . (5)
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It turns out that you can do the same thing with the familar trigonometric functions cos(θ)
and sin(θ). These are

cos(θ) = 1− θ2

2!
+
θ4

4!
− . . .

sin(θ) = θ − θ3

3!
+
θ5

5!
− . . . (6)

To define ez for a complex number z ∈ C, we simply stick z into the power series (5). By
doing this for the complex number z = iθ where θ ∈ R, show that

eiθ = 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
+ . . .

=

(
1− θ2

2!
+
θ4

4!
− . . .

)
+ i

(
θ − θ3

3!
+
θ5

5!
− . . .

)
(7)

This then suggests that perhaps we have

eiθ = cos(θ) + i sin(θ) (8)

This is in fact true, and is known as Euler’s formula.

Exercise II.1.2 For this exercise, you might find it useful to do a little background read-
ing on complex numbers; a good place to start is this NRICH page:
https://nrich.maths.org/1403

i) Show that

exp

(
2πnx

l
i

)
= cos

(
2πnx

l

)
+ i sin

(
2πnx

l

)
, and

exp

(
−2πnx

l
i

)
= cos

(
2πnx

l

)
− i sin

(
2πnx

l

)
where remember that exp(x) is just another way of writing ex.

ii) Hence, show that

cos

(
2πnx

l

)
=

1

2

(
exp

(
2πnx

l
i

)
+ exp

(
−2πnx

l
i

))
, and

sin

(
2πnx

l

)
=

1

2i

(
exp

(
2πnx

l
i

)
− exp

(
−2πnx

l
i

))
iii) Finally, convince yourself that (4) can be written as

Xi(σ−) =

∞∑
n=−∞

ain exp

(
2πnσ−

l
i

)
(9)

3



for some new set of numbers ain.

iv) (Harder - only have a go if you’re feeling adventurous!) Show that

ai0 = bi0

ain =

{
1
2

(
bin − icin

)
for n > 0

1
2

(
bin + icin

)
for n < 0

[
It may be helpful to remember

1

i
=

1

i
× i

i
=

i

(−1)
= −i

]

So, the end result of all of this is that we can write our solution as

Xi(σ−) =
∞∑

n=−∞
ain exp

(
2πnσ−

l
i

)
(10)

for a set of complex numbers {ain} where n ∈ Z.

II.2 Quantum states of the string

Let’s summarise what we’ve learnt. We’ve found that given a little loop of string, we can describe its
motion completely by a set of numbers ain, where i = 1, 2, . . . , D − 1 labels the directions at right
angles to the string, while the index n runs over all integers (both positive and negative). To be pre-
cise, we saw in the last part of Exercise II.1.2 that ai−n was the complex conjugate of ain for n 6= 0, but
we won’t worry about that detail here. Also, we discard ai0 for each i, and consider only those ain for n 6= 0.

You’ll be happy to hear that these ain are all we need to proceed. From here on, we forget about
the Xi and the wave equation they satisfy. We now introduce what it means to quantise a theory. In
a quantum theory, at any point in time our system lies in a particular state, which we write |ψ〉. For
instance, if we use a quantum theory to describe a cup of tea, then after brewing and taking out the
teabag it will be in the state |ψblack〉. To then change this state, we can act on this state with an operator,
say Amilk, to arrive at a new state |ψwhite〉 = Amilk |ψblack〉.

For our purposes, the state |ψ〉 describes how our string is moving. Then, our operators are given by
the ain, which can act on states. For instance, given state |ψ〉, we have that ain |ψ〉 is a different state.

Given two numbers x, y, we are used to being able to reorder the product xy = yx. This is called being
able to commute these numbers. In quantum theory, however, operators in general do not commute.
To get a handle on this, first define for two operators A,B, the commutator

[A,B] = AB −BA

which for general operators is not zero. Then, for the operators ain, we have the following commuta-
tion relation:

[ain, a
j
m] =

{
n if i = j and n+m = 0

0 otherwise
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In string theory, we define a special state called the ground state as the state |0〉 which satisfies

ain |0〉 = 0 for all n > 0

You’ll have noticed I’m sure that this is a completely abstract thing to say. But it turns out it is the
right thing to say, and given this definition, the ground state |0〉 can be thought of as describing a string
at rest. Then, to produce wobbly strings, we act on |0〉 with ai−n, with n > 0. The ai−n with n > 0 are
called creation operators, while the ain with n > 0 are called annihilation operators

Let’s do an example to try to make sense of all of this. Consider the quantum state a32a
1
−1 |0〉. Then,

according to the commutation relations, we have [a32, a
1
−1] = 0. But, [a32, a

1
−1] = a32a

1
−1 − a1−1a32. Hence,

a32a
1
−1 |0〉 = a1−1a

3
2 |0〉 = 0

since ain |0〉 = 0 for any n > 0. Thus, this quantum state is zero.

Exercise II.2.1 Show that
i) ai3a

j
−4 |0〉 = 0 for any i, j

ii) a12a
1
−2 |0〉 = 2 |0〉

iii) a23a
1
−3 |0〉 = 0

iv) a1−3a
1
3a

1
−3 |0〉 = 3a1−3 |0〉

v) a1−2a
3
−1 |0〉 = a3−1a

1
−2 |0〉 (Note, this is just saying that these two expressions describe

the same state - we do not care about the order in which creation operators are
written)

[Hint: it is useful to use the manipulation for any two operators A,B given by ]

AB = [A,B] +BA

How we should think about what we have constructed is that |0〉 describes our string at rest. Then, we
can act with the creation operators ai−n to create wobbles (i.e. oscillations) in the string. Remember,
the n corresponds roughly to cos

(
2πnσ
l

)
. You should draw this function for a few small values of n, to

see that the higher the value of n, the more wobbly the function is. Another name for these functions are
harmonics, i.e. cos

(
2πnσ
l

)
describes the nth harmonic. This is exactly the same concept you may have

seen in physics with standing waves. With this in mind, we would say that a1−3 creates a 3rd harmonic
oscillation in the X1 direction. Starting with the ground state |0〉, the set of all states that we can create
by acting with creation operators is called the Fock space of the theory.

Given the operators ain, there is a very important operator that we can form from them, called the
number operator, defined by

N =
∞∑
n=1

D−1∑
i=1

ai−na
i
n
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You should convince yourself that N |0〉 = 0. The important property of N is that we have

[N, ai−n] = nai−n for n > 0

This isn’t too tricky to prove, but I wouldn’t worry about doing so. Going forward, we will not need
to explicit form of N - we only need this commutation relation.

Exercise II.2.2 Show that
i) Na2−3 |0〉 = 3a2−3 |0〉

ii) Na1−2a
3
−1 |0〉 = 3a1−2a

3
−1 |0〉

iii) Nai−na
j
−m |0〉 = (n+m)ai−na

j
−m |0〉

You should hopefully have started to see a pattern. N counts the total number of oscillations. More
precisely, given a quantum state |ψ〉 in the Fock space, we will have N |ψ〉 = n |ψ〉, where remember here
N is an operator, but n is just an integer. We say the state is at level n. Then, we have

N
(
ai1−n1

ai2−n2
. . . aik−nk

|0〉
)

= (n1 + n2 + · · ·+ nk)
(
ai1−n1

ai2−n2
. . . aik−nk

|0〉
)

This says that the creation operator ai−n contributes n units to the level of the state!

Exercise II.2.3 Write a little bit (perhaps half a side) on the quantum states of the
string. Conclude by showing that there is

i) A single state at level 0

ii) (D − 1) states at level 1

iii) 1
2(D − 1)(D + 2) states at level 2

[Hint: there are two types of states at level 2, namely ai−1a
j
−1 |0〉 and ai−2 |0〉. How

many independent (i.e. unique) states are contained in these two expressions? Re-
member the last part of Exercise II.3.1...]

II.3 The correct (??!!) dimension of spacetime!

We conclude the project with a fun little calculation - we’re going to determine the unique dimension of
spacetime in which string theory makes sense. Unfortunately, there are many steps that we will miss.
These all have to do with the fact that we just discarded ai0, rather than dealing with it properly. It turns
out this ‘zero mode’ encoded the linear momentum, and therefore the mass/energy, of the ‘particle’ that
the string looks like when we zoom out.
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Firstly, what do we mean by the dimension of ‘spacetime’? Spacetime is simply the domain constructed
by taking space and, well, adding time. So if we have D spatial dimensions, as we have done so far, then
the dimension of spacetime is D + 1.

Exercise II.3.1 Consider a closed string in a state |ψ〉. If we zoom out and regard it as
a particle, then the mass (squared) of this particle is given by M2, where

(
N − D − 1

24

)
|ψ〉 = M2 |ψ〉

An important postulate of string theory is that the states at level one should represent
massless particles. Hence, show that for string theory to be a consistent theory, the
dimension of spacetime must be 26!

There a few things that have been swept under the carpet...

• Why do we have this shift by D−1
24 ? This seems very strange and arbitrary, and indeed this extra

term has a long history. It turns out that when we take a classical theory and try to formulate from
it a quantum theory, a lot of bad things can happen. These go by the title of anomalies. It turns
out that in order to make these anomalies go away, we require precisely this shift, or else nothing
we do makes any sense!

• What about the level zero states? With this formula, these would supposedly describe particles
with negative mass squared?! These states go by the name of tachyons. They are the basic reason
why the ‘bosonic’ string theory, which we have be describing, is thought to be inconsistent. It turns
out that one needs an extra ingredient: an extra kind of symmetry called supersymmetry. With this
added, we arrive at superstring theory, which is happily tachyon-free!

• But we don’t live in 26 dimensions! This would certainly seem to be the case. Firstly, we should
really be considering superstring theory, where the correct dimension of spacetime comes out at
10, by essentially the same calculation. But that’s still 6 too many - we only live in 4 spacetime
dimensions! There has been a huge amount of work done to try to explain these extra dimensions,
and how their requirement in string theory could actually be compatible with our world. The basic
idea is that of compactification, which says that the 6 extra (spatial) dimensions are not infinite as
we’re used to, but are actually wrapped up in little circles. This should be thought of like how on a
cylinder, one direction is long and keeps going (this is one of ‘our’ dimensions), while the other goes
round the cylinder, and is thus periodic, or compact (this is one of the ‘compactified’ dimensions).
Then, the argument of compactification says that we live on a higher-dimensional analogue of this
cylinder, in which we can only see the ‘long’ dimensions! While elegant in many ways, you runs into
yet more troubles when you go down this path...

• But I heard it was 11 dimensions! You may have heard that spacetime is actually thought to
be 11 dimensional. This is one of the central ideas of what is in many way the successor of string
theory: M-Theory! In M-theory, one essentially says that even string theory is not the full picture,
and that as a 10d theory it is actually a compactification of one even better 11d theory, which we
call M-theory. Much is left to learn about M-theory, but its study has lead to huge leaps in our
understanding of the complex interplay between abstract mathematics and physics
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This concludes the material for the project. I hope this project has given you a hint of the wonders
that lie within string theory. It would be an understatement to say that string theory is a broad field;
there are now thousands of physicists (and mathematicians!) working worldwide on what can broadly
described as string theory. Yet, there is still much more to learn - so perhaps it’ll be you that joins the
cause!
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